首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
In this study, concentration of mercury was determined in the trophic levels of benthic, benthopelagic, pelagic fish species, and river birds from Arvand River, located in the Khuzestan province in the lowlands of southwestern Iran at the head of the Persian Gulf. The order of mercury concentrations in tissues of the fish species was as follows: liver>gill>muscle and in tissues of the kingfisher species was as follows: feather>liver>kidney>muscle. Therefore, liver in fish and feather in kingfisher exhibited higher mercury concentration than the other tissues. There was a positive correlation between mercury concentrations in fish and kingfisher species with size of its food items. We expected to see higher mercury levels in tissues of female species because they are larger and can eat larger food items. The results of this study show that the highest mean mercury level were found in the kingfisher (Anas crecca), followed by benthic (Epinephelus diacanthus), benthopelagic (Chanos chanos), and pelagic fish (Strongylura strongylura). Mean value of mercury in fish species, S. strongylura were (0.61 μg g?1 dry weight), C. chanos (0.45 μg g?1 dry weight), E. diacanthus (0.87 μg g?1 dry weight), and in kingfisher species A. crecca was (2.64 μg g?1 dry weight). Significant correlation between mercury concentration in fish and kingfisher may be related to high variability of mercury in the fish.  相似文献   

2.
Physiological leaf traits and accumulation of pollutants of ten woody species in response to air pollution at seriously polluted site Sanguigang (SGG) and control site Maofengshan (MFS) in Southern China were studied. Net photosynthetic rates of most species at SGG were lower than those at MFS, but stomatal conductance (gs) showed opposite trend. The specific leaf area of Aporusa dioica, Sapium discolor, Schefflera octophylla and Toxicodendron succedaneum were significantly, 46.77, 13.09, 55.11 and 23.51 %, higher in SGG than in MFS, while chlorophyll content being the opposite. A. dioica had the highest sulphur (S) content at both sites (11.74 mg g?1 at SGG and 11.07 mg g?1 at MFS). Heavy metals concentrations were generally higher in species at SGG than at MFS. S. octophylla showed significantly higher concentrations of Zn, Cd and Mn (341.81, 2.41 and 2,287.29 μg g?1) than other species at SGG. Moreover, A. dioica had the highest Pb concentration (9.19 μg g?1), and L. glutinosa showed the highest Cr concentration (3.40 μg g?1). According to the integrated results, we infer that A. dioica, S. octophylla and L. glutinosa are the promising species for phytoremediation in the ceramic industry polluted environment.  相似文献   

3.
Antrodia camphorata is a well-known Chinese medicinal mushroom that protects against diverse health-related conditions. Submerged fermentation of A. camphorata is an alternative choice for the effective production of bioactive metabolites, but the effects of nutrition and environment on mycelial morphology are largely unknown. In this study, we show that A. camphorata American Type Culture Collection 200183 can form arthrospores in the end of liquid fermentation. Different morphologies of A. camphorata in submerged culture were analyzed using scanning electron microscopy. The optimal carbon and nitrogen sources for sporulation were soluble starch and yeast extract. We found that a carbon-to-nitrogen ratio (C/N) of 40:1, MgSO4 (0.5 g/l), KH2PO4 (3.0 g/l), an initial pH?5.0, and an inoculum size of 1.5?×?105 spores/ml led to maximum production of arthroconidia. Our results will be useful in the regulation and optimization of A. camphorata cultures for efficient production of arthroconidia in submerged culture, which can be used as inocula in subsequent fermentation processes.  相似文献   

4.
To investigate the effect of fungal elicitors on biosynthesis of natamycin in the cultures of Streptomyces natalensis HW-2, the biomass and filtrate of the broth from Aspergillus niger AS 3.6472, Penicillium chrysogenum AS 3.5163, A. oryzae AS 3.2068, and Saccharomyces cerevisiae AS 2.2081 were used to induce natamycin production in S. natalensis HW-2. The results showed that the biomass of P. chrysogenum AS 3.5163 could enhance the yield of natamycin from 0.639 to 0.875 g?l?1. The elicitor from the fermentation broth of P. chrysogenum AS 3.5163 showed the highest inducing efficiency with the yield of natamycin enhanced from 0.632 to 1.84 g?l?1. The elicitor that was cultured for 2 days showed the strongest inducing activity during the fermentation of S. natalensis HW-2 for 24 h, and the yield of natamycin was enhanced from 0.637 to 2.12 g?l?1. The biochemical parameters were examined at the end of fermentation and the results demonstrated that both the growth of cells and the concentration of residual sugar could be influenced. The residual sugar decreased from 5.03 to 4.27 g?l?1, and the biomass decreased from 10.26 to 6.87 g?l?1. Finally, the elicitor was identified as a low molecular weight substance with a similar polarity to that of butyl alcohol by primary qualitative analysis.  相似文献   

