首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The globular domain of type IV collagen from bovine glomerular basement membrane was isolated under nondenaturing conditions. It was shown to exist in a hexameric form comprising monomeric and dimeric subunits, with the Goodpasture antigen residing in monomer M2 and dimer D2 as previously described (Butkowski, R. J., Wieslander, J., Wisdom, B. J., Barr, J. F., Noelken, M. E., and Hudson, B. G. (1985) J. Biol. Chem. 260, 3739-3747). The epitope, however, is sequestered inside the hexamer, but becomes exposed and binds with the Goodpasture antibody upon dissociation of the hexamer into its subunits after treatment with concentrated guanidine HC1 or dilute acetic acid (pH less than 3.0). The process is completely reversible even from the denatured state. Circular dichroism studies show that the conformation of each subunit is unusually resistant to change in 6 M guanidine HC1 at 25 degrees C. This suggests that exposure of the epitope by dissociation requires minimal or no unfolding of subunits. The results provide additional evidence for localization of the Goodpasture antigen to the globular domain of type IV collagen. Moreover, these studies extend the conclusion (Weber, H., Engel, J., Wiedemann, H., Glanville, R., and Timpl, R. (1984) Eur. J. Biochem. 139, 401-410) about a tumor basement membrane, to an authentic physiological membrane, that the globular domain is a major cross-linking site in the type IV collagen matrix.  相似文献   

2.
The nephritogenic antigen that induces antiglomerular basement membrane antibody-induced glomerulonephritis (anti-GBM nephritis) in rats was isolated from collagenase-solubilized bovine renal basement membranes. Purification was achieved using antibody-coupled affinity columns which were originally used for the purification of trypsin-solubilized nephritogenic antigen (Sado et al. 1984a). The nephritogenic antigen was a heteropolymer composed of P2 (Mr 28 kDa) and P3 (Mr 30 kDa) polypeptides as monomers and their dimers in sodium-dodecyl-sulfate (SDS) polyacrylamide gel electrophoresis. The P3 polypeptide was considered to be the nephritogenic epitope, since a fraction composed of the P2 polypeptide alone was not nephritogenic. The properties of the nephritogenic epitope were the same as those of the Goodpasture epitope (M2*), which is a noncollagenous domain of the alpha 3 chain of type IV collagen (Butkowski et al. 1985; Saus et al. 1988), indicating that the nephritogenic antigen is the same as the Goodpasture antigen.  相似文献   

3.
The autoantibodies of patients with Goodpasture syndrome are primarily targeted to the noncollagenous (NC1) domain of the alpha 3(IV) chain of basement membrane collagen (Saus, J., Wieslander, J., Langeveld, J. P. M., Quinones, S., and Hudson, B. G. (1988) J. Biol. Chem. 263, 13374-13380). In the present study, the location of the Goodpasture epitope in human alpha 3NC1 was determined, and its structure was partially characterized. This was achieved by identification of regions of alpha 3NC1 which are candidates for the epitope and which are structurally unique among the five known homologous NC1 domains (alpha 1-alpha 5); amino acids that are critical for Goodpasture antibody binding, by selective chemical modifications; and regions that are critical for Goodpasture antibody binding, by synthesis of 12 alpha 3NC1 peptides and measurement of their antibody binding capacity. The carboxyl-terminal region, residues 198-233, was identified as the most likely region for the epitope. By experiment, lysine and cysteine were identified as critical amino acids for antibody binding. Three synthetic peptides were found to inhibit Goodpasture antibody binding to alpha 3NC1 markedly: a 36-mer (residues 198-233), a 12-mer (residues 222-233), and a 5-mer (residues 229-233). Together, these results strongly indicate that the Goodpasture epitope is localized to the carboxyl-terminal region of alpha 3NC1, encompassing residues 198-233 as the primary antibody interaction site and that its structure is discontinuous. These findings provide a conceptual framework for future studies to elucidate a more complete epitope structure by sequential replacement of residues encompassing the epitope using cDNA expression products and peptides synthesized chemically.  相似文献   

