首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
RPA190, the gene coding for the largest subunit of yeast RNA polymerase A   总被引:33,自引:0,他引:33  
Yeast RNA polymerases are being extensively studied at the gene level. The entire gene encoding the largest subunit of RNA polymerase A, A190, was isolated and characterized in detail. Southern hybridization and gene disruption experiments showed that the RPA190 gene is unique in the haploid yeast genome and essential for cell viability. Nuclease S1 mapping was used to identify mRNA 5' and 3' termini. RPA190 encodes a polypeptide chain of 186,270 daltons in a large uninterrupted reading frame. A dot matrix comparison of the deduced amino acid sequence of subunit A190 with Escherichia coli beta' and cognate subunits B220 and C160 from yeast RNA polymerases B and C showed a conserved pattern of homology regions (I-VI). A potential DNA-binding site (zinc-binding motif) is conserved in the N-terminal region I. Remarkably, the A190 subunit does not harbor the heptapeptide repeated sequence present in the B220 subunit. The sequence of the A190 subunit diverges from B220 and C160 by the presence of two hydrophilic domains inserted between homology regions I and II, and V and VI. From their codon usage and third base pyrimidine bias, RNA polymerase genes RPA190, RPB220, RPC160, and RPC40 fall among yeast genes expressed at an average level. The RPA190 5'-flanking region contains features present in other polymerase genes that might function in regulation.  相似文献   

3.
4.
Rpa12p is a subunit of RNA polymerase I formed of two zinc-binding domains. The N-terminal zinc region (positions 1-60) is poorly conserved from yeast to man. The C-terminal domain contains an invariant Q.RSADE.T.F motif shared with the TFIIS elongation factor of RNA polymerase II and its archaeal counterpart. Deletions removing the N-terminal domain fail to grow at 34 degrees C, are sensitive to nucleotide-depleting drugs and become lethal in rpa14-Delta mutants lacking the non-essential RNA polymerase I subunit Rpa14p. They also strongly alter the immunofluorescent properties of RNA polymerase I in the nucleolus. Finally, they prevent the binding of Rpa12p to immunopurified polymerase I and impair a specific two-hybrid interaction with the second largest subunit. In all these respects, N-terminal deletions behave like full deletions. In contrast, C-terminal deletions retaining only the first N-terminal 60 amino acids are indistinguishable from wild type. Thus, the N-terminal zinc domain of Rpa12p determines its anchoring to RNA polymerase I and is the only critical part of that subunit in vivo.  相似文献   

5.
Two ribonuclease H activities have been found in yeast RNA polymerase A. The nuclease activities comigrated with subunits A49 (Mr = 49,000) and A40 (Mr = 40,000), after electrophoresis in a sodium dodecyl sulfate polyacrylamide gel containing [32P](rG)n . (dC)n as substrate. Both activities were also found, among other nucleases, in a high salt chromatin extract. Several lines of evidence suggest that the chromatin RNase H of 49,000 daltons (RNase H49) is the same protein as subunit A49. They co-migrate on sodium dodecyl sulfate-gel electrophoresis, have the same chromatographic properties, and dissociate simultaneously from RNA polymerase A. Fractions containing RNase H49 stimulate RNA synthesis by RNA polymerase A* lacking A49 and A34.5 subunits. Finally, limited proteolysis of the protein band having RNase H49 activity yields the characteristic fingerprint of the A49 subunit. This subunit, therefore, exists in two states: bound to chromatin and associated with RNA polymerase A. On the other hand, it is not yet clear whether the RNase H activity of 40,000 daltons, associated with RNA polymerase A, is due to the A40 subunit or whether it represents a trace contamination by a very active nuclease tightly bound to the enzyme.  相似文献   

6.
7.
8.
[Rpb1 and Rpb2] Mapping of the contact sites␣on two large subunits of the fission yeast Schizosaccharomyces pombe RNA polymerase II with two small subunits, Rpb3 and Rpb5, was carried out using the two-hybrid screening system in the budding yeast Saccharomyces cerevisiae. Rpb5 was found to interact with any fragment of Rpb1 that contained the region H, which is conserved among the subunit 1 homologues of all RNA polymerases, including the β' subunit of prokaryotic RNA polymerases. In agreement with the fact that Rpb5 is shared among all three forms of eukaryotic RNA polymerases, the region H of RNA polymerase I subunit 1 (Rpa190) was also found to interact with Rpb5. On the other hand, two-hybrid screening of Rpb2 fragments from RNA polymerase II indicated the presence of an Rpb3 contact site in the region H which is conserved among the subunit 2 homologues of all RNA polymerases, including the β subunit of prokaryotic RNA polymerases. Possible functions of the regions H in the subunits 1 and 2 are discussed. Received: 10 December 1997 / Accepted: 14 April 1998  相似文献   

