首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transforming activity of cloned Moloney sarcoma virus (MSV) proviral DNA was inhibited by in vitro methylation of the DNA at cytosine residues, using HpaII and HhaI methylases before transfection into NIH 3T3 cells. The inhibition of transforming activity due to HpaII methylation was reversed by treatment of the transfected cells with 5-azacytidine, a specific inhibitor of methylation. Analysis of the genomic DNA from the transformed cells which resulted from the transfection of methylated MSV DNA revealed that the integrated MSV proviral DNA was sensitive to HpaII digestion in all cell lines examined, suggesting that loss of methyl groups was necessary for transformation. When cells were infected with Moloney murine leukemia virus at various times after transfection with methylated MSV DNA, the amount of transforming virus produced indicated that the loss of methyl groups occurred within 24 h. Methylation of MSV DNA at HhaI sites was as inhibitory to transforming activity as methylation at HpaII sites. In addition, methylation at both HpaII and HhaI sites did not further reduce the transforming activity of the DNA. These results suggested that; whereas methylation of specific sites on the provirus may not be essential for inhibiting the transforming activity of MSV DNA, methylation of specific regions may be necessary. Thus, by cotransfection of plasmids containing only specific regions of the MSV provirus, it was determined that methylation of the v-mos gene was more inhibitory to transformation than methylation of the viral long terminal repeat.  相似文献   

2.
The restriction enzymes HhaI and HpaII, whose activity is inhibited by cytosine methylation within their recognition sites, have been utilised as probes to study methylation in the vicinity of the ovalbumin gene in DNA from various chicken tissues. This was complemented by a preliminary study of methylation in the regions of chicken ovotransferrin (conalbumin), ovomucoid and beta-globin genes. From our data we conclude that HaI or HpaII sites can be divided in 3 classes according to their pattern of methylation in different tissues. In the first class of sites (mV class) the extent of methylation varies in different tissues. The patterns obtained show that methylation at the sites located within and around the 3 genes which code for egg white proteins is in general lowest in oviduct of laying hen, where these genes are expressed. However some sites are not methylated (m- class) and others are 95 to 100% resistant (m+ class) to digestion by HhaI or HpaII in the DNAs of all the tissues which were tested. Our study has also revealed a remarkable number of allelic variants for the presence of HhaI or HpaII sites in the region of the ovalbumin gene.  相似文献   

3.
Methylation and expression of the human thyroglobulin gene   总被引:2,自引:0,他引:2  
The DNA methylation pattern at the 5'end of the human thyroglobulin gene has been determined in different tissues. Out of the four HpaII/MspI sites (5'-CCGG-3') present in this region, three were found to be non-methylated in thyroid DNA, while full methylation was observed in liver, salivary gland and sperm DNA. This demethylation therefore correlates with expression of the thyroglobulin gene. However, all four sites were found to be non-methylated in placental DNA, regardless of the activity of the gene.  相似文献   

4.
The role of DNA methylation in the expression of the rat growth hormone (rGH) gene was assessed by using a hypomethylating agent, 5-azacytidine, and the iso-schizomeric restriction enzymes MspI and HpaII. 5-Azacytidine increased rGH mRNA 3-8-fold in GH3D6 cells, a subclone of rat pituitary tumor cell lines that expresses one-tenth to one-fifteenth the GH expressed by two other clones, GH3 and GC. The effect was also detected at the level of pre-mRNA. The effect was independent of glucocorticoids and thyroid hormones and was found to be inheritable. The DNA methylation pattern generated by the isoschizomeric restriction enzymes indicated that the HpaII sites in the rGH gene were mostly methylated in GH3D6 cells but mostly unmethylated in GC cells. After treatment with 5-azacytidine, about 22% of these HpaII sites in GH3D6 cells became unmethylated. Thus, DNA methylation correlates inversely with the expression of the rGH gene in these cell lines. However, three other observations indicate that factors in addition to DNA methylation control rGH expression. First, in GC cells, even though most of the HpaII sites are unmethylated, the gene is not fully expressed. Second, in rat hepatoma cells, which do not express GH at all, the GH gene is less methylated than that in GH3D6 cells. Third, within the sensitivities of the assay methods, 5-azacytidine has no effect on the GH gene when it is completely silent. Taken together, the findings indicate that DNA methylation modulates but does not control GH gene expression. It is tempting to speculate that DNA methylation can influence expression only when the gene is committed to express.  相似文献   

