首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J. A. Lee  R. Ignaciuk 《Plant Ecology》1985,62(1-3):319-326
Factors which affect the vegetation of strandlines on sandy shores were investigated with particular attention to the growth of four annual species Atriplex glabriuscula, Atriplex laciniata, Cakile maritima and Salsola kali which are widely distributed around the coasts of North-West Europe. The response of these species to increases in salinity and sand accretion are reported from laboratory experiments. Field observations were also made of photosynthesis and the availability of, and the response to, nitrogen. The results are used to discuss the adaptation of these plants to growth on strandlines in an attempt to explain their restriction to this habitat.  相似文献   

2.
海藻有性繁殖生态学研究进展   总被引:3,自引:0,他引:3  
邹定辉  夏建荣 《生态学报》2004,24(12):2870-2877
由于研究技术与方法的不断改进 ,人们对海藻 (seaweeds)早期生活史方面的研究兴趣日益增大。评述了近年来海藻有性繁殖过程中配子释放和受精生态学问题。到达一定生理状态的海藻 ,通过对环境暗示应答而诱导配子形成。海藻生殖器官感受另一些特定的环境条件 ,通过有关信号传递机制 ,触发配子释放。海藻配子释放的时间及其所需的环境条件 ,依不同的种类而变化。配子同步释放以及各种适当的环境条件提高了受精频率和受精成功率 ,有利于受精的各种生物的和非生物的因素组合 ,形成了“机会窗 (the window of opportunity)”的概念。近年来的研究表明 ,海藻 (特别是红藻 )的自然受精成功率比以前所认为的要高得多。受精后合子 (胚 )的散布、集落与附着显著地影响其生存以及种群动态。对今后值得进一步研究的方面作了展望  相似文献   

3.
Recent measurements of remarkable dive performances in oceanic seabirds and marine mammals suggest the use of a range of physiological and behavioural adaptations for the parsimonious use of oxygen. Access to food at different depths may be directly related to the duration of the breath-hold, and several physiological strategies may be used to extend dive duration. But is also a growing appreciation of the importance of behavioural strategies adopted by divers to minimize the effects of physiological limitations on diving performance and to maximize acces to food.  相似文献   

4.
The physiological ecology of Mytilus californianus Conrad   总被引:5,自引:0,他引:5  
Summary The rates of oxygen consumption, filtration and ammonia excretion by Mytilus californianus have been related to body size and to ration. The rate of oxygen consumption (VO2) by individuals while immersed, measured on the shore, resembled rates recorded for mussels starved in the laboratory. VO2 by M. californianus was relatively independent of change in temperature, with a Q 10 (13–22° C) of 1.20. In contrast, the frequency of heart beat was more completely temperature dependent [Q 10 (13–22° C)=2.10]. Filtration rate showed intermediate dependence on temperature change [Q 10 (13–22° C)=1.49] up to 22° C, but declined at 26° C. Both VO2 and filtration rate declined during starvation. The utilisation efficiency for oxygen was low (approx. 4%) between 13 and 22° C, but increased to 10% at 26° C. Three components of the routine rate of oxygen consumption are recognised and estimated; viz. a basal rate (0.136 ml O2 h-1 for a mussel of 1 g dry flesh weight), a physiological cost of feeding (which represented about 6% of the calories in the ingested ration), and a mechanical cost of feeding which was three times higher than the physiological cost. The ratio oxygen consumed to ammonia-nitrogen excreted was low, and it declined during starvation. These data are compared with previously published measurements on Mytilus edulis, and the two species of mussel are shown to be similar in some of their physiological characteristics, though possibly differing in their capacities to compensate for change in temperature. For M. californianus, the scope for growth was highest at 17–22° C and declined at 26° C; it is suggested that exposure to temperatures in excess of 22° C, as for example during low tides in the summer, might result in a cumulative stress on these populations of mussels by imposing a metabolic deficit which must be recovered at each subsequent high tide. The high mechanical cost of feeding imposes a more general constraint on the scope for activity of the species.  相似文献   