9.
DNA-dependent RNA polymerase II is present in two forms, IIa and IIb, in germinating soybean. Form IIa is the dominant form of the enzyme in ungerminated embryos and appears to be a soluble enzyme. Form IIb increases in amount as germination progresses and is tightly bound to the chromatin template. The subunit structures of soybean RNA polymerases IIa and IIb are identical except for the molecular weights of their largest subunits which are 200,000 daltons and 170,000 daltons for IIa and IIb, respectively. The enzymes have seven common subunits: 142,000, 42,000, 26,000, 20,000, 16,000, 15,000, and 14,000 daltons.  相似文献   

10.
《Gene》1997,187(2):165-170
By means of the yeast two-hybrid system using the 40-kDa subunit of mouse RNA polymerase I, mRPA40, as the bait, we isolated a mouse cDNA which encoded a protein with significant homology in amino acid sequence to the 12.5-kDa subunit of Saccharomyces cerevisiae RNA polymerase II, B12.5 (RPB11). Specific antibody raised against the recombinant protein that was derived from the cDNA reacted with a 14-kDa polypeptide in highly purified mammalian RNA polymerase II and did not react with any subunit of RNA polymerase I or III. Moreover, the antibody co-immunoprecipitated the largest subunit of mouse RNA polymerase II. These results provide biochemical evidence that the cDNA isolated, named mRPB14, encodes a specific subunit of RNA polymerase II, and indicate that the subunit organization of the enzyme is conserved between yeast and mouse. A possible role of the α-motif [Dequard-Chablat, M., Riva, M., Carles, C. and Sentenac, A., J. Biol. Chem. 266 (1991) 15300–15307] in the protein-protein interaction between mRPA40 and mRPB14 is also discussed.  相似文献   

11.
We have cloned and sequenced a cDNA of 1766 base pairs in length encoding the 275 amino acids of hRPB 33, the third largest subunit of human RNA polymerase II. The DNA was isolated by screening of a human lambda gt11 cDNA library with oligonucleotides designed on the basis of the amino acid residue analysis of the bovine material. The hRPB 33 amino acid sequence is highly conserved between Saccharomyces cerevisiae and human. Overall, 45% of the amino acid residues are identical with the yeast homologue RPB 3, and 65% of the amino acids are identical in the two major conserved regions at residues 0-103 and 151-197. hRPB 33 is also homologous to yeast RPC 5. The amino acid sequence of hRPB 33 showed no obvious homology with bacterial RNA polymerase or with any of its sigma factors.  相似文献   

12.
13.
14.
15.
16.
17.
Larkin RM  Hagen G  Guilfoyle TJ 《Gene》1999,231(1-2):41-47
Arabidopsis thaliana contains at least four genes that are predicted to encode polypeptides related to the RPB5 subunit found in yeast and human RNA polymerase II. This subunit has been shown to be the largest subunit common to yeast RNA polymerases I, II, and III (RPABC27). More than one of these genes is expressed in Arabidopsis suspension culture cells, but only one of the encoded polypeptides is found in purified RNA polymerases II and III. This polypeptide has a predicted pI of 9.6, matches 14 of 16 amino acids in the amino terminus of cauliflower RPB5 that was microsequenced, and shows 42 and 53% amino acid sequence identity with the yeast and human RPB5 subunits, respectively.  相似文献   

18.
The subunits of purified yeast RNA polymerases I, II and III have been analyzed by two-dimensional polyacrylamide gel electrophoretic subunit mapping techniques. The results suggest that polymerases I and III have two subunits in common, the 41,000 and 20,000 dalton peptides, which are not present in polymerase III. The 14,500 dalton peptide by all criteria is identical in polymerases I, II and III. The 28,000 and 24,000 subunits appear identical in polymerases I and II but have different charge properties in polymerase III.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号