4.
Goodpasture disease is a prototype autoimmune disease characterized by the formation of autoantibodies against the heterotrimeric basement membrane collagen type IV, which causes a rapidly progressive glomerulonephritis. The pathogenic antibody response is directed to the non-collagenous (NC1) domain of the alpha3 chain of type IV collagen (alpha3(IV)NC1), but not to the homologous region of the alpha1(IV)NC1. To identify the conformation-dependent immunodominant epitope on the alpha3(IV)NC1, a variety of recombinant NC1 domains were constructed by replacing single residues of alpha3(IV) with the corresponding amino acids from the nonreactive alpha1(IV) chain. Replacement mutations were identified that completely destroyed the Goodpasture epitope in the alpha3(IV) chain. Based on the identification of these critical positions, the epitope was finally reconstructed within the frame of the alpha1(IV) chain. The substitution of nine discontinuous positions in the alpha1(IV)NC1 with amino acid residues from the alpha3 chain resulted in a recombinant construct that was recognized by all patients' sera (n = 20) but by none of the sera from healthy controls (n = 10). This provides, for the first time, the molecular characterization of a single immunodominant conformational epitope recognized by pathogenic autoantibodies in a human autoimmune disease, representing the basis for the development of new epitope-specific strategies in the treatment of Goodpasture disease.  相似文献   

5.
Goodpasture syndrome is an autoimmune disease of the kidneys and lungs mediated by antibodies and T-cells directed to cryptic epitopes hidden within basement membrane hexamers rich in alpha3 non-collagenous globular (NC1) domains of type IV collagen. These epitopes are normally invisible to the immune system, but this privilege can be obviated by chemical modification. Endogenous drivers of immune activation consequent to the loss of privilege have long been suspected. We have examined the ability of reactive oxygen species (ROS) to expose Goodpasture epitopes buried within NC1 hexamers obtained from renal glomeruli abundant in alpha3(IV) NC1 domains. For some hexameric epitopes, like the Goodpasture epitopes, exposure to ROS specifically enhanced recognition by Goodpasture antibodies in a sequential and time-dependent fashion; control binding of epitopes to alpha3(IV) alloantibodies from renal transplant recipients with Alport syndrome was decreased, whereas epitope binding to heterologous antibodies recognizing all alpha3 NC1 epitopes remained the same. Inhibitors of hydrogen peroxide and hydroxyl radical scavengers were capable of attenuating the effects of ROS in cells and kidney by 30-50%, respectively, thereby keeping the Goodpasture epitopes largely concealed when compared with a 70% maximum inhibition by iron chelators. Hydrogen peroxide administration to rodents was sufficient to expose Goodpasture epitope in vivo and initiate autoantibody production. Our findings collectively suggest that ROS can alter the hexameric structure of type IV collagen to expose or destroy selectively immunologic epitopes embedded in basement membrane. The reasons for autoimmunity in Goodpasture syndrome may lie in an age-dependent deterioration in inhibitor function modulating oxidative damage to structural molecules. ROS therefore may play an important role in shaping post-translational epitope diversity or neoantigen formation in organ tissues.  相似文献   

6.
The globular domain of type IV collagen from bovine glomerular basement membrane was solubilized by collagenase digestion. Components of this domain include several monomer-size and structurally related dimer-size polypeptides. The monomer-size polypeptides were resolved into three fractions (M1, M2, and M3) with slightly different mobilities upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis (nonreduced Mr = 24,500-28,300). Chemical and immunochemical studies indicate that each is a distinct component. M2 is reactive with antibodies from patients with Goodpasture syndrome. The molecular weight by sedimentation equilibrium was 32,000 for M2 and 28,000 for M1. The dimers were characterized as two classes, D1 and D2. D1 consists of two sets of nonreactive components (D1a-d and D1a,c) whereas D2 contains one set of four components (D2a-d), each of which is reactive with Goodpasture sera. Chemical and immunochemical studies indicate that a monomer-dimer relationship exists between M1 and D1 and between M2 and D2. The origin of M3 remains undetermined. Rabbit antibodies to type IV collagen alpha chains react with M1 and M2, and antibodies to M1 and M2 react with type IV collagen alpha chains, which provides additional evidence for the localization of the Goodpasture antigen to one of the chains of type IV collagen.  相似文献   

