首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To improve the cooperative removal of nitrogen by Nitrosomonas europaea and Paracoccus denitrificans, we controlled their distribution in a tubular gel. When ethanol was supplied inside the tubular gel as an electron donor, their distributions overlapped in the external region of the gel. By changing the electron donor from ethanol to gaseous hydrogen, the distribution of P. denitrificans shifted to the inside of the tube and was separated from that of N. europaea. The separation resulted in an increase of the oxidation rate of ammonia by 25%.  相似文献   

2.
A bioreactor system with 30 packed gel envelopes was installed in a thermal power plant for the removal of nitrogen from ammonia-containing desulfurization wastewater. Each envelope consisted of double-sided plate gels containing Nitrosomonas europaea and Paracoccus denitrificans cells with an internal space in between for injecting an electron donor. The envelope can remove ammonia from wastewater in a single step. When the wastewater was continuously treated with the bioreactor system, it removed 95.0% of the total nitrogen in the inlet, and the total nitrogen concentration in the outlet was below 9.0 mg L−1. The maximum nitrogen removal rate was 6.0 g day−1 per square meter of the gel area. The maximum utilization efficiency of the injected ethanol for denitrification was 98.4%, and the total organic carbon concentration in the outflow was maintained at a low level. Since the bioreactor system could use the electron donor effectively, it was not necessary to use an additional aerobic tank to remove the electron donor and a settling tank to segregate the surplus sludge containing bacteria from wastewater. Our concept of using packed gel envelopes would be highly effective for constructing a simple and efficient nitrogen removal system capable of simultaneous nitrification and denitrification.  相似文献   

3.
The biological reduction of selenium oxyanions is capable of reducing both selenate and selenite to insoluble elemental selenium. In this process, however, bacteria inevitably require expensive chemicals such as yeast extract in almost all cases. Therefore, the reduction of selenium oxyanions with inexpensive alcohol would be more practical. A Pseudomonas sp. strain 4C‐C isolated from a sludge in a wastewater treatment facility was able to reduce selenate to selenite using ethanol as an electron donor for its anaerobic respiration, but could not reduce selenite to elemental selenium. Paracoccus denitrificans JCM‐6892, on the other hand, was observed to be able to reduce selenite to elemental selenium in the presence of ethanol, but not selenate to selenite. Therefore, a mixture containing a suspension of Pseudomonas sp. strain 4C‐C and P. denitrificans JCM‐6892 cells allowed selenate to be reduced to insoluble elemental selenium via selenite in the presence of ethanol and was also capable of reducing nitrate to nitrogen gas. Aiming at simplicity of the recovery process of insoluble elemental selenium, a polymeric gel immobilized mixture of the two bacterial strains was examined using ethanol as an electron donor. The immobilized mixture could therefore reduce not only selenate to elemental selenium, but also nitrate to nitrogen gas in a single step. The gel that immobilized the microbial mixture changed its color during the process to bright red and no red elemental selenium was left in the wastewater. This indicates that the reduced elemental selenium was completely absorbed in the gel. This simple bacterial combination would therefore be effective in the presence of ethanol to reduce selenium oxyanions in various wastewaters containing selenium and the other oxyanions.  相似文献   

4.
Calcium alginate gel (CAG) that withstands phosphate ions in the medium was prepared by reinforcing a network structure of the gel with a polyelectrolyte complex (PEC) consisting of potassium poly(vinyl alcohol) sulfate and trimethylammonium glycol chitosan iodide. The PEC-stabilized CAG beads were used as a supporting matrix for the coimmobilization of Nitrosomonas europaea ATCC 25978 cells and Paracoccus denitrificans IFO 12442 cells. The coimmobilized cells were aerobically cultured on a medium containing 3 mM of phosphate ions, using (NH4)2SO4 as a substrate and ethanol as a carbon source. Ammonia was consumed without forming nitrite, indicating the concurrence of nitrification and denitrification in the same system. No breakage of the gel beads was observed during the cultivation. Repeated aerobic cultivation using a column packed with beads of coimmobilized cells had stable initial activity for at least one month.  相似文献   

