首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To mimic large numbers of nicked DNA duplexes we used a technique that produces nicked duplex DNA substrates by hybridization of complementary oligonucleotides, adjacent to an initiating primer, which are ligated together by a thermostable DNA ligase. Sequential ligation of nonanucleotides to this primary duplex results in the formation of polymers that can be analyzed by gel electrophoresis. The extent of polymerization is a measure of the efficiency of ligation. We determined the efficiency of ligation of nonanucleotides, using various length initiating primers, with three thermostable DNA ligases: Thermus thermophilus (Tth), Thermus scotoductus (Ts), and Rhodothermus marinus (Rm). Analysis of the effect of temperature for each ligase, and for each directing primer length, revealed that at 37 and 41 degrees C there was variation between ligase efficiency in the order Rm > or = Ts > or = Tth. The higher temperature of 46 degrees C was optimal for polymerization with each of the ligases and Rm ligase was the most efficient. Analysis of directionality of the ligations reactions suggests that for each of the Thermus ligases we tested, there was a bias to polymerization of nonanucleotides in a 5'-3' direction.  相似文献   

2.
Extremophiles - Recent studies have revealed the physiological significance of post-translational lysine acylations such as acetylation in the regulation of various cellular processes. Here, we...  相似文献   

3.
A homologue of the Escherichia coli penicillin acylase is encoded in the genomes of several thermophiles, including in different Thermus thermophilus strains. Although the natural substrate of this enzyme is not known, this acylase shows a marked preference for penicillin K over penicillin G. Three-dimensional models were created in which the catalytic residues and the substrate binding pocket were identified. Through rational redesign, residues were replaced to mimic the aromatic binding site of the E. coli penicillin G acylase. A set of enzyme variants containing between one and four amino acid replacements was generated, with altered catalytic properties in the hydrolyses of penicillins K and G. The introduction of a single phenylalanine residue in position α188, α189, or β24 improved the Km for penicillin G between 9- and 12-fold, and the catalytic efficiency of these variants for penicillin G was improved up to 6.6-fold. Structural models, as well as docking analyses, can predict the positioning of penicillins G and K for catalysis and can demonstrate how binding in a productive pose is compromised when more than one bulky phenylalanine residue is introduced into the active site.  相似文献   

4.
Rhodothermus marinus: physiology and molecular biology   总被引:2,自引:0,他引:2  
Rhodothermus marinus has been the subject of many studies in recent years. It is a thermohalophilic bacterium and is the only validly described species in the genus Rhodothermus. It is not closely related to other well-known thermophiles and is the only thermophile within the family Crenotrichaceae. R. marinus has been isolated from several similar but distantly located geothermal habitats, many of which are subject to large fluctuations in environmental conditions. This presumably affects the physiology of R. marinus. Many of its enzymes show optimum activity at temperatures considerably higher than 65°C, the optimum for growth, and some are active over a broad temperature range. Studies have found distinguishing components in the R. marinus electron transport chain as well as in its pool of intracellular solutes, which accumulate during osmotic stress. The species hosts both bacteriophages and plasmids and a functional intein has been isolated from its chromosome. Despite these interesting features and its unknown genetics, interest in R. marinus has been mostly stimulated by its thermostable enzymes, particularly polysaccharide hydrolysing enzymes and enzymes of DNA synthesis which may be useful in industry and in the laboratory. R. marinus has not been amenable to genetic analysis until recently when a system for gene transfer was established. Here, we review the current literature on R. marinus.  相似文献   

