首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《FEBS letters》1987,213(2):301-303
The 5 S rRNA sequence was determined for the bacterium Herpetosiphon strain Senghas Wie 2. It is the first 5 S RNA sequence reported for a member of the eubacterial phylum defined by green non-sulfur bacteria. The sequence fits into a consensus secondary structure model for eubacterial 5 S RNA. At four positions, the sequence shows substitutions with respect to strongly conserved nucleotides found in other hitherto examined eubacterial 5 S RNAs.  相似文献   

2.
The structural dynamics of ribosomal 5S RNAs have been investigated by probing single strandedness through enzymatic cleavage and chemical modification. This comparative study includes 5S rRNAs from E. coli, B. stearothermophilus, T. thermophilus, H. cutirubrum, spinach chloroplast, spinach cytomplasm, and Artemia salina. The structural studies support a unique tertiary interaction in eubacterial 5S rRNAs, involving nucleotides around positions 43 and 75. In addition long range structural effects are demonstrated in E. coli 5S rRNA due to the conversion of C to U at position 92.  相似文献   

3.
4.
The 5S RNAs from Bacillus stearothermophilus and Saccharomyces cerevisiae were probed by nucleotide-specific reagents, with a view to compare and contrast their higher order structures. The progressive unfolding of the RNAs during heating, in the presence and absence of magnesium, was monitored. Evidence was provided for the double-helical segments which occur in the secondary structural models of both RNAs. The results also placed constraints on the possible structuring of the remainder of the RNA and yielded some insight into ways of folding up the molecule. Together with the data from our earlier studies, employing ribonucleases, these results provide a detailed picture of the structuring and topography of the 5S RNAs. The main structural differences between the eubacterial and eukaryotic RNAs occur throughout the loop D/helix IV/loop E/helix V arm; in particular strong evidence is provided for loop D of the eukaryotic RNA being involved in a tertiary interaction.  相似文献   

5.
6.
Ribosomal subunits from Chloroflexus aurantiacus were isolated and examined by sucrose gradient sedimentation, gel electrophoresis, and electron microscopy. The 30S subunits had all the characteristic structural features of other eubacterial 30S subunits. The data support the proposal that the absence of the archaebacterial bill is a valid phylogenetic marker of the eubacterial lineage.  相似文献   

7.
Ribosomal protein S7 is one of the ubiquitous components of the small subunit of the ribosome. It is a 16S rRNA-binding protein positioned close to the exit of the tRNA, and it plays a role in initiating assembly of the head of the 30S subunit. Previous structural analyses of eubacterial S7 have shown that it has a stable alpha-helix core and a flexible beta-arm. Unlike these eubacterial proteins, archaebacterial or eukaryotic S7 has an N-terminal extension of approximately 60 residues. The crystal structure of S7 from archaebacterium Pyrococcus horikoshii (PhoS7) has been determined at 2.1 A resolution. The final model of PhoS7 consists of six major alpha-helices, a short 3(10)-helix and two beta-stands. The major part (residues 18-45) of the N-terminal extension of PhoS7 reinforces the alpha-helical core by well-extended hydrophobic interactions, while the other part (residues 46-63) is not visible in the crystal and is possibly fixed only by interacting with 16S rRNA. These differences in the N-terminal extension as well as in the insertion (between alpha1 and alpha2) of the archaebacterial S7 structure from eubacterial S7 are such that they do not necessitate a major change in the structure of the currently available eubacterial 16S rRNA. Some of the inserted chains might pass through gaps formed by helices of the 16S rRNA.  相似文献   

8.
Abstract

The structural dynamics of ribosomal 5S RNAs have been investigated by probing single strandedness through enzymatic cleavage and chemical modification. This comparative study includes 5S rRNAs from E. coli, B. stearothermophilus, T. thermophilics, H. cutirubrum, spinach chloroplast, spinach cytomplasm, and Artemia salina. The structural studies support a unique tertiary interaction in eubacterial 5S rRNAs, involving nucleotides around positions 43 and 75. In addition long range structural effects are demonstrated in E. coli 5S rRNA due to the conversion of C to U at position 92.  相似文献   

