首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent years it has become increasingly clear that alpha, omega-dinucleotides act as extracellular modulators of various biological processes. P1,P4-diadenosine 5'-tetraphosphate (Ap4A) is the best characterized alpha,omega-dinucleotides and acts as an extracellular signal molecule by inducing the release of nitric oxide (NO) from bovine aortic endothelial cells (BAEC) (R. H. Hilderman, and E. F. Christensen (1998) FEBS Lett. 407, 320-324). However, the characteristics of Ap4A binding to endothelial cells have not been determined. In this report we demonstrate that Ap4A binds to a heterogeneous population of receptors on BAEC. Competition ligand-binding studies using various adenosine dinucleotides, guanosine dinucleotides, adenosine/guanosine dinucleotides, and synthetic P2 purinoceptor agonists and antagonists demonstrate that Ap4A binds to a receptor on BAEC that has a high affinity for some of the adenosine dinucleotides. The apparent IC50 values for Ap4A, Ap2A, and Ap3A are between 12 and 15 microM, while the apparent IC50 values for Ap5A and Ap6A are greater than 500 microM. Evidence is also presented which suggests that this receptor can be classified as a putative P4 purinoceptor. Competition studies also demonstrate that Ap4A binds at a lower affinity to a second class of binding sites.  相似文献   

2.
p1,p4-Diadenosine 5'-tetraphosphate (Ap4A) has been implicated as a modulator of blood vessel tone. We have recently demonstrated that the infusion of Ap4A into swine induces vasodilation (Hilderman et al., Am. J. Hypertension 10 (1997) 94A) and that Ap4A induces the release of nitric oxide (NO) from bovine aortic endothelial cells (BAEC) (Hilderman and Christensen, FEBS Lett. 427 (1998) 320-324). However, the interaction of Ap4A with endothelial cells is incompletely understood. Therefore, we determined the characteristics of [3H]-Ap4A binding to BAEC in normal and ATP-depleted cells. These binding studies demonstrate that the interaction of Ap4A with BAEC involves two distinct steps: an ATP independent step and a second ATP dependent step leading to internalization of Ap4A. The initial interaction of Ap4A with BAEC is not affected by either EGTA or iodoacetate; however, both agents block the second step. These data suggest that calcium ions and sulfhydryl groups are required for Ap4A internalization but not for an initial binding event.  相似文献   

3.
Adenine dinucleotides (ApnA) are extracellular signal molecules that are released from blood platelets, following stress, into the vascular system. The most abundant and best-characterized ApnA (Ap4A) interacts with a unique receptor on bovine aortic endothelial cells (BAEC) where it induces nitric oxide. Ap4A also interacts with P2 purinoceptors on BAEC to modulate Ca2+ mobilization and prostacyclin release; this behavior can be equally well explained by Ap4A being either a partial agonist to these receptors, or an antagonist in the presence of ATP contamination. To discern between these two possibilities, we have investigated the presence of such contaminants in ApnA preparations. The studies herein indicate that ApnAs (n = 3-6) contain ATP impurities; thus, when characterizing the ApnA interaction with ATP-binding sites, investigators must assure that the response elicited is not partly due to an ATP impurity. We here provide a means for detecting and estimating ATP impurities within Ap4A preparations while also eliminating them; the level of this contamination is estimated to be as low as 0.2%. We applied our method to distinguish the true effect of Ap4A at P2 purinoceptors; our findings are consistent with Ap4A acting as a partial agonist to these receptors. We also applied our method to characterizing the ApnA interaction with luciferase, and found that decontaminated ApnA (n = 4-6) are weak substrates for luciferase.  相似文献   