5.
Growth of Thermus thermophilus HB27 was inhibited by a proline analog, 3,4-dehydroproline (DHP). This result suggested that the γ-glutamyl kinase (the product of the proB gene) was inhibited by feedback inhibition in T. thermophilus. DHP-resistant mutants were reported previously for Escherichia coli (A. M. Dandekar and S. L. Uratsu, J. Bacteriol. 170:5943–5945, 1988) and Serratia marcescens (K. Omori, S. Suzuki, Y. Imai, and S. Komatsubara, J. Gen. Microbiol. 138:693–699, 1992), and their mutated sites in the proB gene were identified. Comparison of the amino acid sequence of T. thermophilus γ-glutamyl kinase with those of E. coli and S. marcescens mutants revealed that the DHP resistance mutations occurred in the amino acids conserved among the three organisms. For eliminating the feedback inhibition, we first constructed a DHP-resistant mutant, TH401, by site-directed mutagenesis at the proB gene as reported for the proline-producing mutant of S. marcescens. The mutant, TH401, excreted about 1 mg of l-proline per liter at 70°C after 12 h of incubation. It was also suggested that T. thermophilus had a proline degradation and transport pathway since it was able to grow in minimal medium containing l-proline as sole nitrogen source. In order to disrupt the proline degradation or transport genes, TH401 was mutated by UV irradiation. Seven mutants unable to utilize l-proline for their growth were isolated. One of the mutants, TH4017, excreted about 2 mg of l-proline per liter in minimal medium at 70°C after 12 h of incubation.Thermus thermophilus, a gram-negative aerobic eubacterium, is one of the most widely studied species of extremely thermophilic microorganisms. We have been working on the molecular genetics and molecular reproduction of T. thermophilus HB27. We have already cloned and sequenced three proline biosynthetic genes, proB, proA, and proC, and reported that the proB and proA genes exist in tandem (7, 9).We have also constructed physical maps of the HB27 chromosome and of a large plasmid, pTT27, and determined the locations of all proline biosynthetic genes on the chromosomal DNA (20, 21). We have already succeeded in overproducing carotenoids in T. thermophilus HB27 (6), but at present there is no report about extracellular production of amino acids in extreme thermophiles. We have elucidated the consensus sequences for strong promoters of T. thermophilus (11) and developed a thermostable antibiotic resistance gene (12). It is also easy to disrupt or mutate genes on chromosomal DNA in T. thermophilus HB27 (8). Among the extreme thermophiles, a host-vector system has been established only in T. thermophilus. Generally, the reaction rate of thermostable enzymes which are produced from T. thermophilus is higher than those of enzymes from mesophiles. In a fermentation process such as amino acid production, T. thermophilus may contribute to the improvement of amino acid productivity since fermentation at a high temperature eliminates the problems of contamination and cooling procedures. So, we decided to attempt excretion of proline at a high temperature with T. thermophilus mutants.l-Proline is synthesized from glutamate by the sequential reaction of γ-glutamyl kinase, γ-glutamyl phosphate reductase, and pyrroline-5-carboxylate reductase in bacteria (1). Genes proB and proA, which encode γ-glutamyl kinase and γ-glutamyl phosphate reductase, respectively, were found to comprise an operon in T. thermophilus (9), Escherichia coli (5), and Serratia marcescens (13). In E. coli and S. marcescens, γ-glutamyl kinase is subject to feedback control by l-proline (3, 13), but γ-glutamyl phosphate reductase and pyrroline-5-carboxylate reductase are not inhibited by proline (3, 15). Meanwhile, E. coli and S. marcescens rapidly degrade proline by proline dehydrogenase (proline oxidase), encoded by the putA gene (3, 14, 22). So far, it has been reported that E. coli mutants resistant to proline analogs, dl-3,4-dehydroproline and l-azetidine-2-carboxylic acid, excreted l-proline into the medium. But the amount of l-proline excreted was too small for practical use because of the existence of the proline degradation pathway (2). For S. marcescens, Sugiura et al. (18, 19) have constructed a proline-overproducing strain, SP126, as a double mutant resistant to 3,4-dehydroproline and thiazolidine-4-carboxylate and derived from a proline dehydrogenase-deficient mutant (18). Strain SP126 produced about 20 mg of l-proline per ml in the fermentation medium (18).In T. thermophilus, the control system in proline biosynthesis has not been elucidated. However, we thought that the feedback control of proline biosynthesis in T. thermophilus should be similar to that of E. coli and S. marcescens, since the amino acid sequences of proline biosynthetic enzymes in T. thermophilus show a high similarity to sequences of those of E. coli and S. marcescens (7, 9). E. coli and S. marcescens mutants resistant to 3,4-dehydroproline have already been determined to be proB mutants (4, 14). The comparison of the amino acid sequences of γ-glutamyl kinases in E. coli, S. marcescens, and T. thermophilus showed that these mutations occurred in the positions conserved among the three microorganisms (Fig. (Fig.1).1). We thought that it was possible to construct a 3,4-dehydroproline-resistant mutant of T. thermophilus by introducing the same mutations into the proB gene found in the mutants of E. coli and S. marcescens. We determined the strategy for construction of a proline-producing strain of T. thermophilus by following two steps: first, construction of a 3,4-dehydroproline-resistant mutant by introduction of mutations into the proB gene, and second, isolation of a mutant which cannot utilize proline for its growth by mutagenizing the dehydroproline-resistant mutant. Open in a separate windowFIG. 1Comparison of the amino acid sequences of γ-glutamyl kinases in E. coli, S. marcescens, and T. thermophilus. The amino acid substitutions found in E. coli (4) and S. marcescens (14) are shown by arrows. Asterisks show the amino acid residues conserved in the three microorganisms.  相似文献   