9.
A critical event in protein translocation across the endoplasmic reticulum is the structural transition between the closed and open conformations of Sec61, the eukaryotic translocation channel. Channel opening allows signal sequence insertion into a gap between the N- and C-terminal halves of Sec61. We have identified a gating motif that regulates the transition between the closed and open channel conformations. Polar amino acid substitutions in the gating motif cause a gain-of-function phenotype that permits translocation of precursors with marginally hydrophobic signal sequences. In contrast, hydrophobic substitutions at certain residues in the gating motif cause a protein translocation defect. We conclude that the gating motif establishes the hydrophobicity threshold for functional insertion of a signal sequence into the Sec61 complex, thereby allowing the wild-type translocation channel to discriminate between authentic signal sequences and the less hydrophobic amino acid segments in cytosolic proteins. Bioinformatic analysis indicates that the gating motif is conserved between eubacterial and archaebacterial SecY and eukaryotic Sec61.  相似文献   

10.
5S rRNAs from Spinacea oleracea cytoplasmic and chloroplastic ribosomes have been subjected to digestion with the single strand specific nuclease S1 and to chemical modification of cytidines by sodium bisulphite in order to probe the RNA structure. According to these data, cytoplasmic 5S rRNA can be folded as proposed in the general eukaryotic 5S rRNA structure (1) and 5S rRNA from chloroplastides is shown to be more related to the general eubacterial structure (2).  相似文献   

11.
12.
Summary Analysis of the 5S ribosomal RNA from members of the eubacterial order Planctomycetales, i.e.,Planctomyces, Pirella, Gemmata, andIsosphaera, reveals several unexpected features. Firstly, the primary structures are significantly shorter than those of the majority of eubacteria and vary in length between 109 and 111 nucleotides. Secondly, the lack of an insertion at position 66 is a feature not encountered before in prokaryotic 5S rRNAs. Thirdly, as compared to the proposed eubacterial minimal 5S rRNA structure (Erdmann and Wolters 1986) the secondary structure contains numerous basepair transversions. The isolated position of the planctomycetes as an individual eubacterial division and the phylogenetic position of its genera are in accord with the results obtained from 16S rRNA cataloguing.  相似文献   

13.
Comparative studies have been undertaken on the higher order structure of ribosomal 5S RNAs from diverse origins. Competitive reassociation studies show that 5S RNA from either a eukaryote or archaebacterium will form a stable ribonucleoprotein complex with the yeast ribosomal 5S RNA binding protein (YL3); in contrast, eubacterial RNAs will not compete in a similar fashion. Partial S1 ribonuclease digestion and ethylnitrosourea reactivity were used to probe the structural differences suggested by the reconstitution experiments. The results indicate a more compact higher order structure in eukaryotic 5S RNAs as compared to eubacteria and suggest that the archaebacterial 5S RNA contains features which are common to either group. The potential significance of these results with respect to a generalized model for the tertiary structure of the ribosomal 5S RNA and to the heterogeneity in the protein components of 5S RNA-protein complexes are discussed.  相似文献   

14.
Structure of the archaebacterial 7S RNA molecule   总被引:4,自引:0,他引:4  
  相似文献   

15.
A G Marshall  J L Smith 《Biochemistry》1980,19(26):5955-5959
Escherichia coli cells grown on a medium containing 5-fluorouracil (FU) produce 5S RNA whose uracil residues are approximately 80% replaced by FU. The Raman spectra of native and FU-5S RNA are very similar, confirming similar solution conformations for the two species and a highly base-stacked structure in solution. The 254-MHz 19F NMR spectrum of FU-5S RNA shows that the 20-odd FU residues reside in at least ten distinct chemical environments, suggesting a highly ordered structure. Comparison of theoretical and experimental 19F(1H) nuclear Overhauser enhancements demonstrates definitively that virtually all the labeled uracils are bound to a rigid macromolecular frame, with a rotational correlation time of about 19 ns or longer. Since these uracils are widely distributed throughout the nucleotide primary sequence, it may be concluded that the entire FU-5S RNA solution structure is relatively rigid, in agreement with the most recently proposed "cloverleaf" secondary structural model for native prokaryotic 5S RNA.  相似文献   