5.
Biodegradation of pyridine by a novel bacterial strain, Rhizobium sp. NJUST18, was studied in batch experiments over a wide concentration range (from 100 to 1,000 mg l?1). Pyridine inhibited both growth of Rhizobium sp. NJUST18 and biodegradation of pyridine. The Haldane model could be fitted to the growth kinetics data well with the kinetic constants μ* = 0.1473 h?1, K s = 793.97 mg l?1, K i = 268.60 mg l?1 and S m = 461.80 mg l?1. The true μ max, calculated from μ*, was found to be 0.0332 h?1. Yield coefficient Y X/S depended on S i and reached a maximum of 0.51 g g?1 at S i of 600 mg l?1. V max was calculated by fitting the pyridine consumption data with the Gompertz model. V max increased with initial pyridine concentration up to 14.809 mg l?1 h?1. The q S values, calculated from $V_{ \hbox{max} }$ , were fitted with the Haldane equation, yielding q Smax = 0.1212 g g?1 h?1 and q* = 0.3874 g g?1 h?1 at S m′ = 507.83 mg l?1, K s′ = 558.03 mg l?1, and K i′ = 462.15 mg l?1. Inhibition constants for growth and degradation rate value were in the same range. Compared with other pyridine degraders, μ max and S m obtained for Rhizobium sp. NJUST18 were relatively high. High K i and K i′ values and extremely high K s and K s′ values indicated that NJUST18 was able to grow on pyridine within a wide concentration range, especially at relatively high concentrations.  相似文献   

6.
Rhodiola sachalinensis is widely used in traditional Chinese medicine, and salidroside and polysaccharides are its important bioactive compounds. This study used airlift bioreactor systems to produce mass bioactive compounds through callus culture. Several factors affecting callus biomass and bioactive compound accumulation were investigated. Callus growth was vigorous in a bioreactor system, and the growth ratio was 2.8-fold higher in bioreactor culture than in agitated-flask culture. Callus biomass and polysaccharide content were favorable at 0.1 air volume per culture volume per min (vvm), whereas favorable salidroside content was observed at a high air volume (0.2 vvm). The maximum yields of salidroside (7.90 mg l?1) and polysaccharide (2.87 g l?1) were obtained at 0.1 vvm. Inoculum density greatly affected callus biomass and bioactive compound accumulation, and the highest biomass and contents or yields of salidroside and polysaccharide were determined at a high inoculum density of 12.5 g l?1. The level of hydrogen ion concentration (pH) at 5.8 improved callus biomass accumulation. Acidic medium (pH 4.8) stimulated salidroside synthesis but higher pH level (7.8) promoted polysaccharide accumulation. The highest yields of both bioactive compounds were obtained at pH 5.8. Methyl jasmonate (MeJA) participated in synthesis promotion of bioactive compounds, and the contents and yields of salidroside [4.75 mg g?1 dry weight (DW), 58.43 mg l?1] and polysaccharides (392.41 mg g?1 DW, 4.79 g l?1) were at maximum at 125 and 150 μmol of MeJA. Therefore, bioreactor systems can be used to produce R. sachalinensis bioactive compounds, and callus culture in a bioreactor can be as an alternative method for supplying materials for commercial drug production.  相似文献   