6.
Thermophilic organisms are being increasingly investigated and applied in metabolic engineering and biotechnology. The distinct metabolic and physiological characteristics of thermophiles, including broad substrate range and high uptake rates, coupled with recent advances in genetic tool development, present unique opportunities for strain engineering. However, poor understanding of the cellular physiology and metabolism of thermophiles has limited the application of systems biology and metabolic engineering tools to these organisms. To address this concern, we applied high resolution 13C metabolic flux analysis to quantify fluxes for three divergent extremely thermophilic bacteria from separate phyla: Geobacillus sp. LC300, Thermus thermophilus HB8, and Rhodothermus marinus DSM 4252. We performed 18 parallel labeling experiments, using all singly labeled glucose tracers for each strain, reconstructed and validated metabolic network models, measured biomass composition, and quantified precise metabolic fluxes for each organism. In the process, we resolved many uncertainties regarding gaps in pathway reconstructions and elucidated how these organisms maintain redox balance and generate energy. Overall, we found that the metabolisms of the three thermophiles were highly distinct, suggesting that adaptation to growth at high temperatures did not favor any particular set of metabolic pathways. All three strains relied heavily on glycolysis and TCA cycle to generate key cellular precursors and cofactors. None of the investigated organisms utilized the Entner-Doudoroff pathway and only one strain had an active oxidative pentose phosphate pathway. Taken together, the results from this study provide a solid foundation for future model building and engineering efforts with these and related thermophiles.  相似文献   

7.
Cellobiose 2-epimerase (CE) reversibly converts glucose residue to mannose residue at the reducing end of β-1,4-linked oligosaccharides. It efficiently produces epilactose carrying prebiotic properties from lactose, but the utilization of known CEs is limited due to thermolability. We focused on thermoholophilic Rhodothermus marinus JCM9785 as a CE producer, since a CE-like gene was found in the genome of R. marinus DSM4252. CE activity was detected in the cell extract of R. marinus JCM9785. The deduced amino acid sequence of the CE gene from R. marinus JCM9785 (RmCE) was 94.2% identical to that from R. marinus DSM4252. The N-terminal amino acid sequence and tryptic peptide masses of the native enzyme matched those of RmCE. The recombinant RmCE was most active at 80 °C at pH 6.3, and stable in a range of pH 3.2–10.8 and below 80 °C. In contrast to other CEs, RmCE demonstrated higher preference for lactose over cellobiose.  相似文献   

8.
The substrate specificity of human sphingosine kinase was investigated using a bacterially expressed poly(His)-tagged protein. Only the D-erythro isomer of the sphingoid bases, sphinganine and sphingenine, was effectively phosphorylated. Long chain 1-alkanols, alkane-1,2-diols, 2-amino-1-alkanol or 1-amino-2-alkanol and short chain 2-amino-1,3-alkanediols were very poor substrates, indicating that the kinase is recognizing the chain length and the position of the amino and secondary hydroxy group. A free hydroxy group at carbon 3 is not a prerequisite, however, since 1-O-hexadecyl-2-desoxy-2-amino-sn-glycerol was an efficient substrate with an apparent K(m) value of 3.8 microM (versus 15.7 microM for sphingenine). This finding opens new perspectives to design sphingosine kinase inhibitors. It also calls for some caution since it cannot be excluded that this ether lipid analogue is formed from precursors that are frequently used in research on platelet activating factor or from phospholipid analogues which are less prone to degradation.  相似文献   