5.
6.
The relationship between DNA methylation and the expression of the gamma- and beta-casein genes was investigated in both expressing and nonexpressing tissues and in isolated tumor cell subpopulations displaying differential casein gene expression. MspI/HpaII digestions of DNA isolated from liver, a totally nonexpressing tissue, indicated that specific sites of hypermethylation existed in these genes as compared to the DNA isolated from casein-producing lactating mammary gland. The positions of these sites were mapped in the gamma-casein gene by comparing total genomic DNA Southern blots to the restriction digests of several overlapping phage clones constituting the gamma-casein gene. In contrast, the methylation status of the HhaI sites in the gamma-casein gene was found to be invariant regardless of the expression status of the gene. The inverse correlation between the hypermethylation of certain MspI/HpaII restriction sites in the casein genes and their potential expressibility was further substantiated by studies in 7,12-dimethylbenz(a)anthracene- and N-nitrosomethylurea-induced mammary carcinomas, which have an attenuated casein gene expression, and in cell subpopulations isolated from the 7,12-dimethylbenz(a)-anthracene tumor which were either depleted or enriched in casein-producing cells. Analysis of total tumor DNAs indicated that the casein genes were hypermethylated at the same sites observed in liver. However, a very faint hybridization signal was observed in the HpaII digests, suggesting cell-specific methylation differences. We have confirmed the hypomethylation of at least two of these MspI/HpaII sites within the subpopulation containing the casein-producing cells at a level consistent with the relative enrichment in that fraction. These results demonstrate differential site-specific casein gene methylation not only between tissues but also between cell subpopulations within a single tissue.  相似文献   

7.
The development of malignant tumors in carcinogen-treated mouse skin appears to involve several genetic changes. Genetic changes which initiate the process are believed to induce alterations in the normal pattern of epidermal differentiation, resulting in the formation of benign tumors, i.e., epidermal papillomas. Subsequent changes appear to be required for the malignant conversion of papillomas to epidermal, squamous-cell carcinomas. Activation of the rasHa gene occurs frequently in chemically induced benign skin papillomas as well as squamous cell carcinomas and thus may represent one mechanism to achieve the initiation step. In the present study, we analyzed several cell lines derived from chemically induced mouse skin papillomas for the presence of transforming oncogenes by transfection of their DNA into NIH 3T3 cells. These papilloma cell lines exhibit an altered differentiation program, i.e., the ability to proliferate under culture conditions favoring terminal differentiation. When DNA from six separate cell lines was tested in the NIH 3T3 transfection assay, active transforming activity was not detected. However, when the EJ rasHa gene was introduced into three of the papilloma cell lines by DNA transfection, transfectants showed an enhanced capacity to proliferate under differentiating culture conditions and formed rapidly growing, anaplastic carcinomas in nude mice. Our findings suggest that in some papilloma cells, a genetic change distinct from rasHa activation may produce an altered differentiation program associated with the initiation step, and this genetic alteration may act in a cooperating fashion with an activated ras gene to result in malignant progression.  相似文献   

8.
Activated ras oncogenes have been identified in a wide range of tumours. All examples of ras gene activation in tumours so far result from amino acid substitution at Gly12 or Gln61. To learn more about how mutations in ras genes lead to transformation, we have analysed transforming growth factor production in NIH/3T3 cells transformed by each of the three ras genes. These results show that the transformed phenotype of these cells results from a combination of the presence of the mutant ras protein and TGF alpha production. In a second series of experiments we have shown that the mutation of a ras gene in a tumour cell line can lead to tumour progression towards a more aggressive phenotype.  相似文献   

9.
Maintenance of dosage compensation for housekeeping genes on the human X chromosome is mediated through differential methylation of clustered CpG nucleotides associated with these genes. To determine if methylation has a role in maintaining inactivity of X-linked genes which show tissue-specific expression, we examined the locus for blood clotting Factor IX. The analysis encompassed 91% of the HpaII and HhaI sites in the 41-kb region that includes the presumed promoter region, 5 kb of 5'- and 4 kb of 3'-flanking sequences. Although there are sex differences in methylation of the locus in leukocytes, the methylation pattern in liver, where the gene is expressed, is essentially the same for loci on the active and inactive X chromosome. The lack of differences in methylation of active and inactive genes makes it unlikely that methylation within the locus has a role in expression of the Factor IX gene. These findings, along with the absence of clustered CpG dinucleotides within the Factor IX locus, suggest that functional differences in DNA methylation related to X chromosome dosage compensation may be limited to CpG clusters. In any event, dosage compensation seems to be maintained regionally, rather than locus by locus.  相似文献   