7.
An obligate alkaliphilic bacterium Bacillus cohnii MTCC 3616 aerobically decolorized a textile azo dye Direct Red-22 (5,000 mg?l?1) with 95 % efficiency at 37 °C and pH?9 in 4 h under static conditions. The decolorization of Direct Red-22 (DR-22) was possible through a broad pH (7–11), temperature (10–45 °C), salinity (1–7 %), and dye concentration (5–10 g?l?1) range. Decolorization of dye was assessed by UV–vis spectrophotometer with reduction of peak intensity at 549 nm (λ max). Biodegradation of dye was analyzed by Fourier transform infrared spectroscopy (FTIR) and high-performance liquid chromatography (HPLC). The FTIR spectrum revealed that B. cohnii specifically targeted azo bond (N=N) at 1,614.42 cm?1 to break down Direct Red-22. Formation of metabolites with different retention times in HPLC analysis further confirmed the degradation of dye. The phytotoxicity test with 5,000 mg?l?1 of untreated dye showed 80 % germination inhibition in Vigna mungo, 70 % in Sorghum bicolor and 80 % in Vigna radiata. No germination inhibition was noticed in all three plants by DR-22 metabolites at 5,000 mg?l?1. Biotoxicity test with Artemia salina proved the lethality of the azo dye at LC50 of 4 and 8 % for degraded metabolites by causing death of its nauplii compared to its less toxic-degraded metabolites. Bioaccumulation of dye was observed in the mid-gut of A. salina. The cytogenotoxicity assay on the meristematic root tip cells of Allium cepa further confirmed the cytotoxic nature of azo dye (DR-22) with decrease in mitotic index (0.5 % at 500 ppm) and increase in aberrant index (4.56 %) over 4-h exposure period. Genotoxic damages (lagging chromosome, metaphase cluster, chromosome bridges, and dye accumulation in cytoplasm) were noticed at different stages of cell cycle. The degraded metabolites had negligible cytotoxic and genotoxic effects.  相似文献   

8.
The “attached cultivation” method of microalgae in which the wet paste of algal biomass is attached onto supporting materials to form an immobilized biofilm layer, and the culture medium is supplied to this layer to provide nutrients and moisture for growth was highly efficient in biomass production and represents a promising technology to improve the biofuel industry. To optimize the nitrogen supply strategy for this attached cultivation method, the growth and total lipids accumulation properties for the green alga Aucutodesmus obliquus with this method were studied under different quantities of nitrogen source and different volumes of aqueous medium that continuously circulated inside the photobioreactor. Results showed that, compared with medium volume, the nitrogen quantity was a stronger factor affecting the growth and total lipid accumulation. An optimized nitrogen supply strategy for the attached cultivation of A. obliquus is proposed as circulating ca. 60 L of BG-11 medium containing 1/10 of nitrate concentration for 1 m2 of cultivation surface. With this strategy, the attached A. obliquus accumulated biomass and total lipids simultaneously and obtained a high triacylglyceride productivity of 2.53 g m?2 day?1 in 7 days under subsaturated illumination of 100 μmol photons m?2 s?1. The water usage of 60 L m?2 was potentially decreased to <2 L m?2 if the nutrient supply was further improved. Dissolving the nitrogen source in small volume was the best way to efficiently utilize the nitrogen source with minimum of waste.  相似文献   

9.
Microalgal starch is a potential feedstock for biofuel production. Nutrient stress is widely used to stimulate starch accumulation in microalgae. Cell growth and starch accumulation in the marine green microalga Tetraselmis subcordiformis were evaluated under extracellular phosphorus deprivation with initial cell densities (ICD) of 1.5, 3.0, 6.0, and 9.0?×?106 cells mL?1. The intracellular stored phosphorus supported cell growth when extracellular phosphorus was absent. The maximum starch content of 44.1 % was achieved in the lowest ICD culture, while the maximum biomass productivity of 0.71 g L?1 day?1, starch concentration of 1.6 g L?1, and starch productivity of 0.30 g L?1 day?1 were all obtained in the culture with the ICD of 3.0?×?106 cells mL?1. Appropriate ICD could be used to regulate the intracellular phosphorus concentration and maintain adequate photosynthetic activity to achieve the highest starch productivity, along with biomass and starch concentration. The recovery of phosphorus-deprived T. subcordiformis in medium containing 0.5, 1.0, or 6.0 mM KH2PO4 was also tested. Cell growth and starch accumulation ability could be recovered completely. A phosphorus pool in T. subcordiformis was shown to manipulate its metabolic activity under different environmental phosphorus availability. Though lower starch productivity and starch content were achieved under phosphorus deprivation compared with nitrogen- or sulfur-deprived conditions, the higher biomass and starch concentration make T. subcordiformis a good candidate for biomass and starch production under extracellular phosphorus deprivation.  相似文献   