9.
10.
The aim of this work was to develop an approach for chromosomal engineering of the thermophile Rhodothermus marinus. A selection strategy for R. marinus had previously been developed; this strategy was based on complementing a restriction-negative trpB strain with the R. marinus trpB gene. The current work identified an additional selective marker, purA, which encodes adenylosuccinate synthase and confers adenine prototrophy. In a two-step procedure, the available Trp(+) selection was used during the deletion of purA from the R. marinus chromosome. The alternative Ade(+) selection was in turn used while deleting the endogenous trpB gene. Since both deletions are unmarked, the purA and trpB markers may be reused. Through the double deletant SB-62 (ΔtrpB ΔpurA), the difficulties that are associated with spontaneous revertants and unintended chromosomal integration of marker-containing molecules are circumvented. The selection efficiency in R. marinus strain SB-62 (ΔtrpB ΔpurA) was demonstrated by targeting putative carotenoid biosynthesis genes, crtBI, using a linear molecule containing a marked deletion with 717 and 810 bp of 5' and 3' homologous sequences, respectively. The resulting Trp(+) transformants were colorless rather than orange-red. The correct replacement of an internal crtBI fragment with the trpB marker was confirmed by Southern hybridization analysis of the transformants. Thus, it appears that target genes in the R. marinus chromosome can be readily replaced with linear molecules in a single step by double-crossover recombination.  相似文献   

11.
Transport of Compatible Solutes in Extremophiles   总被引:1,自引:0,他引:1  
Salt-tolerant as well as moderately halophilic and halophilic organisms have to maintain their turgor. One strategy is to accumulate small organic compounds, compatible solutes, by de novo synthesis or uptake. From a bioenergetic point of view, uptake is preferred over biosynthesis. The transport systems catalyzing uptake of compatible solutes are of primary or secondary nature and coupled to ATP hydrolysis or ion (H+, Na+) symport. Expression of the transporter genes as well as the activity of the transporters is regulated by salinity/osmolarity and one of the key questions is how salinity or osmolarity is sensed and the signal transmitted as far as to gene expression and transporter activation. Recent studies shed light on the nature and the activation mechanisms of solute transporters in extremophiles, and this review summarizes current knowledge on the structure, function and osmo- or salt-regulation of transporters for compatible solutes in extremophiles.  相似文献   

12.
13.
Four strains of lactic acid bacteria were investigated to determine if a relationship exists between accumulation of compatible solutes and the ability of cells to survive drying. Betaine was the major solute found in these lactic acid bacteria subjected to salt stress. Survival of cultures subjected to drying was considerably enhanced when this solute was accumulated by cells.  相似文献   

14.
15.
嗜热菌Thermus sp.YBJ-1的分离和淀粉酶基因的克隆   总被引:4,自引:0,他引:4  
从西藏热泉水样分离得到一株嗜热菌(YBJ-1),其16S rDNA(1511bp)序列与栖热菌(Thermus scotoductus ITI-252T)的同源性为98%。通过PCR技术将Thermus sp.YBJ-1的淀粉酶基因(amyT)全长开放阅读框克隆到T载体。分析表明,amyT的ORF全长为1767bp,编码588个氨基酸。推导的氨基酸序列与嗜热脂肪芽孢杆菌的阿尔法环糊精酶(Bacillus stearothermophilus alpha-eyclodextrinase)和栖热菌Thermus sp.IM6501的麦芽糖淀粉酶(Thermus sp.IM6501 mahogenic amylase)分别有99%和96%的同源性,与嗜热脂肪芽孢杆菌的新普鲁兰酶(neopullulanase)的同源性为81%。  相似文献   