7.
The chain origins of subunits M1, M2*, and M3 previously described (Butkowski, R. L., Wieslander, J., Wisdom, B.J., Barr, J.F., Noelken, M.E., and Hudson, B.G. (1985) J. Biol. Chem. 260, 3739-3747) of the globular domain of basement membrane collagen were identified, by amino-terminal amino acid sequence analysis, with respect to their relationship to the chains of collagen IV. M1 comprises two polypeptides which correspond to the noncollagenous segments (NC1) of the alpha 1 ad alpha 2 chains of collagen IV. M2*, containing the Goodpasture epitope, and M3 are distinct from these two constituents and from each other but have Gly-X-Y triplets and hydroxyproline at their amino terminus, reflecting the fact that each has a collagen chain origin. These results indicate the presence of two new collagen chains in basement membrane. These new chains appear to be integral components of collagen IV molecules. Alternatively, they could represent new molecular species of basement membrane collagen containing a globular domain, comprising M2* and M3, with physicochemical properties very similar to those of collagen IV.  相似文献   

8.
Polyclonal rabbit antibodies raised against the globular domain NC1 of collagen IV from human placenta and a mouse tumor react with conformational antigenic determinants present on the NC1 hexamers and also with the three major subunits obtained after dissociation. The antibodies recognized unique structures within basement membranes and showed a broad tissue reactivity but only limited species cross-reactivity. Using these antibodies, it was possible to detect small amounts of collagen IV antigens from cell cultures and in serum. Monoclonal rat antibodies against mouse NC1 revealed a similar reaction potential. Autoantibodies could be produced in mice against mouse NC1 which react with kidney and lung basement membranes in a pathological manner, mimicking Goodpasture syndrome.  相似文献   

9.
Goodpasture disease fulfils all criteria for a classical autoimmune disease, where autoantibodies targeted against the non-collagenous domain of the alpha3-chain of collagen IV initiates an inflammatory destruction of the basement membrane in kidney glomeruli and lung alveoli. This leads to a rapidly progressive glomerulonephritis and severe pulmonary hemorrhage. Previous studies have indicated a limited epitope for the toxic antibodies in the N-terminal part of the non-collagenous domain. The epitope has been partially characterized by recreating the epitope in the non-reactive alpha1-chain by exchanging nine residues to the corresponding ones of alpha3. In this study we have investigated to what extent each of these amino acids contribute to the antibody binding in different patient sera. The results show that seven of the nine substitutions are enough to get an epitope that is recognized equally well as the native alpha3-chain by all sera from 20 clinically verified Goodpasture patients. Furthermore, the patient sera reactivity against the different recombinant chains used in the study are very similar, with some minor exceptions, strongly supporting a highly defined and restricted epitope. We are convinced that the restriction of the epitope is of significant importance for the understanding of the etiology of the disease. Thereby also making every step on the way to characterization of the epitope a crucial step on the way to specific therapy for the disease.  相似文献   

