首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
In this study, fermentation was employed as a tool to further increase the bioactive potential of processing by-product from a brown seaweed, Ecklonia cava, which can be obtained from food and cosmetic industries after its polyphenol extraction. The fermentation process was done for 24 h using an industrially important microorganism Candida utilis prior to being extracted with 80 % ethanol. The anti-inflammatory potential of the fermented E. cava processing by-product extract (FEPBE) was evaluated in vitro. The phlorotannin-rich FEPBE dose-dependently inhibited the nitric oxide production, prostaglandin-E2 production and suppressed the inducible nitric oxide synthase and cyclooxygenase-2 expressions in lipopolysaccharide-stimulated RAW 264.7 cells. The release of pro-inflammatory cytokines, interleukin-1β and interleukin-6, was significantly suppressed by the extract in a dose-dependent manner. Due to the profound anti-inflammatory activity, FEPBE appears as a value-added biomass fraction that can be exploited in numerous industrial applications as a source of functional ingredients.  相似文献   

2.
Value-added abalone Haliotis discus hannai containing bioactive phlorotannins is produced by simply changing the feed to phlorotannin-rich brown seaweed Ecklonia cava 2 weeks prior to harvesting. We assessed the accumulation of phlorotannins by feeding with the seaweed after 4 days of starvation. Reverse-phase high-performance liquid chromatography afforded isolation of the major phlorotannins, which were identified by mass spectrometry and 1H-nuclear magnetic resonance to be 7-phloroeckol and eckol. Throughout the E. cava feeding period of 20 days, 7-phloroeckolol accumulated in the flesh (foot muscle tissue), up to 0.85?±?0.21 mg g?1 dry weight of tissue after 12 days. Eckol reached 0.31?±?0.08 mg g?1 dry tissue after 14 days. Feeding Laminaria japonica as a control, we detected no phlorotannins in the abalone muscle tissue. Abalone seaweed consumption and growth rate were similar when fed with E. cava or L. japonica for 20 days. Reduction in phlorotannins to half-maximal accumulation took 1.0 and 2.7 days for 7-phloroeckol and eckol, respectively, after replacement of the feed with L. japonica.  相似文献   

3.
Novel series of pleuromutilin analogs containing substituted 1,2,3-triazole moieties were designed, synthesised and assessed for their in vitro antibacterial activity against Methicillin-resistant Staphylococcus aureus (MRSA). Initially, the in vitro antibacterial activities of these derivatives against 4 strains of S. aureus (MRSA ATCC 43300, ATCC 29213, AD3, and 144) were tested by the broth dilution method. Most of the synthesised pleuromutilin analogs displayed potent activities. Among them, compounds 50, 62, and 64 (MIC = 0.5∼1 µg/mL) showed the most effective antibacterial activity and their anti-MRSA activity were further studied by the time-killing kinetics approach. Binding mode investigations by surface plasmon resonance (SPR) with 50S ribosome revealed that the selected compounds all showed obvious affinity for 50S ribosome (KD = 2.32 × 10−8∼5.10 × 10−5 M). Subsequently, the binding of compounds 50 and 64 to the 50S ribosome was further investigated by molecular modelling. Compound 50 had a superior docking mode with 50S ribosome, and the binding free energy of compound 50 was calculated to be −12.0 kcal/mol.  相似文献   

4.
The interest in the extraction of polyphenolic compounds from plant materials is focused on upgrading of the large amount of by-products coming from food or cosmetics industries from which the press residues have particularly high contents of phenolics. In this study, for value-added use of the brown seaweed Ecklonia cava processing by-product (ECPB), which can be obtained after polyphenolic extraction of E. cava, it was fermented by the yeast Candida utilis and its antioxidant activities were evaluated by 1,1-diphenyl-2-picrylhydrazyl, hydroxyl, and alkyl radical scavenging using electron spin resonance spectrometer. ECPB was fermented for 1~4?days prior to being extracted with 80% ethanol, and significant differences were observed in extraction yields, total phenolic contents (TPC), and radical scavenging activities with the fermentation time. Extract from the ECPB fermented for 1?day exhibited the highest TPC and also found to be the strongest antioxidant. The 1-day fermented ECPB strongly enhanced cell viability against H2O2-induced oxidative damage in Vero cell line. This sample also exhibited good protective properties against H2O2-induced cell apoptosis as was demonstrated by a decreased quantity of sub-G1 hypodiploid cells and decreased apoptotic body formation in the flow cytometry analysis. This study demonstrated that the fermentation elevated functionally important polyphenolic contents of ECPB and resultant antioxidant activities were enhanced. Therefore, the fermentation could offer a tool to further increase the bioactive potential of ECPB.  相似文献   

