首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The role of nitric oxide (NO) and its implication in intracellular and intercellular signaling pathways attract an attention of many research teams up to now. Away of its signaling functions. NO is considered as one of the key molecules in maintenance of balance between the physiological and pathological processes due to cytoprotective and cytotoxic functions of this molecule. In this regard, elucidation of the NO-dependent mechanisms, involved into the physiological processes and pathophysiological reactions, remains an urgent problem of conntemporary biology and medicine. Analysis of obtained results establishes a relative contribution of electro- and pharmaco-mechanical coupling mechanisms in NO-dependent regulation of smooth muscle cels (SMC) functions. The authors show that elevation of intracellular Ca2+ concentration by biologically active substances promotes relaxing effect of NO through both voltage-dependent and -independent intracellular mechanisms of calcium redistribution. Namely the peculiarities of considered mechanisms in each certain type of SMCs cause the final direction of alterations in contractility and membrane potential. It has been shown that voltage-dependent effects of NO are mediated by suppression of calcium and/or sodium components and modulation of Ca2+ -dependent and ATP-seisitive potassium components of SMC membrane permeability, Voltage-independent NO control of mechanical smooth muscles activity mainly is mediated by 1) modulation of protein kinase C (PK-C) branch of calcium signaling system, 2) ratio of cyclic nucleotides intracellular concentrations (cGMP/cAMP), and 3) directional mode of electrosilent Na+, K+, 2Cl- -cotransport. Our results show that the features of the myogenic effects of NO are caused by the peculiarities of PK-C operation in SMC.  相似文献   

3.
The vasodilator-stimulated phosphoprotein (VASP) is associated with actin filaments and focal adhesions, which form the interface between the cytoskeleton and the extracellular matrix. VASP is phosphorylated by both the cAMP- and cGMP-dependent protein kinases in a variety of cells, including platelets and smooth muscle cells. Since both the cAMP and cGMP signalling cascades relax smooth muscle and inhibit platelet activation, it was speculated that VASP mediates these effects by modulating actin filament dynamics and integrin activation. To study the physiological relevance of VASP in these processes, we inactivated the VASP gene in mice. Adult VASP-deficient mice had normal agonist-induced contraction, and normal cAMP- and cGMP-dependent relaxation of intestinal and vascular smooth muscle. In contrast, cAMP- and cGMP-mediated inhibition of platelet aggregation was significantly reduced in the absence of VASP. Other cAMP- and cGMP-dependent effects in platelets, such as inhibition of agonist-induced increases in cytosolic calcium concentrations and granule secretion, were not dependent on the presence of VASP. Our data show that two different cyclic, nucleotide-dependent mechanisms are operating during platelet activation: a VASP-independent mechanism for inhibition of calcium mobilization and granule release and a VASP-dependent mechanism for inhibition of platelet aggregation which may involve regulation of integrin function.  相似文献   

4.
Aggregating platelets relax isolated coronary arteries through the release of endothelium-derived relaxing factor (EDRF). Since release of EDRF may be calcium dependent, we tested if and how aggregating platelets stimulated a calcium response in cultured endothelial cells. Aggregating platelets caused a transient increase in intracellular calcium in endothelial cells loaded with the fluorescent calcium indicator fura-2. The adenine nucleotides ADP and ATP, but not other platelet-derived mediators, mimicked the platelet-induced calcium response, and inhibition of adenine nucleotides impaired the response to aggregating platelets. Thus, aggregating platelets release adenine nucleotides and stimulate a rise in intracellular calcium in cultured endothelial cells. This calcium response may represent the intracellular transduction mechanism by which aggregating platelets induce endothelial release of EDRF and subsequent relaxation of coronary arteries.  相似文献   

5.
In experiments on isolated segments of the rat femoral artery, we demonstrated that a donor of nitric oxide, nitroglycerine (NG), suppresses KCl-and phenylephrine-induced contractions of smooth muscles (SMs) of the vascular wall in a dose-dependent manner. The relaxing effect of NG on SMs is based on several mechanisms. In a series of experiments on intact preparations, we found that potassium channels of two types, Ca-dependent big-conductance and inward rectifying channels, are involved in the relaxing effect of NG. Experiments on skinned preparations showed that interaction between the contractile apparatus of SM cells and calcium ions is disturbed under the action of NG. Neirofiziologiya/Neurophysiology, Vol. 39, No. 3, pp. 208–213, May–June, 2007.  相似文献   