16.
A Rhodothermus marinus gene, hemB, coding for 5-aminolevulinic acid (ALA) dehydratase (ALAD) has been cloned and sequenced. The reading frame of the hemB gene is 1020 base pairs encoding a protein of 340 amino acids with a calculated molecular mass of 37.4 kDa. The amino acid sequence shows homology with eubacterial and eukaryotic ALA dehydratases. A putative metal-binding site of the protein shows strongest homology with corresponding sites from plant ALA dehydratases that require Mg2+ for activity. It differs with respect to only one amino acid out of 20 from a corresponding site in pea ALAD. Received: 1 March 1999 / Accepted: 7 April 1999  相似文献   

17.
四氢嘧啶类化合物是嗜盐以及耐盐菌胞内合成的一类能够抵御外界高盐胁迫的相容性溶质,概述了四氢嘧啶及其衍生物的理化特征以及在嗜盐微生物中抵御外界高渗透压的作用机理,主要阐述了四氢嘧啶类相容性溶质的生物合成途径、膜运输机理、分泌释放机制、高密度发酵生产等方面在细胞、分子水平上的最新研究进展以及前景展望。并且综述了四氢嘧啶类在精细化工、生物医药及生物制造等行业的应用研究以及发展前景,探讨了未来的研究方向。  相似文献   

18.
We describe the characterisation of four thermostable NAD+-dependent DNA ligases, from Thermus thermophilus (Tth), Thermus scotoductus (Ts), Rhodothermus marinus (Rm) and Thermus aquaticus (Taq), by an assay which measures ligation rate and mismatch discrimination. Complete libraries of octa-, nona- and decanucleotides were used as substrates. The assay comprised the polymerisation of oligonucleotides initiated from a 17 base ‘primer’, using M13mp18 ssDNA as template. Polymers of ligation products were analysed by polyacrylamide gel electrophoresis. Under optimum conditions, the enzymes produced polymers ranging from 8 to 16 additions; there was variation between enzymes and the length of the oligonucleotides had a strong effect. The optimal total oligonucleotide concentration for each library was ~4 nmol. We compared the rates of ligation between the four ligases using an octanucleotide library as substrate. By this criterion, the Ts and Rm ligases are far more active compared to the more commonly available thermostable ligases.  相似文献   

19.
Phytoene synthase encoded by the crtB gene is one of the rate-limiting enzymes for carotenoid production in Thermus thermophilus. We introduced a multicopy recombinant plasmid, pCOP1, in which the Thermus crtB gene was cloned, into carotenoid overproducing mutants of T. thermophilus. The overproducing mutants carrying a pCOP1 produced about twenty times as much carotenoids as the parental strain did.  相似文献   

20.
Summary. Phosphate transport in bacteria occurs via a phosphate specific transporter system (PSTS) that belongs to the ABC family of transporters, a multisubunit system, containing an alkaline phosphatase. DING proteins were characterized due to the N-terminal amino acid sequence DINGG GATL, which is highly conserved in animal and plant isolates, but more variable in microbes. Most prokaryotic homologues of the DING proteins often have some structural homology to phosphatases or periplasmic phosphate-binding proteins. In E. coli, the product of the inducible gene DinG, possesses ATP hydrolyzing helicase enzymic activity. An alkaline phosphorolytic enzyme of the PSTS system was purified to homogeneity from the thermophilic bacterium Thermus thermophilus. N-terminal sequence analysis of this protein revealed the same high degree of similarity to DING proteins especially to the human synovial stimulatory protein P205, the steroidogenesis-inducing protein and to the phosphate ABC transporter, periplasmic phosphate-binding protein, putative (P. fluorescens Pf-5). The enzyme had a molecular mass of 40 kDa on SDS/PAGE, exhibiting optimal phosphatase activity at pH 12.3 and 70 °C. The enzyme possessed characteristics of a DING protein, such as ATPase, ds endonuclease and 3′ phosphodiesterase (3′-exonuclease) activities and binding to linear dsDNA, displaying helicase activity on supercoiled DNA. Purification and biochemical characterization of a T. thermophilus DING protein was achieved. The biochemical properties, N-terminal sequence similarities of this protein implied that the enzyme belongs to the PSTS family and might be involved in the DNA repair mechanism of this microorganism. Authors’ address: Assist. Prof. A. A. Pantazaki, Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号