5.
Three alternatives of the mode of branching in the ubiquinone-cytochrome b region of the anaerobic respiratory chain of Paracoccus denitrificans were experimentally tested. It was found that the view that the constitutive cytochrome b-560 or b-566 serves as an electron donor for the nitrate reductase is incompatible with the proposed scheme of the cyclic electron flow in the bc1 segment. By means of the extraction procedure, the extent of reduction of ubiquinone was determined in cells utilizing oxygen and nitrate in the presence of antimycin. It was found that the redox response of ubiquinone was consistent with what had been predicted by the pool model of Kröger and Klingenberg, extended for more than one terminal acceptor. Our results are in support of the assumption that in cells of P. denitrificans ubiquinol (QH2) has a function of an electron donor both for nitrate reductase and cytochrome o.  相似文献   

6.
A novel technique, combining labelling and stereological methods, for the determination of spatial distribution of two microorganisms in a biofilm is presented. Cells of Nitrosomonas europaea (ATCC 19718) and Nitrobacter agilis (ATCC 14123) were homogeneously distributed in a κ-carrageenan gel during immobilization and allowed to grow out to colonies. The gel beads were sliced in thin cross sections after fixation and embedding. A two-step labelling method resulted in green fluorescent colonies of either N. europaea or N. agilis in the respective cross sections. The positions and surface areas of the colonies of each species were determined, and from that a biomass volume distribution for N. europaea and N. agilis in κ-carrageenan gel beads was estimated. This technique will be useful for the validation of biofilm models, which predict such biomass distributions.  相似文献   

7.
Thiobacillus denitrificans is a widespread, chemolithoautotrophic bacterium with an unusual and environmentally relevant metabolic repertoire, which includes its ability to couple denitrification to sulfur compound oxidation; to catalyze anaerobic, nitrate-dependent oxidation of Fe(II) and U(IV); and to oxidize mineral electron donors. Recent analysis of its genome sequence also revealed the presence of genes encoding two [NiFe]hydrogenases, whose role in metabolism is unclear, as the sequenced strain does not appear to be able to grow on hydrogen as a sole electron donor under denitrifying conditions. In this study, we report the development of a genetic system for T. denitrificans, with which insertion mutations can be introduced by homologous recombination and complemented in trans. The antibiotic sensitivity of T. denitrificans was characterized, and a procedure for transformation with foreign DNA by electroporation was established. Insertion mutations were generated by in vitro transposition, the mutated genes were amplified by the PCR, and the amplicons were introduced into T. denitrificans by electroporation. The IncP plasmid pRR10 was found to be a useful vector for complementation. The effectiveness of the genetic system was demonstrated with the hynL gene, which encodes the large subunit of a [NiFe]hydrogenase. Interruption of hynL in a hynL::kan mutant resulted in a 75% decrease in specific hydrogenase activity relative to the wild type, whereas complementation of the hynL mutation resulted in activity that was 50% greater than that of the wild type. The availability of a genetic system in T. denitrificans will facilitate our understanding of the genetics and biochemistry underlying its unusual metabolism.  相似文献   

8.
The components of the proton motive force (Δp), namely, membrane potential (Δψ) and transmembrane pH gradient (ΔpH), were determined in the nitrifying bacteria Nitrosomonas europaea and Nitrobacter agilis. In these bacteria both Δψ and ΔpH were dependent on external pH. Thus at pH 8.0, Nitrosomonas europaea and Nitrobacter agilis had Δψ values of 173 mV and 125 mV (inside negative), respectively, as determined by the distribution of the lipophilic cation [3H]tetraphenyl phosphonium. Intracellular pH was determined by the distribution of two weak acids, 14C-benzoic and 14C-acetyl salicylic, and the weak base [14C]methylamine. Nitrosomonas europaea accumulated 14C-benzoic acid and 14C-acetyl salicylic acid when the external pH was below 7.0 and [14C]methylamine at alkaline pH. Similarly, Nitrobacter agilis accumulated the two weak acids below an external pH of about 7.5 and [14C]methylamine above this pH. As these bacteria grow best between pH 7.5 and 8.0, they do not appear to have a ΔpH (inside alkaline). Thus, above pH 7.0 for Nitrosomonas europaea and pH 7.5 for Nitrobacter agilis, Δψ only contributed to Δp. In Nitrosomonas europaea the total Δp remained almost constant (145 to 135 mV) when the external pH was varied from 6 to 8.5. In Nitrobacter agilis, Δp decreased from 178 mV (inside negative) at pH 6.0 to 95 mV at pH 8.5. Intracellular pH in Nitrosomonas europaea varied from 6.3 at an external pH of 6.0 to 7.8 at external pH 8.5. In Nitrobacter agilis, however, intracellular pH was relatively constant (7.3 to 7.8) over an external pH range of 6 to 8.5. In Nitrosomonas europaea, Δp and its components (Δψ and ΔpH) remained constant in cells at various stages of growth, so that the metabolic state of cells did not affect Δp. Such an experiment was not possible with Nitrobacter agilis because of low cell yields. The effects of protonophores and ATPase inhibitors on ΔpH and Δψ in the two nitrifying bacteria are considered.  相似文献   