6.
Pathogenic mechanisms in filarial diseases are complex and poorly understood. While examining endothelium-dependent vasodilatory responses in the in vivo canine femoral artery, we noticed that dogs with Dirofilaria immitis infection had altered vascular responsiveness. The results reported here extend our original observations on vascular reactivity in dogs with D. immitis infection (L. Kaiser, J. F. Williams, E. A. Meade, and H. V. Sparks, 1987, American Journal of Physiology 253, H1325-H1329). In noninfected dogs, acetylcholine binds to the luminal endothelial cell muscarinic receptor. This results in release of a nonprostaglandin endothelium-derived relaxing factor. The relaxing factor causes an increase in vascular smooth muscle guanylate cyclase and relaxation. However, in dogs with D. immitis infection the mechanism of relaxation to acetylcholine is different. At least two endothelium derived relaxing factors are involved: the major factor is a prostaglandin; the second factor works through vascular smooth muscle cGMP. These data suggest that adult D. immitis release pharmacologically active factors that can alter distal endothelial cell function. The notion that filarial products may alter the physiological function of endothelial cells should be considered in the pursuit of improved understanding of pathogenic mechanisms of filariasis.  相似文献   

7.
The balance between thrombosis and hemorrhage is carefully regulated. Nitric oxide (NO) is an important mediator of these processes, as it prevents platelet adhesion to the endothelium and inhibits platelet recruitment. Although endothelial NO synthase (eNOS)-deficient mice have decreased vascular reactivity and mild hypertension, enhanced thrombosis in vivo has not been demonstrated. To determine the role of endogenous NO in hemostasis, a model of carotid arterial injury and thrombosis was performed using eNOS-deficient and wild-type mice. Paradoxically, the eNOS-deficient animals had a prolongation of time to occlusion compared with the wild-type mice (P < 0.001). Consistent with this finding, plasma markers suggesting enhanced fibrinolysis [tissue plasminogen activator (t-PA) activity and antigen and D-dimer levels] were significantly elevated in eNOS-deficient animals. Vascular tissue expression of t-PA and platelet activity levels were not altered. In endothelial cells, t-PA is stored in Weibel-Palade bodies, and exocytosis of these storage granules is inhibited by NO. Thus in the absence of NO, release of Weibel-Palade body contents (and t-PA) could be enhanced; this observation is also supported by increased von Willebrand factor levels observed in eNOS-deficient animals. In summary, although eNOS deficiency attenuates vascular reactivity and increases platelet recruitment, it is also associated with enhanced fibrinolysis due to lack of NO-dependent inhibition of Weibel-Palade body release. These processes highlight the complexity of NO-dependent regulation of vascular homeostasis. Such compensatory mechanisms may partially explain the lack of spontaneous thrombosis, minimally elevated baseline blood pressure, and normal life span that are seen in animals deficient in a pivotal regulator of vascular patency.  相似文献   

8.
9.
To determine whether astrocytes release nonprostanoid vasodilators, cells on microcarrier beads were superfused with various agents in the presence of indomethacin, and the effluent was bioassayed and also analyzed for nitric oxide by a chemiluminescence technique. Bradykinin and A23187 induced release of a factor that relaxed arterial rings, an effect that was blocked by hemoglobin. The effluent contained either nitric oxide or a related compound that could be reduced to nitric oxide. Production of this factor was competitively inhibited by the arginine analogs NG-nitro-L-arginine and NG-methyl-L-arginine and could be restored with L-arginine. Quisqualate and norepinephrine were also effective in causing the release of nitric oxide from astroglial cells. Thus, astrocyte-derived relaxing factor has properties similar to those of an endothelium- and neuron-derived relaxing factor.  相似文献   