5.
Methicillin-resistant Staphylococcus aureus (MRSA) is the most problematic Gram-positive bacterium in the context of public health due to its resistance against almost all available antibiotics except vancomycin and teicoplanin. Moreover, glycopeptide-resistant S. aureus have been emerging with the increasing use of glycopeptides. Recently, resistant strains against linezolid and daptomycin, which are alternative drugs to treat MRSA infection, have also been reported. Thus, the development of new drugs or alternative therapies is clearly a matter of urgency. In response to the antibiotic resistance, many researchers have studied for alternative antibiotics and therapies. In this review, anti-MRSA substances isolated from marine bacteria, with their potential antibacterial effect against MRSA as potential anti-MRSA agents, are discussed and several strategies for overcoming the antibiotic resistance are also introduced. Our objective was to highlight marine bacteria that have potential to lead in developing novel antibiotics or clinically useful alternative therapeutic treatments.  相似文献   

6.
Staphylococcus aureus is one of the most frequently occurring hospital- and community-associated pathogenic bacteria featuring high morbidity and mortality. The occurrence of methicillin-resistant S. aureus (MRSA) has increased persistently over the years. Therefore, developing novel anti-MRSA drugs to circumvent drug resistance of S. aureus is highly important. Roemerine, an aporphine alkaloid, has previously been reported to exhibit antibacterial activity. The present study aimed to investigate whether roemerine can maintain these activities against S.aureus in vivo and further explore the underlying mechanism. We found that roemerine is effective in vitro against four S. aureus strains as well as in vivo against MRSA insepticemic BALB/c mice. Furthermore, roemerine was found to increase cell membrane permeability in a concentration-dependent manner. These findings suggest that roemerine may be developed as a promising compound for treating S. aureus, especially methicillin-resistant strains of these bacteria.  相似文献   

7.
Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of serious hospital-acquired infections and is responsible for significant morbidity and mortality in residential care facilities. New agents against MRSA are needed to combat rising resistance to current antibiotics. We recently reported 5-hydroxy-3-methyl-1-phenyl-1H-pyrazole-4-carbodithioate (HMPC) as a new bacteriostatic agent against MRSA that appears to act via a novel mechanism. Here, twenty nine analogs of HMPC were synthesized, their anti-MRSA structure-activity relationships evaluated and selectivity versus human HKC-8 cells determined. Minimum inhibitory concentrations (MIC) ranged from 0.5 to 64?μg/mL and up to 16-fold selectivity was achieved. The 4-carbodithioate function was found to be essential for activity but non-specific reactivity was ruled out as a contributor to antibacterial action. The study supports further work aimed at elucidating the molecular targets of this interesting new class of anti-MRSA agents.  相似文献   

8.
Local and chemical distribution of phlorotannins in brown algae   总被引:4,自引:2,他引:2  
The local and chemical distribution of phlorotannins among the Japanese Laminariaceae, Eisenia bicyclis, Ecklonia cava and Ecklonia kurome, was investigated. As a result of light microscopy observations with vanillin-HCl staining, phlorotannins were found to be accumulated within the vegetative cells of the outer cortical layer of the thalli, regardless of the species, stage of growth or organ. Crude phlorotannins comprised about 3.0% of the algal powder for each of the algae. High-performance liquid chromatography (HPLC) showed that the phlorotannins of E. bicyclis were composed of phloroglucinol (0.9%), phloroglucinol tetramer (4.4%), eckol (7.5%), phlorofucofuroeckol A (21.9%), dieckol (23.4%), and 8,8'-bieckol (24.6%), plus some other unknown phenolic compounds (17.3%). The composition of the phlorotannins differed little among the Laminariaceae, except for a significantly larger amount of the tetramer, MW 478, in E. bicyclis.  相似文献   