4.
Extracellular adenine dinucleotides are modulators of blood vessel tone. We have previously demonstrated that Ap(2)A and Ap(4)A induce the synthesis of nitric oxide (NO) from bovine aortic endothelial cells (BAEC) while Ap(3)A and Ap(5)A do not [FEBS Lett. 427 (1998) 320; Arch. Biochem. Biophys. 364 (1999) 280.]. In this communication we determine the effect of Ap(x)As (x=2-5) on prostacyclin (PGI(2)) synthesis and Ca(2+) mobilization in BAEC. Ap(2)A and Ap(4)A significantly enhanced the synthesis of PGI(2) while Ap(3)A and Ap(5)A do not. These data support the notion that Ap(2)A and Ap(4)A are vasodilators. All four dinucleotides significantly enhanced Ca(2+) mobilization over basal levels. Ap(5)A and Ap(3)A enhanced 2.0 and 1.6 times more Ca(2+) release than Ap(4)A, respectively. Since neither Ap(5)A nor Ap(3)A enhanced the synthesis of either PGI(2) or NO but did mobilize Ca(2+), these data support the hypothesis that in BAEC Ca(2+) release is localized or compartmentalized.  相似文献   

5.
Adenylated dinucleotides (Ap(n)A) are regulatory molecules that control various cellular processes. A very likely intracellular target for Ap(4)A are enzymes that require ATP as either substrate or modulator. We report the results of new biochemical studies aimed at characterizing the Ap(4)A interaction with firefly luciferase, by using the luminometric and thin layer chromatography techniques. The data presented herein demonstrate that Ap(4)A is a noncompetitive inhibitor for the ATP-induced luminescence. These results together with our previous findings that Ap(4)A is a luciferase substrate [Nucleosides Nucleotides Nucleic Acids 23 (2004) in press.] support the notion that, similar to its interaction with P(2) receptors, Ap(4)A also has a dual interaction with luciferase. Other Ap(n)As (n = 2, 5, and 6) also inhibited the ATP-luciferase interaction. Since Ap(n)As may have similar interactions with other intracellular ATP-requiring enzymes, the study presented herein validates ulterior investigations of the Ap(n)A interaction with such enzymes, and opens the way to a better understanding of their intracellular roles.  相似文献   

6.
Studies of L-arginine transport in bovine aortic endothelial cells   总被引:3,自引:0,他引:3  
We have previously demonstrated that p(1),p(4)-diadenosine 5'-tetraphosphate induces the release of NO and modulates the uptake of L-arginine by bovine aortic endothelial cells (BAEC) [Hilderman, R. H., and Christensen, E. F. (1998) FEBS Lett. 407, 320-324; Hilderman, R. H., Casey, T. E., and Pojoga, L. H. (2000) Arch. Biochem. Biophys. 375, 124-130]. In this communication we characterize the uptake of L-Arg by BAEC. L-Arg is transported into BAEC by at least two different transporter systems. One transporter system is protein synthesis dependent, and L-Arg transported by this system is incorporated into proteins. The second transporter system involved in L-Arg uptake is protein synthesis independent, and uptake occurs by facilitated diffusion. The L-Arg transported by facilitated diffusion is metabolized into L-argininosuccinate. Homologous and heterologous competition uptake studies were performed using a fixed concentration of radiolabeled L-Arg, L-lysine, and L-leucine with varying concentrations of competing nonradiolabeled amino acids. The results of these competition uptake studies are consistent with the protein-synthesis-dependent uptake of L-Arg taking place through a transporter system that is highly specific for L-Arg and with the facilitated diffusion uptake taking place through a transporter that is specific for L-Arg and L-Leu.  相似文献   