10.
Ulva spp. are used in a wide range of commercial applications, including bioremediation, food, bioenergy, pharmaceuticals, and agriculture. The sulfated polysaccharide ulvan obtained from Ulva spp. is of interest for triggering plant defenses against disease. However, the cultivation of Ulva spp. is still in its infancy. This study verified the feasibility of cultivating Ulva lactuca and Ulva flexuosa at two sites on the tropical Brazilian coast. We investigated the following: (a) methods to induce sporulation, (b) comparison of seeding ropes inoculated in vitro versus seeding at sea over 40 days, (c) production and harvest cycles at 15 and 30 days, (d) growth productivity of U. flexuosa at sea and in outdoor tanks, and (e) comparison of ulvan yields from biomass cultivated in tanks and the sea. High nutrient treatment was the most efficient method to induce sporulation (7,540?±?3,133 spores m?1). Sea-based cultivation of U. flexuosa was only successful at one site. Seeding of ropes in vitro was more efficient than seeding at sea (0.31?±?0.20 g m?2 day?1), and 15-day harvest cycles were most efficient (20.1?±?1.8 % day?1; 0.46?±?0.11 g m?2 day?1). Despite differences in plant growth in tanks (27.9?±?4.4 % day?1) and at sea (20.1?±?1.8 % day?1), the dry biomass and ulvan yields (17.7?±?5.0 %) did not differ between these systems. Cultivation of U. flexuosa was feasible at sea using in vitro seeding with a production cycle of 15 days in Brazilian tropical waters and tanks with high irradiance and enriched seawater.  相似文献   

11.
Seaweeds are rich in bioactive compounds which have well-documented antioxidant properties. They also have antimicrobial activities against food pathogenic microorganisms. This study uses an extract of the brown seaweed, Saccharina (Laminaria) japonica, produced by subcritical water hydrolysis (SWH) for investigating its potential to inhibit bacteria. De-oiled S. japonica was obtained by supercritical carbon dioxide extraction. The reaction temperatures for hydrolysis of raw and de-oiled S. japonica were maintained from 200 to 280 °C. The experiment was done with condition 1.3–6.0 MPa for the reaction pressure and 1:10 (w/v) for the ratio of material to water. The antibacterial activities of raw and de-oiled S. japonica produced by SWH were determined by using the agar diffusion method. Antibacterial activity was tested against two Gram-negative (Escherichia coli and Salmonella typhimurium) and two Gram-positive bacteria (Staphylococcus aureus and Bacillus cereus). The antibacterial activities of hydrolysate water with catalyst at 240 °C showed better bacterial inhibition than the others. Strong antibacterial activity was found using de-oiled material with acetic acid added, with a zone of inhibition of S. typhimurium (14.33?±?0.06 mm) and E. coli (13.00?±?0.09 mm). On the other hand, the weakest antibacterial inhibition was found for S. aureus (12.83?±?0.10 mm) and B. cereus (12.50?±?0.09 mm).  相似文献   

12.
The present work evaluated biomass productivity, carbon dioxide fixation rate, and biochemical composition of two microalgal species, Phaeodactylum tricornutum (Bacillariophyta) and Tetradesmus obliquus (Chlorophyta), cultivated indoors in high-technology photobioreactors (HT-PBR) and outdoors both in pilot ponds and low-technology photobioreactors in a greenhouse in southern Italy. Microalgae were grown in standard media, under nitrogen starvation, and in two liquid digestates obtained from anaerobic digestion of agro-zootechnical and vegetable biomass. P. tricornutum, cultivated in semi-continuous mode in indoor HT-PBRs with standard medium, showed a biomass productivity of 21.0?±?2.3 g m?2 d?1. Applying nitrogen starvation, the lipid productivity increased from 2.3 up to 4.5?±?0.5 g m?2 d?1, with a 24 % decrease of biomass productivity. For T. obliquus, a biomass productivity of 9.1?±?0.9 g m?2 d?1 in indoor HT-PBR was obtained using standard medium. Applying liquid digestates as fertilizers in open ponds, T. obliquus gave a biomass productivity (10.8?±?2.0 g m?2 d?1) not statistically different from complete medium such as P. tricornutum (6.5?±?2.2 g m?2 d?1). The biochemical data showed that the fatty acid composition of the microalgal biomass was affected by the different cultivation conditions for both microalgae. In conclusion, it was found that the microalgal productivity in standard medium was about doubled in HT-PBR compared to open ponds for P. tricornutum and was about 20 % higher for T. obliquus.  相似文献   