9.
Formate served as an electron donor in dissimilatory nitrite reduction in resting cells of a denitrifier, Pseudomonas denitrificans. Pyruvate also donated electrons to nitrite. Pyruvate reduced nitrite at the same rate as formate after some lag period. Citrate, the carbon source for cultivation medium employed in this study, was less effective for nitrite reduction. Two distinct cytochromes were shown to be involved in the electron transfer from formate to nitrite.  相似文献   

10.
This paper describes both qualitative and quantitative aspects of simultaneous autotrophic nitrification and heterotrophic denitrification by, respectively, the nitrifierNitrisomonas europaea and either of the denitrifiersPseudomonas denitrificans orParacoccus denitrificans co-immobilized in double-layer gel beads. The system is based on the establishment of well-defined oxic and anoxic zones within the cell supports and on physical separation of the nitrifying and denitrifying populations. Nitrification and denitrification rates were obtained from measured bulk concentrations and head-space analysis. The latter analyses showed that ammonia was primarily converted into molecular nitrogen. Nitrous oxide was not detected. High nitrogen removal rates (up to 5.1 mmol N m–3 gel s–1) were achieved in continuous reactors under aerobic conditions. The overall rate of nitrogen removal was controlled by the nitrifying step. The approach followed is, in principle, also suitable to the coupling of other oxidative and reductive bioprocesses having complementary metabolic routes. Two-stage bioconversion processes can be thus conducted as if single-staged, which results in more compact reactor systems.  相似文献   

11.
Genes encoding 3-hydroxybutyrate oligomer hydrolase (PhaZc) and 3-hydroxybutyrate dehydrogenase (Hbd) were isolated from Paracoccus denitrificans. PhaZc and Hbd were overproduced as His-tagged proteins in Escherichia coli and purified by affinity and gel filtration chromatography. Purified His-tagged proteins had molecular masses of 31 kDa and 120 kDa (a tetramer of 29-kDa subunits). The His-tagged PhaZc hydrolyzed not only 3-hydroxybutyrate oligomers but also 3-hydroxyvalerate oligomers. The His-tagged Hbd catalyzed the dehydrogenation of 3-hydroxyvalerate as well as 3-hydroxybutyrate. When both enzymes were included in the same enzymatic reaction system with 3-hydroxyvalerate dimer, sequential reactions occurred, suggesting that PhaZc and Hbd play an important role in the intracellular degradation of poly(3-hydroxyvalerate). When the phaZc gene was disrupted in P. denitrificans by insertional inactivation, the mutant strain lost PhaZc activity. When the phaZc-disrupted P. denitrificans was complemented with phaZc, PhaZc activity was restored. These results suggest that P. denitrificans carries a single phaZc gene. Disruption of the phaZc gene in P. denitrificans affected the degradation rate of PHA.  相似文献   

12.
Formation of ATP during aerobic respiration and denitrification was determined inPseudomonas denitrificans. In the intact cell system, the ATP formation associated with denitrification was almost the same as that associated with aerobic respiration when lactate was used as an electron donor. The ATP formation was inhibited by KCN, NaN3 and DNP. No phosphate uptake occurred when NH2OH, DMPD or TMPD was used as an electron donor, although the production of N2O, N2 or NO from nitrite was accelerated under anaerobic conditions. In the cell-free system, the ATP formation was also demonstrated using an ATP trapping system and lactate as a substrate. The effects of inhibitors were almost the same as those observed with the intact cells. DMPD or TMPD together with ascorbate promoted the ATP formation during aerobic oxidation by the cell-free system whereas no stimulation of ATP formation was detected during denitrification.  相似文献   