10.
G Brady  A Funk  J Mattern  G Schütz    R Brown 《The EMBO journal》1985,4(10):2583-2588
Mouse Lewis Lung tumor DNA was ligated to a cosmid containing a geneticin (G418)/kanamycin resistance gene and transferred into NIH3T3 cells. Recipient cells were first selected for geneticin resistance and subsequently for their ability to grow as a tumour when injected into nude mice. By repeating this transfection procedure with DNA from resultant tumours, geneticin-resistant NIH3T3 cells were obtained which were tumorigenic and contained approximately 1-5 copies of the transferred cosmid. The functional oncogene was cloned by preparing cosmid libraries of third round tumour DNAs, using a cosmid which does not contain a kanamycin resistance gene. Due to the original linkage of the oncogene with the cosmid containing the kanamycin resistance gene, a series of kanamycin-resistant cosmids were isolated, five of which contained an active oncogene. Subsequent analysis showed that the oncogene present was highly related to the human N-ras gene. Using a DNA probe from the MLL N-ras gene, a non-transforming counterpart was isolated from mouse liver DNA. A comparison between the two N-ras genes showed that a mutation at the amino acid position corresponding to 61 in the human gene is responsible for transforming activity of the rescued gene.  相似文献   

11.
Five unrelated mouse tumours have been shown to carry activated transforming genes using the NIH/3T3 transfection assay. Three of these tumours, a T-cell lymphoma, a fibrosarcoma and a macrophage tumour, were found to carry an activated c-Ki-ras gene. A c-Ha-ras gene was shown to be activated in a myeloid leukaemia and a recently identified member of the 'ras' gene family, N-ras, was found to be activated in a lung carcinoma. The T-cell lymphoma, L5178Y-ES, is a more aggressively growing metastatic variant which arose spontaneously from the parental tumour, L5178Y-E. Although DNA from both parental and variant tumours was shown to transfer a genetic marker to recipient cells equally well, only the metastatic variant carried an activated c-Ki-ras gene detectable by transfection. The altered growth behaviour of the L5178Y-ES cells may therefore be the result of the spontaneous activation of the c-Ki-ras gene after the lymphoma cells had already become tumorigenic.  相似文献   

12.
A number of deletion mutants were isolated, including 5', 3', and internal deletions in the 5'-flanking region of the human cellular oncogene related to the Harvey sarcoma virus (c-H-ras), and their transforming activities were examined in NIH 3T3 cells. DNA sequences which could not be detected without losing transforming activity were localized to a relatively short stretch upstream of the region which showed homology to the 5'-flanking region of v-H-ras oncogene. S1 nuclease analysis indicated that there were two clusters of mRNA start sites at positions that were about 1,371 and 1,298 base pairs upstream of the first coding ATG. The minimum region required for promoter function was estimated to be a 51-base-pair-long (or less) DNA segment. The promoter was GC rich (78%) and did not contain the consensus sequences that are usually observed in PolII-directed promoters but contained a GC box within which one of the mRNA start sites was included. In addition, two sets of positive and negative elements seemed to be located between the promoter and the protein-coding region, which appeared to influence positively and negatively, respectively, the efficiency of transformation with the c-H-ras oncogene.  相似文献   

13.
The relative levels of DNA methylation at CCGG sequences within and around the interferon-gamma (IFN-gamma) gene in normal human tissues and cell lines were examined by Southern blot analysis using isoschizomeric restriction enzymes, HpaII and MspI. On the test of normal tissues, the IFN-gamma gene was undermethylated only in a small population of T lymphocyte, whereas the gene was fully methylated in T cell-depleted lymphocytes and uterus cells. In TCL-Fuj cell line which is a T cell line producing a high level of IFN-gamma spontaneously, the IFN-gamma gene was undermethylated. Moreover, the extent of DNA methylation was inversely correlated to the level of expression of the IFN-gamma gene in several T cell lines including sublines derived from TCL-Fuj cells. However, partial or complete unmethylation at the CCGG sites of IFN-gamma gene was observed in a promyelocytic leukemia cell line and two epithelial cell lines that fail to produce IFN-gamma irrespective of induction. These results suggest that undermethylation of IFN-gamma gene is necessary but not sufficient for its efficient expression.  相似文献   