7.
Diadenosine pentaphosphate and diadenosine hexaphosphate have been isolated in human platelets and have been postulated to play an important role in the control of vascular tone. Here we describe the isolation and identification of diadenosine heptaphosphate from human platelets. Dinucleoside polyphosphates were concentrated by affinity chromatography from a nucleotide-containing fraction from deproteinated human platelets. Dinucleoside polyphosphates were purified by anion-exchange and reversed phase high performance liquid chromatography to homogeneity. Analysis of one of these fractions with matrix-assisted laser desorption/ionization mass spectrometry revealed a molecular mass of 1076.4 (1077.4 = [M + H](+)) Da. UV spectroscopic analysis of this fraction showed the spectrum of an adenosine derivative. Comparison of the postsource decay matrix-assisted laser desorption/ionization mass spectrum of the fraction minus that of diadenosine heptaphosphate (Ap(7)A) demonstrated that the isolated substance was identical to Ap(7)A. The identity of the retention times of the authentic and the isolated compound confirmed this result. Enzymatic analysis demonstrated an interconnection of the phosphate groups with the adenosines in the 5'-positions of the riboses. With thrombin-induced platelet aggregation, Ap(7)A is released from the platelets into the extracellular space. The vasoconstrictive action of Ap(7)A on the vasculature of the isolated perfused rat kidney Ap(7)A was slightly less than that of Ap(6)A. The threshold of the vasoconstrictive action of Ap(7)A was 10(-5) mol/liter. The vasoconstrictive effect was abolished by suramin and pyridoxal phosphate 6-azophenyl-2', 4'-disulfonic acid, suggesting an activation of P(2x) receptors. Furthermore, Ap(7)A inhibits ADP-induced platelet aggregation. Thus, the potent vasoconstrictor Ap(7)A derived from human platelets, like other diadenosine polyphosphates, may play a role in the regulation of vascular tone and hemostasis.  相似文献   

8.
Tandem synthetic-biosynthetic procedures were used to prepare two novel fluorescent labelled affinity probes for diadenosine-5',5'-P1,P4-tetraphosphate (Ap4A)-binding studies. These compounds (dial-mant-Ap4A and azido-mant-Ap4A) are shown to clearly distinguish known Ap4A-binding proteins from Escherichia coli (LysU and GroEL) and a variety of other control proteins. Successful labelling of chaperonin GroEL appears to be allosteric with respect to the well-characterized adenosine 5'-triphosphate (ATP)-binding site, suggesting that GroEL possesses a distinct Ap4A-binding site.  相似文献   

9.
Heat-shocked organisms are known to produce not only "heat shock proteins" but also diadenosine tetraphosphate (Ap4A) and related compounds that may act as "alarmones" that alert the cell to the onset of metabolic stress. We found that Ap4A is synthesized in chicken erythrocytes and that the Ap4A level in the whole blood of heat-stressed birds increases about 10-fold. In searching for alarmone receptors, we found that the diadenosine polyphosphates bind preferentially with high affinity to the deoxy conformation of hemoglobin in a ratio of one/tetramer. The binding affinity of this new class of effectors of hemoglobin function is directly related to the number of phosphates which bridge the nucleotide moieties, with the most dramatic in vitro effect on oxygen affinity being shown by Ap6A. Decreasing effects are brought about by diadenosine penta-, tetra-, tri-, di-, and monophosphates. The association constant for Ap4A binding to deoxygenated human hemoglobin at pH 7.25 is 26 microM-1, close to that for 2,3-diphosphoglycerate. At 100-fold excess over heme, Ap4A increases the P50 of stripped Hb A in 0.05 M HEPES buffer at pH 7.25, 20 degrees C, from 0.85 to 6.03 mm Hg. The binding, which markedly enhances the Bohr effect, involves the beta chain anion-binding site. The kinetics of both ligand binding and dissociation are affected, with a greater quantitative effect on the oxygen dissociation process. Although the low concentration of the diadenosine polyphosphates in red cells precludes a physiologically significant modulation of oxygen delivery, competition with the ATP- and NAD(P)H-binding sites on hemoglobin or regulatory enzymes may prove to be of adaptive significance.  相似文献   

10.
The effect of virus infection on the intracellular concentration of the proposed stress alarmone P1P4-bis(5'-adenosyl) tetraphosphate (Ap4A) has been examined in Vero cells. Compared with exposure to 0.8 mM-Cd2+, which causes a 30-fold increase in Ap4A, infection with simian virus 40 and poliovirus causes only a 2-fold increase, whereas herpes simplex virus type 1 results in a decrease in Ap4A during the course of the infection.  相似文献   