10.
Goodpasture (GP) disease is an autoimmune disorder in which autoantibodies against the alpha3(IV) chain of type IV collagen bind to the glomerular and alveolar basement membranes, causing progressive glomerulonephritis and pulmonary hemorrhage. Two major conformational epitope regions have been identified on the noncollagenous domain of type IV collagen (NC1 domain) of the alpha3(IV) chain as residues 17-31 (E(A)) and 127-141 (E(B)) (Netzer, K.-O. et al. (1999) J. Biol. Chem. 274, 11267-11274). To determine whether these regions are two distinct epitopes or form a single epitope, three GP sera were fractionated by affinity chromatography on immobilized NC1 chimeras containing the E(A) and/or the E(B) region. Four subpopulations of GP antibodies with distinct epitope specificity for the alpha3(IV)NC1 domain were thus separated and characterized. They were designated GP(A), GP(B), GP(AB), and GP(X), to reflect their reactivity with E(A) only, E(B) only, both regions, and neither, respectively. Hence, regions E(A) and E(B) encompass critical amino acids that constitute three distinct epitopes for GP(A), GP(B), and GP(AB) antibodies, respectively, whereas the epitope for GP(X) antibodies is located in a different unknown region. The GP(A) antibodies were consistently immunodominant, accounting for 60-65% of the total immunoreactivity to alpha3(IV)NC1; thus, they probably play a major role in pathogenesis. Regions E(A) and E(B) are held in close proximity because they jointly form the epitope for Mab3, a monoclonal antibody that competes for binding with GP autoantibodies. All GP epitopes are sequestered in the hexamer configuration of the NC1 domain found in tissues and are inaccessible for antibody binding unless dissociation of the hexamer occurs, suggesting a possible mechanism for etiology of GP disease. GP antibodies have the capacity to extract alpha3(IV)NC1 monomers, but not dimers, from native human glomerular basement membrane hexamers, a property that may be of fundamental importance for the pathogenesis of the disease.  相似文献   

11.
Collagen IV networks are present in all metazoa and underlie epithelia as a component of basement membranes. The networks are essential for tissue function and are defective in disease. They are assembled by the oligomerization of triple-helical protomers that are linked end-to-end. At the C terminus, two protomers are linked head-to-head by interactions of their trimeric noncollagenous domains, forming a hexamer structure. This linkage in the alpha1.alpha2 network is stabilized by a putative covalent Met-Lys cross-link between the trimer-trimer interface (Than, M. E., Henrich, S., Huber, R., Ries, A., Mann, K., Kuhn, K., Timpl, R., Bourenkov, G. P., Bartunik, H. D., and Bode, W. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 6607-6612) forming a nonreducible dimer that connects the hexamer. In the present study, this cross-link was further investigated by: (a) comparing the 1.5-A resolution crystal structures of the alpha1.alpha2 hexamers from bovine placenta and lens capsule basement membranes, (b) mass spectrometric analysis of monomer and nonreducible dimer subunits of placenta basement membrane hexamers, and (c) hexamer dissociation/re-association studies. The findings rule out the novel Met-Lys cross-link, as well as other covalent cross-links, but establish that the nonreducible dimer is an inherent structural feature of a subpopulation of hexamers. The dimers reflect the reinforced stabilization, by noncovalent forces, of the connection between two adjoining protomers of a network. The reinforcement extends to other types of collagen IV networks, and it underlies the cryptic nature of a B-cell epitope of the alpha3.alpha4.alpha5 hexamer, implicating the stabilization event in the etiology and pathogenesis of Goodpasture autoimmune disease.  相似文献   

12.
Using a combination of cyanogen bromide cleavage and endoproteinase digestion we have shown that the putative epitope for the monoclonal antibody FAC2 lies in the region 360Pro(-391)Ser on the apoprotein of CPa-1. This region lies entirely within the large extrinsic loop of this protein. We have shown previously that the epitope of FAC2 becomes exposed in oxygen-evolving membranes upon treatment with alkaline Tris which releases all four of the manganese associated with the oxygen-evolving site of photosystem II. The epitope is not exposed, however, after CaCl(2) treatment and exposure to low concentrations of chloride, conditions which lead to the release of two of the four manganeses associated with the oxygen-evolving site. These results suggest that, upon release of the chloride-insensitive manganese from photosystem II membranes, a conformational change occurs which leads to the exposure of 360Pro(-391)Ser on CPa-1 to the monoclonal antibody FAC2.  相似文献   