9.
Primary aliphatic alkanols from C6 to C13 were tested for their antifungal activity against Saccharomyces cerevisiae using a broth dilution method. Undecanol (C11) was found to be the most potent fungicide against this yeast with the minimum fungicidal concentration (MFC) of 25 μg/ml (0.14 mM), followed by decanol (C10) with the minimum inhibitory concentration (MIC) of 50 μg/ml (0.31 mM). The time-kill curve study showed that undecanol was fungicidal against S. cerevisiae at any growth stages. This fungicidal activity was not influenced by pH values. Dodecanol (C12) was the most effective fungistatic but did not show any fungicidal activity up to 1600 μg/mL. Fungistatic dodecanol quickly reduced cell viability, but the cell viability recovered shortly after and then finally became no longer different from the control indicating that the effect of dodecanol on S. cerevisiae was classified as a sublethal damage. However, fungistatic dodecanol combined with sublethal amount of anethole showed a fungicidal activity against this yeast. Anethole completely restricted the recovery of cell viability. Therefore expression of the synergistic effect was probably due to the blockade of the recovering process from dodecanol induced-stress. The alkanols tested inhibited glucose-induced acidification by inhibiting the plasma membrane H+-ATPase. Octanol (C8) increased plasma membrane fluidity in the spheroplast cells of S. cerevisiae. The same series of aliphatic primary alkanols was also tested against a food spoilage fungus Zygosaccharomyces bailii and compared with their effects against S. cerevisiae. Decanol was found to be the most potent fungicide against Z. bailii with an MFC of 50 μg/ml (0.31 mM), whereas undecanol was found to be the most potent fungistatic with an MIC of 25 μg/ml (0.14 mM). The time-kill curve study showed that decanol was fungicidal against Z. bailii at any growth stage. This antifungal activity was slightly enhanced in combination with anethole. The primary antifungal action of medium-chain (C9–C12) alkanols comes from their ability as nonionic surfactants to disrupt the native membrane-associated function of the integral proteins. Hence, the antifungal activity of alkanols is mediated by biophysical process, and the maximum activity can be obtained when balance between hydrophilic and hydrophobic portions becomes the most appropriate.  相似文献   

10.
Lactococcus lactis subsp lactis BSA (L. lactis BSA) was isolated from a commercial fermented product (BSA Food Ingredients, Montreal, Canada) containing mixed bacteria that are used as starter for food fermentation. In order to increase the bacteriocin production by L. lactis BSA, different fermentation conditions were conducted. They included different volumetric combinations of two culture media (the Man, Rogosa and Sharpe (MRS) broth and skim milk), agitation level (0 and 100 rpm) and concentration of commercial nisin (0, 0.15, and 0.30 µg/ml) added into culture media as stimulant agent for nisin production. During fermentation, samples were collected and used for antibacterial evaluation against Lactobacillus sakei using agar diffusion assay. Results showed that medium containing 50 % MRS broth and 50 % skim milk gave better antibacterial activity as compared to other medium formulations. Agitation (100 rpm) did not improve nisin production by L. lactis BSA. Adding 0.15 µg/ml of nisin into the medium-containing 50 % MRS broth and 50 % skim milk caused the highest nisin activity of 18,820 AU/ml as compared to other medium formulations. This activity was 4 and ~3 times higher than medium containing 100 % MRS broth without added nisin (~4700 AU/ml) and 100 % MRS broth with 0.15 µg/ml of added nisin (~6650 AU/ml), respectively.  相似文献   

11.
To investigate the effect of fungal elicitors on biosynthesis of natamycin in the cultures of Streptomyces natalensis HW-2, the biomass and filtrate of the broth from Aspergillus niger AS 3.6472, Penicillium chrysogenum AS 3.5163, A. oryzae AS 3.2068, and Saccharomyces cerevisiae AS 2.2081 were used to induce natamycin production in S. natalensis HW-2. The results showed that the biomass of P. chrysogenum AS 3.5163 could enhance the yield of natamycin from 0.639 to 0.875 g?l?1. The elicitor from the fermentation broth of P. chrysogenum AS 3.5163 showed the highest inducing efficiency with the yield of natamycin enhanced from 0.632 to 1.84 g?l?1. The elicitor that was cultured for 2 days showed the strongest inducing activity during the fermentation of S. natalensis HW-2 for 24 h, and the yield of natamycin was enhanced from 0.637 to 2.12 g?l?1. The biochemical parameters were examined at the end of fermentation and the results demonstrated that both the growth of cells and the concentration of residual sugar could be influenced. The residual sugar decreased from 5.03 to 4.27 g?l?1, and the biomass decreased from 10.26 to 6.87 g?l?1. Finally, the elicitor was identified as a low molecular weight substance with a similar polarity to that of butyl alcohol by primary qualitative analysis.  相似文献   