13.
To reduce CO2 emissions from alcoholic fermentation, Arthrospira platensis was cultivated in tubular photobioreactor using either urea or nitrate as nitrogen sources at different light intensities (60 μmol m?2 s?1?≤?I?≤?240 μmol m?2 s?1). The type of carbon source (pure CO2 or CO2 from fermentation) did not show any appreciable influence on the main cultivation parameters, whereas substitution of nitrate for urea increased the nitrogen-to-cell conversion factor (Y X/N ), and the maximum cell concentration (X m ) and productivity (P X ) increased with I. As a result, the best performance using gaseous emissions from alcoholic fermentation (X m ?=?2,960?±?35 g m?3, P X ?=?425?±?5.9 g m?3 day?1 and Y X/N ?=?15?±?0.2 g g?1) was obtained at I?=?120 μmol m?2 s?1 using urea as nitrogen source. The results obtained in this work demonstrate that the combined use of effluents rich in urea and carbon dioxide could be exploited in large-scale cyanobacteria cultivations to reduce not only the production costs of these photosynthetic microorganisms but also the environmental impact associated to the release of greenhouse emissions.  相似文献   

14.
A new xylose fermenting yeast was isolated from over-ripe banana by enrichment in xylose-containing medium. The phylogenetic analysis of ITS1-5.8S-ITS2 region sequences of ribosomal RNA of isolate BY2 revealed that it shows affiliation to genus Pichia and clades with Pichia caribbica. In batch fermentation, Pichia strain BY2 fermented xylose, producing 15 g l?1 ethanol from 30 g l?1 xylose under shaking conditions at 28°C, with ethanol yield of 0.5 g g?1 and volumetric productivity of 0.31 g l?1 h?1. The optimum pH range for ethanol production from xylose by Pichia strain BY2 was 5–7. Pichia strain BY2 also produced 6.08 g l?1 ethanol from 30 g l?1 arabinose. Pichia strain BY2 can utilize sugarcane bagasse hemicellulose acid hydrolysate for alcohol production, efficiency of fermentation was improved by neutralization, and sequential use of activated charcoal adsorption method. Percent total sugar utilized and ethanol yield for the untreated hydrolysate was 17.14% w/v and 0.33 g g?1, respectively, compared with 66.79% w/v and 0.45 g g?1, respectively, for treated hemicellulose acid hydrolysate. This new yeast isolate showed ethanol yield of 0.45 g g?1 and volumetric productivity of 0.33 g l?1 h?1 from sugarcane bagasse hemicellulose hydrolysate detoxified by neutralization and activated charcoal treatment, and has potential application in practical process of ethanol production from lignocellulosic hydrolysate.  相似文献   

15.
Hoplosternum littorale is an Amazon fish that lives in urban areas surrounded by polluted igarapés, where elevated copper concentrations eventually occur. The central goal of this study was to evaluate the associated effects of high temperature and copper contamination on survival time and biochemical responses of the Amazonian fish species H. littorale. We exposed fish to two nominal dissolved copper concentrations (50 and 500 µg l?1) and combined temperatures of 28 and 34°C. Our findings showed that the combination of these variables affects the survival time of this species. The activity of the biotransformation enzymes ethoxyresorufin-O-deethylase and glutathione-S-transferase showed no alterations in fish within all treatments. The increase of reactive oxygen species and the decrease in potential total antioxidant capacity promoted the imbalance in the antioxidant system. An induction in superoxide dismutase activity occurred in fish exposed to copper concentrations of 50 and 500 µg l?1 at both temperatures, suggesting liver impairments. Thus, we suggest that H. littorale is sensitive to copper, and this sensitivity is increased further with exposure to high temperatures, particularly in the survival time and reactive oxygen species formation of this fish species.  相似文献   