13.
The anode biofilm in a microbial fuel cell (MFC) is composed of diverse populations of bacteria, many of whose capacities for electricity generation are unknown. To identify functional populations in these exoelectrogenic communities, a culture-dependent approach based on dilution to extinction was combined with culture-independent community analysis. We analyzed the diversity and dynamics of microbial communities in single-chamber air-cathode MFCs with different anode surfaces using denaturing gradient gel electrophoresis based on the 16S rRNA gene. Phylogenetic analyses showed that the bacteria enriched in all reactors belonged primarily to five phylogenetic groups: Firmicutes, Actinobacteria, α-Proteobacteria, β-Proteobacteria, and γ-Proteobacteria. Dilution-to-extinction experiments further demonstrated that Comamonas denitrificans and Clostridium aminobutyricum were dominant members of the community. A pure culture isolated from an anode biofilm after dilution to extinction was identified as C. denitrificans DX-4 based on 16S rRNA sequence and physiological and biochemical characterizations. Strain DX-4 was unable to respire using hydrous Fe(III) oxide but produced 35 mW/m2 using acetate as the electron donor in an MFC. Power generation by the facultative C. denitrificans depends on oxygen and MFC configuration, suggesting that a switch of metabolic pathway occurs for extracellular electron transfer by this denitrifying bacterium.  相似文献   

14.
Nitrate-dependent pyrite oxidation is an important process as it may prevent pollution by nitrate from agriculture. Anaerobic oxidation of pyrite with nitrate as an electron acceptor was studied in cultures of Thiobacillus denitrificans and Thiobacillus thioparus. Both strains reduced nitrate, with pyrite added as sole electron donor, but T. thioparus reduced nitrate to nitrite only. Accumulation of nitrite, however, was prevented in co-cultures of T. denitrificans and T. thioparus. Furthermore, pyrite oxidation rates were dependent on pyrite pretreatment, which results in different specific surface areas of pyrite. Initial nitrate concentration or pyrite origin did not affect the pyrite oxidation rate.  相似文献   

15.
Two bacterial strains which assimilate polytetramethylene glycol (PTMG) as a carbon and energy source were isolated from soil samples. They were identified as Alcaligenes denitrificans subsp. denitrificans and Xanthomonas maltophilia. They could also assimilate polyethylene glycol 400, but not polypropylene glycol 670. A. denitrificans did not have any additional nutritional requirement for growth, but X. maltophilia required methionine. Optimum growth was observed on 0.2% of PTMG 265 at pH 5.0, showing maximum growth after 5–7 d. The degrees of polymerization of PTMG 200 or 265 were analyzed by high-performance liquid chromatography and identified to be monomer-octamer by mass spectrometry. The growing and resting cells of A. denitrificans or X. maltophilia also degraded PTMG 200 or 265 completely at a concentration of 0.1–0.2%. Cell extracts of A. denitrificans had PTMG dehydrogenase activity linked with an artificial electron acceptor, such as 2,6-dichloroindophenol, etc., and phenazine methosulfate.  相似文献   

16.
Nitrite reductase (NirK) and nitric oxide reductase (NorB) have long been thought to play an essential role in nitrous oxide (N2O) production by ammonia-oxidizing bacteria. However, essential gaps remain in our understanding of how and when NirK and NorB are active and functional, putting into question their precise roles in N2O production by ammonia oxidizers. The growth phenotypes of the Nitrosomonas europaea ATCC 19718 wild-type and mutant strains deficient in expression of NirK, NorB, and both gene products were compared under atmospheric and reduced O2 tensions. Anoxic resting-cell assays and instantaneous nitrite (NO2) reduction experiments were done to assess the ability of the wild-type and mutant N. europaea strains to produce N2O through the nitrifier denitrification pathway. Results confirmed the role of NirK for efficient substrate oxidation of N. europaea and showed that NorB is involved in N2O production during growth at both atmospheric and reduced O2 tensions. Anoxic resting-cell assays and measurements of instantaneous NO2 reduction using hydrazine as an electron donor revealed that an alternate nitrite reductase to NirK is present and active. These experiments also clearly demonstrated that NorB was the sole nitric oxide reductase for nitrifier denitrification. The results of this study expand the enzymology for nitrogen metabolism and N2O production by N. europaea and will be useful to interpret pathways in other ammonia oxidizers that lack NirK and/or NorB genes.  相似文献   