16.
Common prokaryotic motility modes are swimming by means of rotating internal or external flagellar filaments or gliding by means of retracting pili. The archaeabacterial flagellar filament differs significantly from the eubacterial flagellum: (1) Its diameter is 10-14 nm, compared to 18-24 nm for eubacterial flagellar filaments. (2) It has 3.3 subunits/turn of a 1.9 nm pitch left-handed helix compared to 5.5 subunits/turn of a 2.6 nm pitch right-handed helix for plain eubacterial flagellar filaments. (3) The archaeabacterial filament is glycosylated, which is uncommon in eubacterial flagella and is believed to be one of the key elements for stabilizing proteins under extreme conditions. (4) The amino acid composition of archaeabacterial flagellin, although highly conserved within the group, seems unrelated to the highly conserved eubacterial flagellins. On the other hand, the archaeabacterial flagellar filament shares some fundamental properties with type IV pili: (1) The hydrophobic N termini are largely homologous with the oligomerization domain of pilin. (2) The flagellin monomers follow a different mode of transport and assembly. They are synthesized as pre-flagellin and have a cleavable signal peptide, like pre-pilin and unlike eubacterial flagellin. (3) The archaeabacterial flagellin, like pilin, is glycosylated. (4) The filament lacks a central channel, consistent with polymerization occurring at the cell-proximal end. (5) The diameter of type IV pili, 6-9 nm, is closer to that of the archaeabacterial filament, 10-14 nm. A large body of data on the biochemistry and molecular biology of archaeabacterial flagella has accumulated in recent years. However, their structure and symmetry is only beginning to unfold. Here, we review the structure of the archaeabacterial flagellar filament in reference to the structures of type IV pili and eubacterial flagellar filaments, with which it shares structural and functional similarities, correspondingly.  相似文献   

17.
The structure and evolution of archaebacterial ribosomal RNAs   总被引:1,自引:0,他引:1  
A cladistic analysis of 553 5S rRNA sequences has revealed a Ur-5S rRNA, the ancestor of all present-day 5S rRNA molecules. Previously stated characteristic differences between the eubacterial and eukaryotic molecules, namely, the length base-pairing schemes of helices D, can be used as a marker for the various archaebacterial branches. One model comprises Thermococcus, Thermoplasma, methanobacteria, and halobacteria; a second comprises the Sulfolobales; and a third is represented only by the single organism Octopus Spring species 1. A relaxed selection pressure on helix E with subsequent deletions is observed in Methanobacteriales, Methanococcales, and eubacteria. The secondary structures are supported by enzymatic digestion and chemical modification studies of the 5S rRNAs. Reconstitution of eubacterial 50S ribosomal subunits with 5S rRNA from Halobacterium and Thermoplasma has revealed 100% incorporation, while eukaryotic 5S rRNAs yielded a 50% incorporation. Relevant positions of the small-subunit rRNA are selected to answer the question of the monophyly of archaebacteria. Eight positions account for monophyly, eight for an ancestry of eubacteria with halophile methanogens and eukaryotes with eocytes (paraphyly of archaebacteria), and two for an ancestry of eubacteria with eocytes. A refinement of the neighborliness method of S. Sattath and A. Tversky resulted in a monophyly of archaebacteria when all positions are treated equally and in a paraphyly when tranversions are weighted twice over transitions.  相似文献   

18.
19.
We describe the purification, cloning, and characterization of the CCA-adding enzyme [ATP(CTP):tRNA nucleotidyl transferase] from the thermophilic archaebacterium, Sulfolobus shibatae. Characterization of an archaeal CCA-adding enzyme provides formal proof that the CCA-adding activity is present in all three contemporary kingdoms. Antibodies raised against recombinant, expressed Sulfolobus CCA-adding enzyme reacted specifically with the 48-kDa protein and fully depleted all CCA-adding activity from S. shibatae crude extract. Thus, the cloned cca gene encodes the only CCA-adding activity in S. shibatae. Remarkably, the archaeal CCA-adding enzyme exhibits no strong homology to either the eubacterial or eukaryotic CCA-adding enzymes. Nonetheless, it does possess the active site signature G[SG][LIVMFY]xR[GQ]x5,6D[LIVM][CLIVMFY]3-5 of the nucleotidyltransferase superfamily identified by Holm and Sander (1995, Trends Biochem Sci 20:345-347) and sequence comparisons show that all known CCA-adding enzymes and poly(A) polymerases are contained within this superfamily. Moreover, we propose that the superfamily can now be divided into two (and possibly three) subfamilies: class I, which contains the archaeal CCA-adding enzyme, eukaryotic poly(A) polymerases, and DNA polymerase beta; class II, which contains eubacterial and eukaryotic CCA-adding enzymes, and eubacterial poly(A) polymerases; and possibly a third class containing eubacterial polynucleotide phosphorylases. One implication of these data is that there may have been intraconversion of CCA-adding and poly(A) polymerase activities early in evolution.  相似文献   

20.
Reconstitution experiments with 50 S ribosomal subunits from Bacillus stearothermophilus demonstrate that spinach chloroplast 5 S rRNA can be incorporated into the bacterial ribosome and yield biologically active particles, thereby establishing the eubacterial nature of chloroplast 5 S rRNA. In contrast, mitochondria from Locusta migratoria or bovine liver do not appear to contain discrete, low-Mr RNAs, which can replace 5 S rRNA in the functional reconstitution of B. stearothermophilus ribosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号