10.
Collagenase-dispersed carp pituitary cells in a perifusion system were used to study the role of calcium ions in the mechanism of GnRH action on the release of maturational gonadotropin (GtH) in fish. The specific calcium chelator EGTA and the calcium antagonist manganese (Mn2+) caused a 40% inhibition in the basal GtH release and completely blocked GnRH-stimulated GtH release. Short-term application of graded doses of calcium ionophore A23187 caused a dose-dependent increase in GtH secretion. A23187 failed to stimulate GtH secretion in the presence of EGTA. Depolarization of the membrane by K+ caused a strong stimulation of GtH release similar to the action of GnRH. Stimulatory action of K+ was inhibited by EGTA. These data suggest a role for extracellular calcium as an intracellular mediator in GnRH-stimulated, as well as in basal, GtH release in carp. The stimulation of GtH release by K+ also indicates that voltage-dependent processes could be involved in this phenomenon.  相似文献   

11.
12.
F E Curry 《FASEB journal》1992,6(7):2456-2466
It has been proposed that calcium ion influx into endothelial cells modulates the permeability of venular microvessels via a calcium-dependent contractile process. The results of recent investigations using permeabilized endothelial cell monolayers conform to this hypothesis by demonstrating a calcium-dependent interaction of endothelial actin and myosin during the retraction of adjacent endothelial cells exposed to inflammatory agents. Little is known about the pathway for calcium influx into endothelial cells after exposure to mediators of inflammation, but evidence suggests that the properties of the calcium entry pathways are similar to the calcium entry pathways that regulate the release of endothelium-derived relaxing factor (EDRF). Substances that stimulate EDRF release from arterial endothelium also increase venular microvessel permeability. Recently developed methods to measure cytoplasmic calcium concentration in the endothelial cells forming the walls of individually perfused microvessels enable a direct investigation of the modulation of the permeability of venular microvessels by calcium influx. These experiments demonstrate that the magnitude of the initial increase in the permeability of microvessels after exposure to an agent that increases permeability, such as a calcium ionophore, is determined by the magnitude of calcium ion influx into the endothelial cells. Furthermore, the magnitude of the calcium influx into endothelial cells is modulated by the membrane potential of the endothelial cells. Depolarization of the endothelial cell membrane reduces calcium influx and attenuates increases in permeability whereas hyperpolarization of the endothelial membrane increases calcium influx and potentiates increases in permeability. These data conform to the hypothesis that a passive conductance channel for calcium is a major pathway for calcium ion flux responsible to eliciting an increase in the permeability of the endothelial barrier in microvessels.  相似文献   

13.
Numerous hormones and neurotransmitters activate cells by increasing cytosolic calcium concentration ([Ca(2+)](i)), a key regulatory factor for many cellular processes. A pivotal feature of these Ca(2+) signals is the release of Ca(2+) from intracellular stores, which is followed by activation of extracellular calcium influx, allowing refilling of the stores by SERCA pumps associated with the endoplasmic reticulum. Although the mechanisms of calcium release and calcium influx have been extensively studied, the biology of the Ca(2+) stores is poorly understood. The presence of heterogeneous calcium pools in cells has been previously reported [1] [2] [3]. Although recent technical improvements have confirmed this heterogeneity [4], knowledge about the mechanisms underlying Ca(2+) transport within the stores is very scarce and rather speculative. A recent study in polarized exocrine cells [5] has revealed the existence of Ca(2+) tunneling from basolateral stores to luminal pools, where Ca(2+) is initially released upon cell activation. Here, we present evidence that, during stimulation, Ca(2+) transported into basolateral stores by SERCA pumps is conveyed toward the luminal pools driven by proton gradients generated by vacuolar H(+)-ATPases. This finding unveils a new aspect of the machinery of Ca(2+) stores.  相似文献   