5.
6.
Many of the threats to the persistence of populations of sensitivespecies have physiological or pathological mechanisms, and thosemechanisms are best understood through the inherently integrativediscipline of physiological ecology. The desert tortoise waslisted under the Endangered Species Act largely due to a newlyrecognized upper respiratory disease thought to cause mortalityin individuals and severe declines in populations. Numeroushypotheses about the threats to the persistence of desert tortoisepopulations involve acquisition of nutrients, and its connectionto stress and disease. The nutritional wisdom hypothesis positsthat animals should forage not for particular food items, butinstead, for particular nutrients such as calcium and phosphorusused in building bones. The optimal foraging hypothesis suggeststhat, in circumstances of resource abundance, tortoises shouldforage as dietary specialists as a means of maximizing intakeof resources. The optimal digestion hypothesis suggests thattortoises should process ingesta in ways that regulate assimilationrate. Finally, the cost-of-switching hypothesis suggests thatherbivores, like the desert tortoise, should avoid switchingfood types to avoid negatively affecting the microbe communityresponsible for fermenting plants into energy and nutrients.Combining hypotheses into a resource acquisition theory leadsto novel predictions that are generally supported by data presentedhere. Testing hypotheses, and synthesizing test results intoa theory, provides a robust scientific alternative to the popularuse of untested hypotheses and unanalyzed data to assert theneeds of species. The scientific approach should focus on hypothesesconcerning anthropogenic modifications of the environment thatimpact physiological processes ultimately important to populationphenomena. We show how measurements of such impacts as nutrientstarvation, can cause physiological stress, and that the endocrinemechanisms involved with stress can result in disease. Finally,our new syntheses evince a new hypothesis. Free molecules ofthe stress hormone corticosterone can inhibit immunity, andthe abundance of "free corticosterone" in the blood (thoughtto be the active form of the hormone) is regulated when thecorticosterone molecules combine with binding globulins. Thesex hormone, testosterone, combines with the same binding globulin.High levels of testosterone, naturally occurring in the breedingseason, may be further enhanced in populations at high densities,and the resulting excess testosterone may compete with bindingglobulins, thereby releasing corticosterone and reducing immunityto disease. This sequence could result in physiological andpathological phenomena leading to population cycles with a periodthat would be essentially impossible to observe in desert tortoise.Such cycles could obscure population fluctuations of anthropogenicorigin.  相似文献   

7.
Physiology, behavior, habitat, and morphology are used to determine the degree of adaptation to life on land for amphipod species and systemization within the four functional groups of the family talitridae. Talorchestia longicornis is a semi-terrestrial amphipod found in the supratidal zone of estuaries. The present study investigates the physiological adaptations of this species to life on land through measurements of osmoregulation and respiration. Over the salinity range of 1-40‰, T. longicornis regulated its hemolymph hyperosmotically at low salinities and hypoosmotically at high salinities. The isosmotic point was about 27‰. Analogously, hemolymph chloride levels were well regulated being hyperionic at low salinities and hypoionic at high salinities. This species is capable of respiration in both air and water. Slopes (b values) of the relationship between weight and oxygen uptake rates ranged from 0.316 to 0.590. Oxygen uptake rates were higher in air than water and at night versus day. Q10 values were slightly below 2.0 for respiration in air for amphipods, irrespective of weight. These physiological adaptations, along with its behaviors, habitat, and morphology, place T. longicornis within the Group III sandhoppers of the Talitridae.  相似文献   