13.
The accessibility of histone H5 in chromatin was examined with monoclonal antibodies recognizing several epitopes of the globular region (GH5) of the histone (Rózalski, M., Lafleur, L., and Ruiz-Carrillo, A. (1985) J. Biol. Chem. 260, 14379-14385). The stoichiometry of the chromatin-antibody complexes indicated that while 0-86% of the H5 molecules were able to react, depending on the particular epitope, the extent of antibody binding to relaxed chromatin (in 5 mM KCl) and condensed chromatin (in 100 mM KCl or 0.35 mM MgCl2) was virtually identical. This indicates that the topography of H5 does not change during the conformational transition of chromatin. The data suggest that H5 is not completely internalized in the 30-nm fiber or that the fiber is flexible enough to allow full exposure of the GH5 epitopes. Several control experiments, including monoclonal antibody binding, sedimentation analysis, DNase II digestion, and glutaraldehyde cross-linking, showed that epitope accessibility is not due to H5 exchange or to perturbation of the chromatin fiber. The accessibility of GH5 suggests ways in which inactive chromatin may be unfolded in vivo.  相似文献   

14.
NC1 subunits were purified from gel filtration pools of acid-extracted, collagenase-digested human glomerular basement membranes (hGBM). This methodology, which enriches 28-kDa monomers (M28) in the total digest, allowed purification of these monomers and 24-kDa (M24) and 26-kDa (M26) monomers free from dimers. Reactivity of these subunits with Goodpasture autoantibodies using immunoblotting of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and two-dimensional nonequilibrium pH gradient electrophoresis gels showed strong reactivity with the purified M28 subunits. Inhibition enzyme-linked immunosorbent assay, used to quantitate the reactivity of the purified NC1 subunits, indicated that M28 had a greater than 10-fold increase in ability to inhibit binding to NC1 than NC1 itself. Comparison of hGBM NC1 components were made with those obtained from collagenase digests of salt and acid-extracted bovine and sheep GBM and Englebreth-Holm-Swarm tumor similarly purified by gel filtration and reverse-phase high performance liquid chromatography. Two-dimensional gel analysis of these NC1 isolates revealed absence of the very cationic M28 monomers. Reactivity with antibodies eluted from diseased kidneys of sheep immunized with hGBM (Steblay nephritis) was compared with Goodpasture autoantibody reactivity by immunoblotting two-dimensional gels of hGBM NC1. We conclude that a very cationic M28 monomer (M28 ) found only in hGBM is the probable target in Goodpasture syndrome, that the epitope is present on most NC1 components from extracted and unextracted hGBM, and is exposed by urea denaturation which is enhanced by acid treatment. A weakly cationic M28 monomer (M28+) is present in GBM from other species and is the probable target in Steblay nephritis. Differential recognition of the two M28 components by these antibodies points to different genetic origins or possibly distinct post-translational modifications for these components. This is supported by their presence or absence in different species and tissues, as well as biochemical differences from the M24/26 monomers which presumably are derived from alpha 1(IV) and alpha 2(IV) collagen chains.  相似文献   