14.
Cells of the 7315a prolactin-secreting tumour express biochemically normal cell-surface receptors for dopamine. However, dopamine inhibits prolactin release from these cells only when the basal rate of prolactin release is augmented by increasing the intracellular and/or extracellular calcium concentration of the tumour cells. This suggests that dopaminergic modulation of calcium ion flux could have a central physiological role in these neoplastic cells. In 7315a cells we examined the ability of dopamine to regulate 45Ca2+ influx and fractional 45Ca2+ efflux under conditions of enhanced calcium flux using the calcium channel activator, maitotoxin. It was observed that unidirectional calcium influx stimulated by maitotoxin was significantly inhibited by dopamine. Maitotoxin stimulated fractional efflux and prolactin release from the tumour cells and dopamine simultaneously inhibited both processes by a haloperidol-reversible mechanism. Therefore, in 7315a cells dopamine receptor activation is coupled to inhibition of calcium flux as at least one component in the regulation of prolactin release. These cells may provide further opportunity to study intracellular signalling mechanisms that are modulated by dopamine receptor activity.  相似文献   

15.
16.
Purification of a vasodilator-regulated phosphoprotein from human platelets   总被引:17,自引:0,他引:17  
Cyclic-nucleotide-elevating vasodilators such as prostaglandin E1, prostacyclin, sodium nitroprusside and endothelium-derived relaxing factor inhibit both contraction of vascular smooth muscle cells and the aggregation of platelets at an early step of the activation cascade. Previous studies from this laboratory [Waldmann, R., Nieberding, M. and Walter, U. (1987) Eur. J. Biochem. 167, 441-448) established that in human platelets cyclic-nucleotide-elevating vasodilators stimulated a pattern of protein phosphorylation which was mediated by both cAMP- and cGMP-dependent protein kinases. Of particular interest was a membrane-bound 50-kDa protein whose phosphorylation was increased both by cAMP- and cGMP-elevating vasodilators in intact platelets and by endogenous cAMP- and cGMP-dependent protein kinase in platelet membranes. Since the molecular mechanism of action of cyclic-nucleotide-elevating vasodilators is unknown, this 50-kDa phosphoprotein from human platelets was purified to apparent homogeneity by salt extraction, anion, cation and dye-ligand chromatography. The purified protein migrated as a 46-kDa protein in SDS/PAGE, was an excellent substrate for both cAMP- and cGMP-dependent protein kinases and migrated in SDS/PAGE as a 50-kDa protein after phosphorylation by these protein kinases. Analysis by limited proteolysis, tryptic fingerprinting and of phosphoamino acids established that the purified protein is identical with the 50-kDa protein phosphorylated by both cAMP- and cGMP-dependent protein kinases in platelet membranes and in response to cAMP- and cGMP-elevating vasodilators with intact platelets. Evidence is presented that the purified protein contains at least two phosphorylation sites, each of which is preferentially phosphorylated by either cAMP- or cGMP-dependent protein kinase. The availability of this vasodilator-regulated phosphoprotein as a purified protein should now allow new approaches for investigating the function of this protein and its possible role in the mechanism of action of cyclic-nucleotide-elevating vasodilators.  相似文献   

17.
We reported previously that a 46/50-kDa membrane-associated vasodilator-stimulated phosphoprotein (VASP) is phosphorylated in intact human platelets in response to both cGMP- and cAMP-elevating vasodilator drugs and presented evidence that this is mediated by cGMP- and cAMP-dependent protein kinases, respectively. VASP was recently purified and an antibody against it was developed which detects a phosphorylation-induced mobility change of VASP in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Halbrügge, M., Friedrich, C., Eigenthaler, M., Schanzenb?cher, P., and Walter, U. (1990) J. Biol. Chem. 265, 3088-3093). We have now used these methods for the quantitative analysis of VASP phosphorylation during coincubations of human endothelial cells and human platelets. Endothelial cell-derived factors caused the rapid, stoichiometric, and reversible phosphorylation of platelet VASP during these coincubations. Other experiments indicated that the endothelium-derived factors which stimulate VASP phosphorylation are prostacyclin and endothelium-derived relaxing factor whose effects are mediated by cAMP/cAMP-dependent protein kinase and cGMP/cGMP-dependent protein kinase, respectively. The results suggest that VASP phosphorylation is an important component of the inhibitory effects of prostacyclin and endothelium-derived relaxing factor on platelet activation and that VASP phosphorylation is a useful biochemical marker for the interaction of endothelial cells and platelets.  相似文献   