17.
Pseudomonas denitrificans is a gram-negative bacterium that can produce vitamin B12 under aerobic conditions. Recently, recombinant strains of P. denitrificans overexpressing a vitamin B12-dependent glycerol dehydratase (DhaB) were developed to produce 3-hydroxypropionic acid (3-HP) from glycerol. The recombinant P. denitrificans could produce 3-HP successfully under aerobic conditions without an exogenous supply of vitamin B12, but the 3-HP produced disappeared during extended cultivation due to the 3-HP degradation activity in this strain. This study developed mutant strains of P. denitrificans that do not degrade 3-HP. The following eight candidate enzymes, which might be responsible for 3-HP degradation, were selected, cloned, and studied for their activity in Escherichia coli: four (putative) 3-hydroxyisobutyrate dehydrogenases (3HIBDH), a putative 3-HP dehydrogenase (3HPDH), an alcohol dehydrogenase (ADH), and two choline dehydrogenases (CHDH). Among them, 3HIBDHI, 3HIBDHIV, and 3HPDH exhibited 3-HP degrading activity when expressed heterologously in E. coli. When 3hpdh alone or along with 3hibdhIV were disrupted from P. denitrificans, the mutant P. denitrificans exhibited greatly reduced 3-HP degradation activity that could not grow on 3-HP as the sole carbon and energy source. When the double mutant P. denitrificans Δ3hpdhΔ3hibdhIV was transformed with DhaB, an improved 3-HP yield (0.78 mol/mol) compared to that of the wild-type counterpart (0.45 mol/mol) was obtained from a 24-h flask culture. This study indicates that 3hpdh and 3hibdhIV (to a lesser extent) are mainly responsible for 3-HP degradation in P. denitrificans and their deletion can prevent 3-HP degradation during its production by recombinant P. denitrificans.  相似文献   

18.
A new ammonia-oxidizing strain, isolated from an aerobic biofilm in a domestic sewage-treatment system, was identified as a species of Nitrosomonas different from Nitrosomonas europaea. This strain had morphological features and growth characteristics typical of members of the genus Nitrosomonas. The G+C content of the DNA of this strain was 48.5 mol%, being lower than that of known strains of N. europaea. The extent of the homology between the DNA of this strain and that of other strains of N. europaea was less than 30%. After cells of this isolate, immobilized in a polyacrylamide gel, had been added to the aerobic reactor of a laboratory-scale sewage-treatment system, the concentration of ammonium nitrogen in the effluent decreased to 2 mg/l without the accumulation of nitrite, and removal of more than 70% of the nitrogen from the input sewage was achieved.  相似文献   

19.
ω-Transaminase (TA) catalyzed asymmetric syntheses of amines were carried out in the one enzyme systems with wild-type enzymes (S)-TA from Pseudomonas aeruginosa, (S)-TA from Paracoccus denitrificans and (R)-TA from Aspergillus terreus. The scope of amine donors and aromatic carbonyl substrates was thoroughly explored. Among the range of potential amino donors, 2-propylamine, 2-butylamine and 1-phenylethylamine were found as promising candidates, which gave superior conversions in the amination reactions compared to other donors. Various prochiral aromatic ketones were accepted as substrates by the investigated enzymes. In most cases, good to excellent conversions (up to 98%) to the amine products with excellent e.e.-values (>99.9% for (S) or (R)) were obtained by the action of a single enzyme and an appropriate amino donor. (S)-TA from Paracoccus denitrificans was found to accept bulky ketones, e.g. 1-indanone, α- and β-tetralone or 2-acetonaphthone, in the asymmetric amination. In some cases the enantiomeric excesses in the amination reactions were dependent on the amino donor. Moreover, the influence of the pH, temperature and cosolvents on the outcome of reactions was additionally investigated.  相似文献   

20.
The effects of 5,5-dimethyl-2,4-oxazolidinedione (DMO) and 2,4-dinitrophenol (DNP) on membrane vesicles of Micrococcus denitrificans were compared. DMO did not affect the ability of these vesicles to accumulate glycine in the presence of the substrate l-lactate. Both glycine transport and l-lactate oxidation were inhibited by DNP; the concentration of DNP required for inhibition of respiration was fortyfold higher than that required for inhibition of transport. Using the technique of equilibrium dialysis with membrane residues from which the lipid had been extracted, no binding of [14C]DMO to membrane protein was detected. However, [14C]DNP did bind to membrane protein. At 100 μm DNP, 12% of the [14C]DNP was bound, equivalent to 1.56 nmol/mg protein. The pH inside vesicles respiring on l-lactate was calculated from the distribution of [14C]DMO and was found not to differ from the pH of the suspending buffer. The mechanism of action of DNP on active transport in M. denitrificans vesicles appears not to involve proton conduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号