11.
GABAergic terminals from rat midbrain characterized by immunolocalization of glutamic acid decarboxylase and/or the vesicular inhibitory amino acid transporter respond to ATP or P(1),P(5)-di(adenosine-5') pentaphosphate (Ap(5)A) with an increase in the intrasynaptosomal calcium concentration measured by a microfluorimetric technique in single synaptic terminals. The ATP response is mediated through the activation of P2X receptors with an abundant presence of P2X(3) subunits. Ap(5)A, however, exerts its effects by acting through a different receptor termed the dinucleotide receptor. Both receptors, once activated in the presence of extrasynaptosomal calcium, induce a concentration-dependent GABA release from synaptosomal populations with EC(50) values of 16 and 20 microM for ATP and Ap(5)A, respectively. Specific inhibition of GABA release is obtained with pyridoxal phosphate-6-azophenyl-2',4'-disulphonic acid (80 microM) on the ATP effect and with P(1),P(5)-di(inosine-5') pentaphosphate (100 nM) on the dinucleotide receptor.  相似文献   

12.
Stimulation of a Ca(2+)-induced Ca(2+)-release channel from skeletal muscle sarcoplasmic reticulum by various adenosine(5')oligophospho(5')adenosines (ApnA, n = 2-6) by a rapid quenching technique using radioactive calcium was studied. Ap4A, Ap5A and Ap6A, as well as adenosine 5'-[beta, gamma-methylene]triphosphate (AdoPP [CH2]P), a non-hydrolyzable ATP analogue, stimulated the Ca(2+)-release channel, whereas Ap2A and Ap3A had no effect. At a concentration of 0.5 mM, the order of stimulation was AdoPP[CH2]P less than Ap4A less than Ap5A much less than Ap6A. As well as having the highest affinity (0.44 mM for half-maximal stimulation), Ap6A showed an extraordinarily high Hill coefficient of 3.3 (1.9 for AdoPP[CH2]P, 2.1 for Ap5A). The stimulating effect of Ap6A was reversible, yet its dissociation proceeded very slowly. Stimulation of Ca2+ release by Ap6A was counteracted by Mg2+ and ruthenium red. A 2',3'-dialdehyde derivative of Ap6A, which is a chemical probe for amino groups, stimulated irreversibly the Ca(2+)-release channel and modified some high-molecular-mass sarcoplasmic reticulum proteins, possibly including the channel protein. Our data suggest that Ap6A stimulates the Ca2+ channel by binding to the activation site of the channel subunit and simultaneously preventing the spontaneous decay of the Ca2+ channel by keeping together two of the four channel subunits by bridging them with its two adenosine groups.  相似文献   

13.
The effect of diadenosine 5', 5"'-P1,P4-tetraphosphate (Ap4A) on the time course and acceptors of poly(ADP-ribose) synthesis was studied in undamaged and N-methyl-N'-nitro-N-nitrosoguanidine-treated human lymphocytes. Analysis of protein acceptors of poly(ADP-ribose) revealed that treatment with Ap4A stimulated ADP-ribosylation of bands at molecular weights of 96,000, 79,000, and 62,000. Pulse-chase studies showed that these bands were produced as a result of an effect of Ap4A on the processing of ADP-ribosylated proteins rather than on the synthesis of newly ADP-ribosylated proteins. By incubating permeabilized cells in the absence or presence of Ap4A and purified poly(ADP-ribose) polymerase auto-ADP-ribosylated with [32P]NAD+, we showed that the Mr = 96,000, 79,000, and 62,000 bands were derivatives of the prelabeled enzyme. Our results indicate that normal human lymphocytes process auto-ADP-ribosylated poly(ADP-ribose) polymerase to specific lower molecular weight products and that this processing is stimulated by Ap4A.  相似文献   

14.
Six new methylenephosphonate analogues of P1P4-bis-(5',5'-adenosyl) tetraphosphate, Ap4A, having P2-P3 carbon bridges CF2, CCl2 and CH2CH2 or P1-P2 and P3-P4 carbon bridges CF2, CCl2 and CH2CH2 in the tetraphosphate chain, were examined as substrates or inhibitors for two specific Ap4A-degrading enzymes: (asymmetrical) Ap4A hydrolase (EC 3.6.1.17) from yellow-lupin seeds and (symmetrical) Ap4A hydrolase (EC 3.6.1.41) from Escherichia coli. All analogues in which the central oxygen atom was replaced by a stable carbon bridge were hydrolysed by the asymmetrical hydrolase (CF2 greater than CCl2 greater than O greater than CHBr greater than CH2 greater than CH2CH2). As expected, these analogues were not hydrolysed by the symmetrical hydrolase, which was also unable to act on analogues having P1-P2 and P3-P4 carbon bridges.  相似文献   