18.
In acute experiments on anesthetized dogs under closed-chest conditions, we used the technique of double lumen catheterization of coronary vessels and peripheral vessel bed. We studied the role of endothelium-dependent relaxing factor/nitric oxide (EDRF/NO) in the development of parasympathetic coronary vasodilation after excitation of cardiac receptors. Under conditions of pharmacological stimulation of cardiac receptors of the left ventricle and short-lasting episodes of local myocardial ischemia, we also examined the effects of inhibition of NO synthesis on the development of cardiogenic depressor reflexes (hypotension and peripheral vasodilation). It was found that the reflex coronary dilatation following excitation of the cardiac (left ventricular) receptors significantly decreased after systemic NO synthase inhibition. Thus, NO production is one of the effector mechanisms of the development of coronary vessel dilatation; this conclusion is confirmed by changes in the dilatation level after blockade of this process with L-NNA (nitro-ω-L-arginine). We pioneered in demonstrating that after the blockade of NO synthesis peripheral vessel vasodilation decreases or disappeas altogether when cardiogenic reflexes are realized following pharmacological excitation of cardiac receptors with veratrine or catecholamine injections, and vasoconstrictor responses evoked by myocardial ischemia are significantly intensified. It is suggested that the influences of NO-dependent mechanisms exert a dual effect on sympathic control-mediated peripheral vasodilation during cardiogenic reflexes. Such mechanisms reduce central sympathetic tone and/or concurrently provide peripheral inhibition of neural sympathetic influences; in the latter case, NO-dependent cardiogenic reflexes play a crucial role in compensatory reactions after an injury to the heart.  相似文献   

19.
Neuropeptide Y (NPY) is widely expressed in the central and peripheral nervous systems and is proliferative for a range of cells types in vitro. NPY plays a key role in regulating adult hippocampal neurogenesis in vivo under both basal and pathological conditions, although the underlying mechanisms are largely unknown. We have investigated the role of nitric oxide (NO) on the neurogenic effects of NPY. Using postnatal rat hippocampal cultures, we show that the proliferative effect of NPY on nestin(+) precursor cells is NO-dependent. As well as the involvement of neuronal nitric-oxide synthase, the proliferative effect is mediated via an NO/cyclic guanosine monophosphate (cGMP)/cGMP-dependent protein kinase (PKG) and extracellular signal-regulated kinase (ERK) 1/2 signaling pathway. We show that NPY-mediated intracellular NO signaling results in an increase in neuroproliferation. By contrast, extracellular NO had an opposite, inhibitory effect on proliferation. The importance of the NO-cGMP-PKG signaling pathway in ERK1/2 activation was confirmed using Western blotting. This work unites two significant modulators of hippocampal neurogenesis within a common signaling framework and provides a mechanism for the independent extra- and intracellular regulation of postnatal neural precursors by NO.  相似文献   

20.
The CHRF-288-11 cell line has been previously shown to exhibit properties consistent with a megakaryocytic origin. The response of these cells to thrombin has now been investigated. Thrombin treatment of CHRF-288-11 cells results in both an increase in intracellular free calcium levels and secretion of mitogenic activity and beta-thromboglobulin. Cell viability is not affected. The mitogenic activity released from the cells is due primarily to the presence of basic fibroblast growth factor. Immunohistochemical data indicate a packaging of basic fibroblast growth factor into granular structures. Trypsin and phorbol 12-myristate 13-acetate also initiate release of mitogenic activity from this cell line, whereas under non-stirred conditions collagen and ADP do not. Through measurements of intracellular calcium levels it was determined that thrombin pretreatment of cells ablates a further response to thrombin, but does not block an increase in intracellular calcium levels due to trypsin. This suggests that these two agonists may act through different mechanisms. The thrombin-induced release reaction is inhibited almost completely by the reagents hirudin and dipyridamole, and only partially by indomethacin. These data indicate that the CHRF-288-11 cell line should provide an excellent model system in which to study the packaging of factors into granules which undergo regulated release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号