14.
Over the finite proliferative life span of cultured bovine adrenocortical cells, satellite I DNA shows a progressive and extensive loss of methylation at CCGG sites. This was shown by Southern blotting after digestion with the methylation-sensitive enzyme HpaII alone, which provides a sensitive indicator of methylation loss, or digestion with the combination of EcoRI and HpaII, which provides a quantitative indication of loss of methylation. Bovine tissues, including adrenal cortex, all showed a much higher level of satellite methylation than cultured adrenocortical cells. After adrenocortical cells are placed in culture, some demethylation of satellite I is seen as early as 10 population doublings. By 80 population doublings, loss of satellite DNA methylation is extensive. The loss does not appear to prevent continued cell division, since an extended life span clone of bovine adrenocortical cells transfected with SV40 T antigen showed a similar pattern of extensive demethylation. Satellite demethylation has been reported in aging in vivo and the present cell culture system may provide an in vitro model for this form of genetic instability.  相似文献   

15.
Bovine papillomavirus (BPV) was methylated in vitro at either the 29 HpaII sites, the 27 HhaI sites, or both. Methylation of the HpaII sites reduced transformation by the virus two- to sixfold, while methylation at HhaI sites increased transformation two- to fourfold. DNA methylated at both HpaII and HhaI sites did not differ detectably from unmethylated DNA in its efficiency of transformation. These results indicate that specific methylation sites, rather than the absolute level of methylated cytosine residues, are important in determining the effects on transformation and that the negative effects of methylation at some sites can be compensated for by methylation at other sites. BPV molecules in cells transformed by methylated BPV DNA contained little or no methylation, indicating that the pattern of methylation was not faithfully retained in these extrachromosomally replicating molecules. Methylation at the HpaII sites (but not the HhaI sites) in the cloned BPV plasmid or in pBR322 also inhibited transformation of the plasmids into Escherichia coli HB101 cells.  相似文献   

16.
17.
18.
Prolonged alpha/beta interferon (IFN-alpha/beta) treatment of NIH 3T3 cells transformed by a long terminal repeat-activated Ha-ras proto-oncogene resulted in revertants that maintained a nontransformed phenotype long after IFN treatment had been discontinued. Cloned persistent revertants (PRs) produced large amounts of the ras-encoded p21 and were refractile to transformation by EJras DNA and by transforming retroviruses which carried the v-Ha-ras, v-Ki-ras, v-abl, or v-fes oncogene. Transient treatment either in vitro or in vivo with cytidine analogs that alter gene expression by inhibiting DNA methylation resulted in transformation of PR, but not of NIH 3T3, cells. The PR retransformants reverted again with IFN, suggesting that DNA methylation is involved in IFN-induced persistent reversion.  相似文献   

19.
Y Boyd  N J Fraser 《Genomics》1990,7(2):182-187
Methylation patterns surrounding a hypervariable X-chromosome locus, DXS255, have been analyzed with the restriction enzyme MspI and its methylation-sensitive isoschizomer HpaII. HpaII sites flanking the hypervariable region were found to be methylated on 41 active X chromosomes and unmethylated on 11 inactive X chromosomes present in a range of male, female, and hybrid cells and tissues. This differential methylation pattern coupled with the previously described high level (greater than 90%) of heterozygosity at the DXS255 locus can therefore be applied to determine the inactivation status of X chromosomes in females heterozygous for X-linked disease and in tumor clonality studies.  相似文献   

20.
J E Nelson  M A Kay 《Journal of virology》1997,71(11):8902-8907
Recombinant adenovirus vectors represent an efficient means of transferring genes into many different organs. The first-generation E1-deleted vector genome remains episomal and, in the absence of host immunity, persists long-term in quiescent tissues such as the liver. The mechanism(s) which allows for persistence has not been established; however, vector DNA replication may be important because replication has been shown to occur in tissue culture systems. We have utilized a site-specific methylation strategy to monitor the replicative fate of E1-deleted adenovirus vectors in vitro and in vivo. Methylation-marked adenovirus vectors were produced by the addition of a methyl group onto the N6 position of the adenine base of XhoI sites, CTCGAG, by propagation of vectors in 293 cells expressing the XhoI isoschizomer PaeR7 methyltransferase. The methylation did not affect vector production or transgene expression but did prevent cleavage by XhoI. Loss of methylation through viral replication restores XhoI cleavage and was observed by Southern analysis in a wide variety of, but not all, cell culture systems studied, including hepatoma and mouse and macaque primary hepatocyte cultures. In contrast, following liver-directed gene transfer of methylated vector in C57BL/6 mice, adenovirus vector DNA was not cleaved by XhoI and therefore did not replicate, even after a period of 3 weeks. Although replication may occur in some tissues, these results show that stabilization of the vector within the target tissue prior to clearance by host immunity is not dependent upon replication of the vector, demonstrating that the input transduced DNA genomes were the persistent molecules. This information will be useful for the design of optimal adenovirus vectors and perhaps nonviral episomal vectors for clinical gene therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号