12.
Antibiotic resistance remains a major global public health threat that requires sustained discovery of novel antibacterial agents with unexploited scaffolds. Structure-activity relationship of the first-generation aryl isonitrile compounds we synthesized led to an initial lead molecule that informed the synthesis of a second-generation of aryl isonitriles. From this new series of 20 compounds, three analogues inhibited growth of methicillin-resistant Staphylococcus aureus (MRSA) (from 1 to 4?µM) and were safe to human keratinocytes. Compound 19, with an additional isonitrile group exhibited improved activity against MRSA compared to the first-generation lead compound. This compound emerged as a candidate worthy of further investigation and further reinforced the importance of the isonitrile functionality in the compounds’ anti-MRSA activity. In a murine skin wound model, 19 significantly reduced the burden of MRSA, similar to the antibiotic fusidic acid. In summary, 19 was identified as a new lead aryl isonitrile compound effective against MRSA.  相似文献   

13.
Five isolated xanthones from the C. cochinchinense and G. mangostana were evaluated and tested for antibacterial activities. Isolated 4 and 5 exhibited potent anti-MRSA and P. aeruginosa activity, but showed poor pharmacokinetic properties via ADMET prediction. It led us to improve pharmacokinetic properties of 4 and 5 by partially modifying them in acidic condition yielding fourteen analogues. It was found that analogues 4b, 4d and 5b possessed proper pharmacokinetic properties, while only 4b exhibited the best anti-MRSA and P. aeruginosa activity. The SEM results indicated that 4b may interact with or damage the cell wall of MRSA and P. aeruginosa. Moreover, a combination of 4b and vancomycin exhibits synergistic effect against both MRSA and P. aeruginosa at MIC value of 4.98 (MIC = 18.75 μg/mL for 4b) and 9.52 μg/mL (MIC = 75 μg/mL for 4b), respectively.  相似文献   

14.
Two neolignans, named callislignan A and B together with known C-methyl-flavonoids, a lignan and pentacyclic triterpenoid esters were isolated from the leaves of Callistemon lanceolatus. Their structures were characterized by spectroscopic methods. Callislignan A and B had antibacterial activity against Staphylococcus aureus ATCC25923 and MRSA SK1 with callislignan B having an MIC of 8 μg/mL.  相似文献   

15.
The purpose of this study was to: (i) evaluate the antibacterial activities of three Egyptian honeys collected from different floral sources (namely, citrus, clover, and marjoram) against Escherichia coli; (ii) investigate the effects of these honeys on bacterial ultrastructure; and (iii) assess the anti-virulence potential of these honeys, by examining their impacts on the expression of eight selected genes (involved in biofilm formation, quorum sensing, and stress survival) in the test organism. The minimum inhibitory concentration (MIC) of the honey samples against E. coli ATCC 8739 were assessed by the broth microdilution assay in the presence and absence of catalase enzyme. Impacts of the honeys on the cellular ultrastructure and the expression profiles of the selected genes of E. coli were examined using transmission electron microscopy (TEM) and quantitative real-time polymerase chain reaction (qPCR) analysis, respectively. The susceptibility tests showed promising antibacterial activities of all the tested honeys against E. coli. This was supported by the TEM observations, which revealed “ghost” cells lacking DNA, in addition to cells with increased vacuoles, and/or with irregular shrunken cytoplasm. Among the tested honeys, marjoram exhibited the highest total antibacterial activity and the highest levels of peroxide-dependent activity. The qPCR analysis showed that all honey-treated cells share a similar overall pattern of gene expression, with a trend toward reduced expression of the virulence genes of interest. Our results indicate that some varieties of the Egyptian honey have the potential to be effective inhibitor and virulence modulator of E. coli via multiple molecular targets.  相似文献   

16.
Aspergetherins A-D ( 1 – 4 ), four new chlorinated biphenyls, were isolated from the rice fermentation of a marine sponge symbiotic fungus Aspergillus terreus 164018, along with seven known biphenyl derivatives ( 5 – 11 ). The structures of four new compounds were determined by a comprehensive analysis of the spectroscopic data, including HR-ESI-MS and 2D NMR data. All 11 isolates were evaluated for their anti-bacterial activity against two strains of methicillin-resistant Staphylococcus aureus (MRSA). Among them, compounds 1 , 3 , 8 and 10 showed anti-MRSA activity with MIC values of 1.0–128 μg/mL. Preliminary structure-activity relationship analysis unveiled that both chlorinated substitution and esterification of 2-carboxylic acid could impact the antibacterial activity of biphenyls.  相似文献   