15.
DNA synthesis and adenosine(5')tetraphosphate(5')adenosine (Ap4A) levels decrease in cells treated with EDTA. The inhibitory effect of EDTA can be reversed with micromolar amounts of ZnCl2. ZnCl2 in micromolar concentrations also inhibits Ap4A hydrolase and stimulates amino acid-dependent Ap4A synthesis, suggesting that Zn2+ is modulating intracellular Ap4A pools. Serum addition to G1-arrested cells enhances uptake of Zn, whereas serum depletion leads to a fivefold decrease of the rates of zinc uptake. These results are discussed by regarding Zn2+ as a putative 'second messenger' of mitogenic induction and Ap4A as a possible 'third messenger' and trigger of DNA synthesis.  相似文献   

16.
S P Harnett  G Lowe  G Tansley 《Biochemistry》1985,24(12):2908-2915
The activation of L-phenylalanine by yeast phenylalanyl-tRNA synthetase using adenosine 5'-[(S)-alpha-17O,alpha,alpha-18O2]triphosphate is shown to proceed with inversion of configuration at P alpha of ATP. This observation taken together with the lack of positional isotope exchange when adenosine 5'-[beta,beta-18O2]triphosphate is incubated with the enzyme in the absence of phenylalanine and in the presence of the competitive inhibitor phenylalaninol indicates that activation of phenylalanine occurs by a direct "in-line" adenylyl-transfer reaction. In the presence of Zn2+, yeast phenylalanyl-tRNA synthetase also catalyzes the phenylalanine-dependent hydrolysis of ATP to AMP and the synthesis of P1,P4-bis(5'-adenosyl) tetraphosphate (Ap4A). With adenosine 5'-[(S)-alpha-17O,alpha,alpha-18O2]triphosphate, the formation of AMP and Ap4A is shown to occur with inversion and retention of configuration, respectively. It is concluded that phenylalanyl adenylate is an intermediate in both processes, Zn2+ promoting AMP formation by hydrolytic cleavage of the C-O bond and Ap4A formation by displacement at phosphorus of phenylalanine by ATP.  相似文献   

17.
Di(adenosine-5')oligophosphate nucleotides of general structure ApnA (n = 2-6) inhibited phosphorylation of immunoglobulin G from tumor-bearing rabbits (TBR IgG) by pp60src protein kinase purified from Rous sarcoma virus-transformed rat tumor cells. Ap4A, a nucleotide associated with eukaryotic cell proliferation, was one of the most effective inhibitors in the series, causing 50% inhibition of TBR IgG phosphorylation at 15 microM. Ap4A inhibited pp60src-dependent phosphorylation of TBR IgG in solution and immunoprecipitates, as well as the phosphorylation of tubulin, microtubule-associated proteins, and vinculin. Under similar assay conditions, Ap4A did not inhibit phosphorylation of histone H2b by cAMP- or cGMP-dependent protein kinases. Ap4A appears to interact noncovalently with the enzyme, because removal of pp60src by immunoprecipitation from solutions containing Ap4A restored activity to uninhibited levels. A 100-fold increase in ATP (4-400 nM) caused a 13-fold increase in the 50% inhibitory concentration of Ap4A (2.5-33 microM), consistent with the interpretation that Ap4A competes for an ATP-binding site on the pp60src molecule. The simplest explanation of these results is that Ap4A binds to the phosphodonor site for ATP.  相似文献   

18.
Novel analogues of P1,P4-bis(5'-adenosyl) tetraphosphate, Ap4A (1), have been prepared with sulphur substituents at P1 and P4 and either oxygen or methylene bridges at the P2,P3-position. Separation of three isomers of the ApspCH2ppsA species has been achieved by a combination of mplc and hplc and the Rp,Rp, Rp,Sp, and Sp,Sp diastereoisomers identified on the basis of selective enzymatic hydrolysis using snake venom phosphodiesterase. Each of these three isomers is a strong competitive inhibitor of the specific Ap4Aase from Artemia and is highly resistant to the asymmetric cleavage normally catalysed by this enzyme.  相似文献   