16.
Burkholderia sp. F24, originally isolated from soil, was capable of growth on xylose and removed organic inhibitors present in a hemicellulosic hydrolysate and simultaneously produced poly-3-hydroxybutyrate (P3HB). Using non-detoxified hydrolysate, Burkholderia sp. F24 reached a cell dry weight (CDW) of 6.8 g L?1, containing 48 % of P3HB and exhibited a volumetric productivity (PP3HB) of 0.10 g L?1 h?1. Poly-3-hydroxybutyrate-co-3-hydroxyvalerate copolymers (P3HB-co-3HV) were produced using xylose and levulinic acid (LA) as carbon sources. In shake flask cultures, the 3HV content in the copolymer increased from 9 to 43 mol% by adding LA from 1.0 to 5.0 g L?1. In high cell density cultivation using concentrated hemicellulosic hydrolysate F24 reached 25.04 g L?1 of CDW containing 49 % of P3HB and PP3HB of 0.28 g L?1 h?1. Based on these findings, second-generation ethanol and bioplastics from sugarcane bagasse is proposed.  相似文献   

17.
18.
Among several fatty acids tested, oleic acid was selected as the most efficient inducer for the production of 4-hydroxydodecanoic acid, a metabolite of β-oxidation, by Waltomyces lipofer. Cells were induced by incubation for 12 h in a medium containing 10 g l?1 yeast extract, 10 g l?1 peptone, 5 g l?1 oleic acid, 1 g l?1 glucose, and 0.05 % (w/v) Tween 80. The optimal reaction conditions for the production of γ-lactones by induced cells were pH 6.5, 35 °C, 200 rpm, 0.71 M Tris, 60 g l?1 hydroxy fatty acid, and 20 g l?1 cells. Non-induced cells produced 38 g l?1 γ-dodecalactone from 60 g l?1 10-hydroxystearic acid after 30 h, with a conversion yield of 63 % (w/w) and a productivity of 1.3 g l?1 h?1 under the optimized conditions, whereas induced cells produced 51 g l?1 γ-dodecalactone from 60 g l?1 10-hydroxystearic acid after 30 h, with a conversion yield of 85 % (w/w) and a productivity of 1.7 g l?1 h?1. The conversion yield and productivity of induced cells were 22 % and 1.3-fold higher, respectively, than those of non-induced cells. Induced cells also produced 28 g l?1 γ-decalactone and 12 g l?1 γ-butyrolactone from 60 g l?1 12-hydroxystearic acid and 60 g l?1 10-hydroxydecanoic acid, respectively, after 30 h. The concentration, conversion yield, and productivity of γ-dodecalactone and γ-decalactone are the highest reported thus far. This is the first study on the biotechnological production of γ-butyrolactone.  相似文献   

19.
A feeding trial was conducted to investigate the effects of different levels of dietary Lactobacillus plantarum on hemato-immunological parameters and resistance against Streptococcus iniae infection in juvenile Siberian sturgeon Acipenser baerii. Fish (14.6 ± 2.3 g) were fed three experimental diets prepared by supplementing a basal diet with L. plantarum at different concentrations [1 × 107, 1 × 108 and 1 × 109 colony-forming units (cfu) g?1] and a control (non-supplemented basal) diet for 8 weeks. Innate immune responses (immunoglobulin (Ig), alternative complement activity (ACH50) and lysozyme activity) were significantly higher in fish fed the 1 × 108 and 1 × 109 cfu g?1 L. plantarum diet compared to the other groups (P < 0.05). Furthermore, fish fed on various levels of L. plantarum significantly showed higher red blood cell (RBC), hemoglobin (Hb), white blood cell (WBC) and monocyte compared to those of the control group (P < 0.05). At the end of the feeding experiment, some fish were challenged with S. iniae to quantify the level of disease resistance. The mortality after S. iniae challenge was decreased in fish fed a probiotic. These results indicated that dietary supplementation of L. plantarum improved immune response and disease resistance of Siberian sturgeon juvenile.  相似文献   

20.
The sharptooth catfish Clarias gariepinus is an emerging global invader for which control strategies might include the use of piscicides such as rotenone. Experimental exposure demonstrated that C. gariepinus was less susceptible to rotenone than most other fish species, with unexpected survival observed at rotenone concentrations of 87.5 and 100 µg L?1. C. gariepinus were also observed exhibiting avoidance behaviour to rotenone treated water and were found to be capable of recovering from rotenone exposure. As such, effective eradication might not be attainable even at a dose exceeding 100 µg L?1 with exposures of longer than 24 h. This exposure scenario may pose an unacceptable risk to non-target fauna and highlights the difficulty associated with managing current and future invasions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号