17.
There is nowadays an urgent need for developing novel generations of antibiotic agents due to the increased resistance of pathogenic bacteria. As a rich reservoir of structurally diverse compounds, plant species hold promise in this regard. Within this framework, we isolated a unique series of antibacterial flavonoids, named balsacones N–U, featuring multiple cinnamyl chains on the flavan skeleton. The structures of these compounds, isolated as racemates, were determined using extensive 1D and 2D NMR analysis in tandem with HRMS. Balsacones N–U along with previously isolated balsacones A–M were evaluated for their antibacterial activity against clinical isolates of methicillin resistant Staphylococcus aureus (MRSA). Several of the tested balsacones were potent anti-MRSA agents showing MIC values in the low micromolar range. Structure–activity relationships study highlighted some important parameters involved in the antibacterial activity of balsacones such as the presence of cinnamyl and cinnamoyl chains at the C-3 and C-8 positions of the flavan skeleton, respectively. These results suggest that balsacones could represent a potential novel class of naturally occurring anti-MRSA agents.  相似文献   

18.
Culture broth of a streptomycete isolate, Streptomyces sp. CS684 showed antibacterial activity on methicillin resistant Staphylococcus aureus (MRSA) and vancomycin resistant enterococci (VRE). Among purified substances from the organism, CSU-1, which is active against MRSA and VRE, is a C37H62O12Na (M+, 721.3875), and identified as laidlomycin. The anti-MRSA and anti-VRE activity of CSU-1 was stronger than oxacillin and vancomycin. Phylogenetic analysis showed that strain CS684 is very similar to Streptomyces ardus NRRL 2817T, whereas the ability of Streptomyces sp. CS684 to produce laidlomycin was shown to be unique.  相似文献   

19.
Silver nanoparticles, which are being used increasingly as antimicrobial agents, may extend its antibacterial application to methicillin-resistant Staphylococcus aureus (MRSA), the main cause of nosocomial infections worldwide. To explore the antibacterial properties of silver nanoparticles against MRSA, the present work includes an analysis of the relation between nanosilver effect and MRSA’s resistance mechanisms, a study of the size dependence of the bactericidal activity of nanosilver and a toxicity assessment of nanoparticles against epithelial human cells. Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and MBC/MIC ratio of silver nanoparticles were quantified by using a luciferase-based assay. The cytotoxic effect (CC50 and CC90) of three different nanosilver sizes (10, 30–40, and 100 nm) were assessed in HeLa cells by a similar method. The therapeutic index was used as an indicator of nanosilver overall efficacy and safety. Silver nanoparticles inhibited bacterial growth of both MRSA and non-MR S. aureus in a bactericidal rather than a bacteriostatic manner (MBC/MIC ratio?≤?4). Silver nanoparticle’s therapeutic index varied when nanoparticle’s size diminished. At the same dose range, 10 nm nanoparticles were the most effective since they did not affect HeLa’s cell viability while inhibiting a considerable percentage of MRSA growth. Silver nanoparticles are effective bactericidal agents that are not affected by drug-resistant mechanisms of MRSA. Nanosilver size mediates MRSA inhibition and the cytotoxicity to human cells, being smaller nanoparticles the ones with a better antibacterial activity and nontoxic effect.  相似文献   

20.
The present study was designed to evaluate the antifungal activity of baicalein against Candida krusei isolates. Using a broth microdilution assay, baicalein exhibited potent in vitro antifungal activity against C. krusei isolates with a minimum inhibitory concentration of 2.7 μg/ml. Flow cytometric study indicated that baicalein depolarized mitochondrial membrane potential in a concentration-dependent manner. However, mechanistic analyses showed that the intracellular reactive oxygen species (ROS) level was virtually unchanged, and massive DNA fragmentation was not observed in C. krusei isolates after baicalein treatment even at a concentration which was apoptotic in C. albicans. Taken together, we conclude that the antifungal activity of baicalein in C. krusei isolates occurs through perturbation in mitochondrial homeostasis without causing elevation of the intracellular ROS level and does not involve apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号