8.
Life strategy, ecophysiology and ecology of seaweeds in polar waters   总被引:1,自引:0,他引:1  
Polar seaweeds are strongly adapted to the low temperatures of their environment, Antarctic species more strongly than Arctic species due to the longer cold water history of the Antarctic region. By reason of the strong isolation of the Southern Ocean the Antarctic marine flora is characterized by a high degree of endemism, whereas in the Arctic only few endemic species have been found so far. All polar species are strongly shade adapted and their phenology is finely tuned to the strong seasonal changes of the light conditions. The paper summarises the present knowledge of seaweeds from both polar regions with regard to the following topics: the history of seaweed research in polar regions; the environment of seaweeds in polar waters; biodiversity, biogeographical relationships and vertical distribution of Arctic and Antarctic seaweeds; life histories and physiological thallus anatomy; temperature demands and geographical distribution; light demands and depth zonation; the effect of salinity, temperature and desiccation on supra-and eulittoral seaweeds; seasonality of reproduction and the physiological characteristics of microscopic developmental stages; seasonal growth and photosynthesis; elemental and nutritional contents and chemical and physical defences against herbivory. We present evidence to show that specific characteristics and adaptations in polar seaweeds help to explain their ecological success under environmentally extreme conditions. In conclusion, as a perspective and guide for future research we draw attention to many remaining gaps in knowledge. Dedicated to Prof. Dr. Gunter O. Kirst and to Prof. Dr. Klaus Lüning on occasion of their retirement 28. Februar 2006 and 31. March 2006, respectively.  相似文献   

9.
Mechanistic information about tropical canopy function is emerging at the leaf, tree, stand and landscape levels. With improved canopy access, comprehensive data are accumulating about seasonal and spatial variation in light, temperature and humidity, and corresponding variation in leaf carbon gain and water loss. At the whole-plant level, simultaneous measurements at different spatial scales have revealed the role of boundary layer dynamics in regulating transpiration. Emergent properties of canopy function are being explored through models that integrate leaf and landscape-level exchange processes. Integration of exchange processes that include functional diversity at different scales has the potential to validate regional estimates of gas exchange, which are critical to our understanding of the role of tropical forests in global atmospheric carbon balance.  相似文献   

10.
The physiological ecology of two populations of Mytilus edulis L.   总被引:11,自引:1,他引:10  
B. L. Bayne  J. Widdows 《Oecologia》1978,37(2):137-162
Summary Seasonal cycles in the rates of oxygen consumption, feeding, absorption efficiency and ammonia-nitrogen excretion in two populations of Mytilus edulis were measured in the field under ambient conditions and related to body size, the gametogenic cycle, the concentration of suspended particulate matter in the water and temperature. Relationships between the various physiological variables are also considered and protein and energy budgets estimated. Both the scope for growth and the relative maintenance cost were seasonally variable, demonstrating a minimum capacity for growth in the winter and a maximum capacity in the summer. In one population subjected to abnormally high temperatures in the winter the scope for growth was negative for four or five months between January and May. These population differences are discussed and the potential for using physiological integrations in intra-specific comparisons of fitness is identified.  相似文献   

11.
12.
13.
The current knowledge of the physiological ecology of vascular epiphytes is reviewed here with an emphasis on the most recent literature. It is argued that by far the most relevant abiotic constraint for growth and vegetative function of vascular epiphytes is water shortage, while other factors such as nutrient availability or irradiation, are generally of inferior importance. However, it is shown that the present understanding of epiphyte biology is still highly biased, both taxonomically and ecologically, and it is concluded that any generalizations are still preliminary. Future studies should include a much wider range of taxa and growing sites within the canopy to reach a better understanding how abiotic factors are limiting epiphyte growth and survival which, in turn, should affect epiphyte community composition. Finally, a more integrative approach to epiphyte biology is encouraged: physiological investigations should be balanced by studies of other possible constraints, for example, substrate instability, dispersal limitation, competition or herbivory.  相似文献   