19.
Asymmetrically cleaving diadenosine 5',5"'-P(1),P(4)-tetraphosphate (Ap4A) hydrolase activity has been detected in extracts of adult Caenorhabditis elegans and the corresponding cDNA amplified and expressed in Escherichia coli. As expected, sequence analysis shows the enzyme to be a member of the Nudix hydrolase family. The purified recombinant enzyme behaves as a typical animal Ap4A hydrolase. It hydrolyses Ap4A with a K(m) of 7 microM and k(cat) of 27 s(-1) producing AMP and ATP as products. It is also active towards other adenosine and diadenosine polyphosphates with four or more phosphate groups, but not diadenosine triphosphate, always generating ATP as one of the products. It is inhibited non-competitively by fluoride (K(i)=25 microM) and competitively by adenosine 5'-tetraphosphate with Ap4A as substrate (K(i)=10 nM). Crystals of diffraction quality with the morphology of rectangular plates were readily obtained and preliminary data collected. These crystals diffract to a minimum d-spacing of 2 A and belong to either space group C222 or C222(1). Phylogenetic analysis of known and putative Ap4A hydrolases of the Nudix family suggests that they fall into two groups comprising plant and Proteobacterial enzymes on the one hand and animal and archaeal enzymes on the other. Complete structural determination of the C. elegans Ap4A hydrolase will help determine the basis of this grouping.  相似文献   

20.
Synthesis of Sp and Rp diastereomers of Ap4A alpha S has been characterized in two enzymatic systems, the lysyl-tRNA synthetase from Escherichia coli and the Ap4A alpha, beta-phosphorylase from Saccharomyces cerevisiae. The synthetase was able to use both (Sp)ATP alpha S and (Rp)ATP alpha S as acceptors of adenylate thus yielding corresponding monothioanalogues of Ap4A,(Sp) Ap4A alpha S and (Rp)Ap4A alpha S. No dithiophosphate analogue was formed. Relative synthetase velocities of the formation of Ap4A,(Sp) Ap4A alpha S and (Rp)Ap4A alpha S were 1:0.38:0.15, and the computed Km values for (Sp)ATP alpha S and (Rp)ATP alpha S were 0.48 and 1.34 mM, respectively. The yeast Ap4A phosphorylase synthesized (Sp)Ap4A alpha S and (Rp)Ap4A alpha S using adenosine 5'-phosphosulfate (APS) as source of adenylate. The adenylate was accepted by corresponding thioanalogues of ATP. In that system, relative velocities of Ap4A, (Sp)Ap4A alpha S and (Rp)Ap4A alpha S formation were 1:0.15:0.60. The two isomeric phosphorothioate analogues of Ap4A were tested as substrates for the following specific Ap4A-degrading enzymes: (asymmetrical) Ap4A hydrolase (EC 3.6.1.17) from yellow lupin (Lupinus luteus) seeds hydrolyzed each of the analogues to AMP and the corresponding isomer of ATP alpha S; (symmetrical) Ap4A hydrolase (EC 3.6.1.41) from E. coli produced ADP and the corresponding diastereomer of ADP alpha S; and Ap4A phosphorylase (EC 2.7.7.53) from S. cerevisiae cleaved the Rp isomer only at the unmodified end yielding ADP and (Rp)ATP alpha S whereas the Sp isomer was degraded non-specifically yielding a mixture of ADP, (Sp)ADP alpha S, ATP and (Sp)ATP alpha S. For all the Ap4A-degrading enzymes, the Rp isomer of Ap4A alpha S appeared to be a better substrate than its Sp counterpart; stereoselectivity of the three enzymes for the Ap4A alpha S diastereomers is 51, 6 and 2.5, respectively. Basic kinetic parameters of the degradation reactions are presented and structural requirements of the Ap4A-metabolizing enzymes with respect to the potential substrates modified at the Ap4A-P alpha are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号