15.
16.
Goodpasture's (GP) disease is caused by autoantibodies that target the alpha3(IV) collagen chain in the glomerular basement membrane (GBM). Goodpasture autoantibodies bind two conformational epitopes (E(A) and E(B)) located within the non-collagenous (NC1) domain of this chain, which are sequestered within the NC1 hexamer of the type IV collagen network containing the alpha3(IV), alpha4(IV), and alpha5(IV) chains. In this study, the quaternary organization of these chains and the molecular basis for the sequestration of the epitopes were investigated. This was accomplished by physicochemical and immunochemical characterization of the NC1 hexamers using chain-specific antibodies. The hexamers were found to have a molecular composition of (alpha3)(2)(alpha4)(2)(alpha5)(2) and to contain cross-linked alpha3-alpha5 heterodimers and alpha4-alpha4 homodimers. Together with association studies of individual NC1 domains, these findings indicate that the alpha3, alpha4, and alpha5 chains occur together in the same triple-helical protomer. In the GBM, this protomer dimerizes through NC1-NC1 domain interactions such that the alpha3, alpha4, and alpha5 chains of one protomer connect with the alpha5, alpha4, and alpha3 chains of the opposite protomer, respectively. The immunodominant Goodpasture autoepitope, located within the E(A) region, is sequestered within the alpha3alpha4alpha5 protomer near the triple-helical junction, at the interface between the alpha3NC1 and alpha5NC1 domains, whereas the E(B) epitope is sequestered at the interface between the alpha3NC1 and alpha4NC1 domains. The results also reveal the network distribution of the six chains of collagen IV in the renal glomerulus and provide a molecular explanation for the absence of the alpha3, alpha4, alpha5, and alpha6 chains in Alport syndrome.  相似文献   

17.
Alpha 2-Macroglobulin (alpha 2M) is a plasma proteinase inhibitor that binds up to 2 mole of proteinase per mole of inhibitor. Proteinase binding or reaction with small primary amines causes a major conformational change in alpha 2M. As a result of this conformational change, a new epitope recognized by monoclonal antibody 7H11D6 is exposed. The association of alpha 2M-proteinase or alpha 2M-methylamine with alpha 2M cellular receptors is prevented by 7H11D6. In this investigation, the binding of 7H11D6 to alpha 2M was studied by electron microscopy. 7H11D6 bound to alpha 2M-methylamine and alpha 2M-trypsin but not to native alpha 2M. The structure of alpha 2M after conformational change resembled the letter "H." 7H11D6 epitopes were identified near the apices of the four arms in the alpha 2M "H" structure. 7H11D6 that was adducted to colloidal gold (7HAu) retained the specificity of the free antibody (binding to alpha 2M-trypsin but not to native alpha 2M). alpha 2M conformational change intermediates prepared by sequential reaction with a protein crosslinker and trypsin also bound 7HAu. These results suggest that a complete alpha 2M conformational change is not necessary for 7H11D6 epitope exposure and may not be required for receptor recognition. 7HAu was used to isolate a preparation consisting primarily of binary alpha 2M-trypsin (1 mole trypsin per mole alpha 2M instead of 2). Structures resembling the letter "H" were most common; however, each field showed some atypical molecules with arms that were compacted instead of thin and elongated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Rapidly progressive glomerulonephritis in Goodpasture disease is mediated by autoantibodies binding to the non-collagenous NC1 domain of alpha3(IV) collagen in the glomerular basement membrane. Goodpasture epitopes in the native autoantigen are cryptic (sequestered) within the NC1 hexamers of the alpha3alpha4alpha5(IV) collagen network. The biochemical mechanism for crypticity and exposure for autoantibody binding is not known. We now report that crypticity is a feature of the quaternary structure of two distinct subsets of alpha3alpha4alpha5(IV) NC1 hexamers: autoantibody-reactive M-hexamers containing only monomer subunits and autoantibody-impenetrable D-hexamers composed of both dimer and monomer subunits. Goodpasture antibodies only breach the quaternary structure of M-hexamers, unmasking the cryptic epitopes, whereas D-hexamers are resistant to autoantibodies under native conditions. The epitopes of D-hexamers are structurally sequestered by dimer reinforcement of the quaternary complex, which represents a new molecular solution for conferring immunologic privilege to a potential autoantigen. Dissociation of non-reinforced M-alpha3alpha4alpha5(IV) hexamers by Goodpasture antibodies is a novel mechanism whereby pathogenic autoantibodies gain access to cryptic B cell epitopes. These findings provide fundamental new insights into immune privilege and the molecular mechanisms underlying the pathogenesis of human autoimmune Goodpasture disease.  相似文献   