14.
Summary As a comparison to the many studies of larger flying insects, we carried out an initial study of heat balance and thermal dependence of flight of a small butterfly (Colias) in a wind tunnel and in the wild.Unlike many larger, or facultatively endothermic insects, Colias do not regulate heat loss by altering hemolymph circulation between thorax and abdomen as a function of body temperature. During flight, thermal excess of the abdomen above ambient temperature is weakly but consistently coupled to that of the thorax. Total heat loss is best expressed as the sum of heat loss from the head and thorex combined plus heat loss from the abdomen because the whole body is not isothermal. Convective cooling is a simple linear function of the square root of air speed from 0.2 to 2.0 m/s in the wind tunnel. Solar heat flux is the main source of heat gain in flight, just as it is the exclusive source for warmup at rest. The balance of heat gain from sunlight versus heat loss from convection and radiation does not appear to change by more than a few percent between the wings-closed basking posture and the variable opening of wings in flight, although several aspects require further study. Heat generation by action of the flight muscles is small (on the order of 100 m W/g tissue) compared to values reported for other strongly flying insects. Colias appears to have only very limited capacity to modulate flight performance. Wing beat frequency varies from 12–19 Hz depending on body mass, air speed, and thoracic temperature. At suboptimal flight temperatures, wing beat frequency increases significantly with thoracic temperature and body mass but is independent of air speed. Within the reported thermal optimum of 35–39°C, wing beat frequency is negatively dependent on air speed at values above 1.5 m/s, but independent of mass and body temperature. Flight preference of butterflies in the wind tunnel is for air speeds of 0.5–1.5 m/s, and no flight occurs at or above 2.5 m/s. Voluntary flight initiation in the wild occurs only at air speeds 1.4 m/s.In the field, Colias fly just above the vegetation at body temperatures of 1–2°C greater than when basking at the top of the vegetation. These measurements are consistent with our findings on low heat gain from muscular activity during flight. Basking temperatures of butterflies sheltered from the wind within the vegetation were 1–2°C greater than flight temperatures at vegetation height.  相似文献   

15.
王德华 《兽类学报》2011,31(1):15-19
本文简要论述了我国哺乳动物生理生态学(主要是啮齿动物)的几个主要领域(方向)的研究进展,如
对环境的适应和瘦素的生理功能。根据国际发展动态,对未来一些可能的发展方向提出了建议。  相似文献   

16.
17.
Cellulose content as well as alpha (α) and beta (β) celluloses were evaluated in 21 seaweed species belonging to different classes growing in Indian waters. The greatest yields of cellulose (crude) and β-cellulose were obtained from Caulerpa taxifolia (approx. 11.0% and 5.2%, respectively), whilst α-cellulose (approx. 8.2%) was the greatest in Padina tetrastromatica. The lowest cellulose (crude), α- and β- contents were recorded from the calcareous red alga Liagora ceranoides (approx. 0.85%, 0.62% and 0.18%, respectively). There was no variation in the yields of cellulose in the brown algae, whilst wide variations in the yields were found in the green and red algae.  相似文献   

18.
The costs of sex in seaweeds   总被引:1,自引:0,他引:1  
The brown seaweeds (Fucales) include dioecious and hermaphrodite species and genera with one, two, tour or eight eggs per oogonium. The costs of gamete production, measured as biomass, are very small. Eggs represent only 0.1–0.4% of body weight. Females of dioecious species do not produce more eggs per gramme of tissue than hermaphrodites. Hermaphrodites occupy upper shore zones and dioecious species the biotically richer submerged zones. Neither egg size nor number correlate with habitat or sexuality. Some of these observations are hard to reconcile with theoretical concepts of the costs of sex.  相似文献   