19.
Digestion of the rat liver glucocorticoid receptor with chymotrypsin results in the generation of a 42-kDa fragment which contains the steroid-binding and DNA-binding domains and the antigenic site for the BuGR anti-glucocorticoid receptor monoclonal antibody, while digestion with trypsin generates a 15-kDa receptor fragment containing only the DNA-binding function and the BuGR epitope (Eisen, L.P., Reichman, M.E., Thompson, E.B., Gametchu, B., Harrison, R. W., and Eisen, H.J. (1985) J. Biol. Chem. 260, 11805-11810). In this paper, glucocorticoid receptor of mouse L cells that were grown in the presence of [32P]orthophosphate was digested with trypsin or chymotrypsin (either before or after immune purification with BuGR antibody) and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, autoradiography, and Western blotting. The receptor is endogenously phosphorylated only on serine residues. Chymotrypsin digestion results in a 32P-labeled 42-kDa receptor fragment which contains steroid-binding, DNA-binding, and BuGR-reactive sites. Trypsin digestion generates a 27-kDa steroid-bound fragment (meroreceptor) which is not labeled with 32P and a 32P-labeled 15-kDa fragment which contains both the DNA-binding domain and the BuGR epitope. We have calculated that there are 4 times as many phosphate residues in the intact receptor than in the 42-kDa chymotrypsin fragment. From examination of 32P-labeled receptor fragments, we have deduced that one phosphate is located between amino acids 398 and 447, a region containing the BuGR epitope and about one-third of the DNA-binding domain, and the remaining three phosphates appear to be clustered just to the amino-terminal side of the BuGR epitope in a region defined by amino acids 313 to 369. Treatment of intact 32P-labeled receptor in cytosol with alkaline phosphatase removes these three phosphates, but it does not remove the phosphate from the DNA-binding-BuGR-reactive fragment and it does not affect the ability of the transformed receptor to bind to DNA-cellulose.  相似文献   

20.
Type IV collagen alpha1-alpha6 chains have important roles in the assembly of basement membranes and are implicated in the pathogenesis of Goodpasture syndrome, an autoimmune disorder, and Alport syndrome, a hereditary renal disease. We report comparative sequence analyses and structural predictions of the noncollagenous C-terminal globular NC1 domain (28 sequences). The inferred tree verified that type IV collagen sequences fall into two groups, alpha1-like and alpha2-like, and suggested that vertebrate alpha3/alpha4 sequences evolved before alpha1/alpha2 and alpha5/alpha6. About one fifth of NC1 residues were identified to confer either the alpha1 or alpha2 group-specificity. These residues accumulate opposite charge in subdomain B of alpha1 (positive) and alpha2 (negative) sequences and may play a role in the stoichiometric chain selection upon type IV collagen assembly. Neural network secondary structure prediction on multiple aligned sequences revealed a subdomain core structure consisting of six hydrophobic beta-strands and one short alpha-helix with a significant hydrophobic moment. The existence of opposite charges in the alpha-helices may carry implications for intersubdomain interactions. The results provide a rationale for defining the epitope that binds Goodpasture autoantibodies and a framework for understanding how certain NC1 mutations may lead to Alport syndrome. A search algorithm, based entirely on amino acid properties, yielded a possible similarity of NC1 to tissue inhibitor of metalloproteinases (TIMP) and prompted an investigation of a possible functional relationship. The results indicate that NC1 preparations decrease the activity of matrix metalloproteinases 2 and 3 (MMP-2, MMP-3) toward a peptide substrate, though not to [14C]-gelatin. We suggest that an ancestral NC1 may have been incorporated into type IV collagen as an evolutionarily mobile domain carrying proteinase inhibitor function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号