19.
The small but diverse group of angiosperms known as seagrasses form submersed meadow communities that are among the most productive on earth. Seagrasses are frequently light-limited and, despite access to carbon-rich seawaters, they may also sustain periodic internal carbon limitation. They have been regarded as C3 plants, but many species appear to be C3–C4 intermediates and/or have various carbon-concentrating mechanisms to aid the Rubisco enzyme in carbon acquisition. Photorespiration can occur as a C loss process that may protect photosynthetic electron transport during periods of low CO2 availability and high light intensity. Seagrasses can also become photoinhibited in high light (generally>1000 μE m−2 s−1) as a protective mechanism that allows excessive light energy to be dissipated as heat. Many photosynthesis–irradiance curves have been developed to assess light levels needed for seagrass growth. However, most available data (e.g. compensation irradiance Ic) do not account for belowground tissue respiration and, thus, are of limited use in assessing the whole-plant carbon balance across light gradients. Caution is recommended in use of Ik (saturating irradiance for photosynthesis), since seagrass photosynthesis commonly increases under higher light intensities than Ik; and in estimating seagrass productivity from Hsat (duration of daily light period when light equals or exceeds Ik) which varies considerably among species and sites, and which fails to account for light-limited photosynthesis at light levels less than Ik. The dominant storage carbohydrate in seagrasses is sucrose (primarily stored in rhizomes), which generally forms more than 90% of the total soluble carbohydrate pool. Seagrasses with high Ic levels (suggesting lower efficiency in C acquisition) have relatively low levels of leaf carbohydrates. Sucrose-P synthase (SPS, involved in sucrose synthesis) activity increases with leaf age, consistent with leaf maturation from carbon sink to source. Unlike terrestrial plants, SPS apparently is not light-activated, and is positively influenced by increasing temperature and salinity. This response may indicate an osmotic adjustment in marine angiosperms, analogous to increased SPS activity as a cryoprotectant response in terrestrial non-halophytic plants. Sucrose synthase (SS, involved in sucrose metabolism and degradation in sink tissues) of both above- and belowground tissues decreases with tissue age. In belowground tissues, SS activity increases under low oxygen availability and with increasing temperatures, likely indicating increased metabolic carbohydrate demand. Respiration in seagrasses is primarily influenced by temperature and, in belowground tissues, by oxygen availability. Aboveground tissues (involved in C assimilation and other energy-costly processes) generally have higher respiration rates than belowground (mostly storage) tissues. Respiration rates increase with increasing temperature (in excess of 40°C) and increasing water-column nitrate enrichment (Z. marina), which may help to supply the energy and carbon needed to assimilate and reduce nitrate. Seagrasses translocate oxygen from photosynthesizing leaves to belowground tissues for aerobic respiration. During darkness or extended periods of low light, belowground tissues can sustain extended anerobiosis. Documented alternate fermentation pathways have yielded high alanine, a metabolic ‘strategy’ that would depress production of the more toxic product ethanol, while conserving carbon skeletons and assimilated nitrogen. In comparison to the wealth of information available for terrestrial plants, little is known about the physiological ecology of seagrasses in carbon acquisition and metabolism. Many aspects of their carbon metabolism — controls by interactive environmental factors; and the role of carbon metabolism in salt tolerance, growth under resource-limited conditions, and survival through periods of dormancy — remain to be resolved as directions in future research. Such research will strengthen the understanding needed to improve management and protection of these environmentally important marine angiosperms.  相似文献   

20.
Phosphorus (P) is an essential nutrient for marine phytoplankton and indeed all life forms. Current data show that P availability is growth‐limiting in certain marine systems and can impact algal species composition. Available P occurs in marine waters as dissolved inorganic phosphate (primarily orthophosphate [Pi]) or as a myriad of dissolved organic phosphorus (DOP) compounds. Despite numerous studies on P physiology and ecology and increasing research on genomics in marine phytoplankton, there have been few attempts to synthesize information from these different disciplines. This paper is aimed to integrate the physiological and molecular information on the acquisition, utilization, and storage of P in marine phytoplankton and the strategies used by these organisms to acclimate and adapt to variations in P availability. Where applicable, we attempt to identify gaps in our current knowledge that warrant further research and examine possible metabolic pathways that might occur in phytoplankton from well‐studied bacterial models. Physical and chemical limitations governing cellular P uptake are explored along with physiological and molecular mechanisms to adapt and acclimate to temporally and spatially varying P nutrient regimes. Topics covered include cellular Pi uptake and feedback regulation of uptake systems, enzymatic utilization of DOP, P acquisition by phagotrophy, P‐limitation of phytoplankton growth in oceanic and coastal waters, and the role of P‐limitation in regulating cell size and toxin levels in phytoplankton. Finally, we examine the role of P and other nutrients in the transition of phytoplankton communities from early succession species (diatoms) to late succession ones (e.g., dinoflagellates and haptophytes).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号