首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The leaf ultrastructure of NADP-malic enzyme type C4 species possessing different anatomical features in the Cyperaceae was examined: types were the Rhynchosporoid type, a normal Kranz type in which mesophyll cells are adjacent to Kranz cells, and Fimbristyloid and Chlorocyperoid types, unusual Kranz types in which nonchlorophyllous mestome sheath intervenes between the two types of green cells. They show structural characteristics basically similar to the NADP-malic enzyme group of C4 grasses, that is, centrifugally located chloroplasts with reduced grana and no increase of mitochondrial frequency in the Kranz cells. However, the Kranz cell chloroplasts of the Fimbristyloid and Chlorocyperoid types exhibit convoluted thylakoid systems and a trend of extensive development of peripheral reticulum, although those of the Rhynchosporoid type do not possess such particular membrane systems. The suberized lamella, probably a barrier for CO2 diffusion, is present in the Kranz cell walls of the Rhynchosporoid type and in the mestome sheath cell walls of the other two types, and tightly surrounds the Kranz cells (sheaths) that are the sites of the decarboxylation of C4 acids. These ultrastructural features are discussed in relation to C4 photosynthetic function.  相似文献   

2.
Grasses (Poaceae) are the largest family of vascular plants in Burkina Faso with 254 species. In the savannahs they are the most important family in terms of abundance and species richness, in other habitats, such as gallery forests, there are only few species. On the country scale there is a change in growth form: while in the Sahelian north most grasses are small therophytes, the Sudanian south is characterized by tall, often perennial grasses. To analyse these patterns in detail, we compiled a database on grass occurrences and used it in an ecological niche modelling approach with the programme Maxent to obtain country‐wide distribution models. Secondly we used data on photosynthetic type, height, leaf width and growth form to aggregate the species distributions and quantified the relative importance of functional groups per grid cell. Pronounced latitudinal differences could be shown for life forms, photosynthesis and size: the drier north is characterized by smaller, mainly therophytic grasses with a high share of C4 NAD‐ME photosynthesis, while the more humid south is characterized by tall, often hemicryptophytic grasses with C4 NADP‐ME photosynthesis. For leaf width, no clear country‐wide patterns could be observed, but local differences with more broad‐leaved grasses in humid areas.  相似文献   

3.
Both C3 and C4 photosynthetic pathways and smoke-released seed dormancy occur among grasses. C4 species evolved from C3 species as seasonality and fire frequency increased and might therefore imply that their smoke sensitivity increased. I searched the worldwide literature for reports on germination responses among grasses, whose photosynthetic pathway was known, to treatment by smoke. Data were obtained for 217 species and 126 genera. While subfamilies tended to be C3 (Pooideae), C4 (Chloridoideae) or a mixture (Panicoideae), a beneficial smoke response was independent of their photosynthetic pathway. The only exceptions were Danthonioideae (C3, non-smoke responsive) and Triodia (C4, smoke responsive). One third of both C3 and C4 genera were smoke responsive. Even within genera, 90% of species showed contrasting smoke responses, confirming that smoke sensitivity is rarely taxonomically constrained. Data on photosynthetic pathway, climate, fire regime and vegetation were compiled for 15 regions that formed four distinct groups: 1) In warm climates with aseasonal rainfall, C4 grasses are moderately better represented, with crown fires and limited smoke responses. 2) In cool regions, most species are C3, with surface-crown fires and lack smoke responses. 3) In warm regions with summer rain (savannas), most species are C4, with surface fires and lack smoke responses. 4) In Mediterranean-climate regions with summer drought, most species are C3, with crown fires and smoke-released dormancy. Thus, even though C3 and C4 grasses are equally capable of expressing smoke sensitivity, their response depends on the region’s climate and fire regime that also dictate which photosynthetic pathway dominates.  相似文献   

4.
Abstract. Morpho-fimctional features of perennial grasses in South American savannas are considered as adaptive strategies to cope with stress and disturbance factors of savanna environments. The tussock growth form, annual patterns of vegetative growth and reproductive phenology, allocation of carbon and nutrients, and accumulation of standing dead phytomass at the end of the dry season, are discussed in relation to water economy, resistance to drought, photosynthetic rates, growth rhythms, regrowth after drought and fire, seasonal translocation of critical nutrients and carbohydrates, and the total nutrient budget of the grass layer. Different strategies combining various morphological patterns, phenological alternatives and mechanisms for resisting drought and fire exist within the grass flora of each savanna community. The lack of adaptive responses to grazing by large herbivores is a major distinction from African savanna grasses. Many African grasses, either introduced in pastures or colonizing disturbed savannas, do show positive responses to defoliation, including compensatory growth and enhanced photosynthetic rates. Some guidelines for further research are suggested in order to disclose the mechanisms underlying this different behaviour of native and introduced savanna grasses.  相似文献   

5.
An ultrastructural transmission electron microscope (TEM) study of fossil leaf cuticles from the Jurassic pteridosperm Komlopteris nordenskioeldii (Nathorst) Barbacka from the Mecsek Mountains (South Hungary) was conducted. Remnants of cuticles of leaves originating from so-called "sun and shade" environments were sectioned with a diamond knife, transversally as well as longitudinally. Although the present study showed a simple type of cuticle in this pteridosperm, differences were observed in the occurrence of its components, such as electron lucent amorphous material and various densities of granules, which give rise to different zones. The included fibrilous elements appeared to be made of aggregated and aligned granules, equivalent in size and electron density to nearby non-fibrilous granular regions. The combinations of these ultrastructural features allow distinctions between four types of cuticle: sun upper, sun lower, shade upper and shade lower. Considering the distinction made earlier in two types of cuticle and supposed to be related to sun and shade on the basis of macroscopical and microscopical features, four types only on the basis of differences in thickness, the present study reinforces the distinctions with ultrastructural microcharacteristics. As this study shows the variations in ultrastructure of cuticle among the four types, the differences observed may reveal the great sensitivity of some plants to environment. At the same time, it points out the importance, in ultrastructural studies of cuticles, of studying a number of samples for one taxon.  相似文献   

6.
Enigmatic morphological features of the formation and fate of "dark" (hyper-basophilic, hyper-argyrophilic and hyper-electrondense) neurons suggest that the mechanical work causing their dramatic shrinkage (whole-cell ultrastructural compaction) is done by a previously "unknown" ultrastructural component residing in the spaces between their "known" (i.e. visible in the conventional transmission electron microscopy) ultrastructural constituents. Embedment-free section electron microscopy revealed in these spaces the existence of a continuous network of gel microdomains, which is embedded in a continuous network of fluid-filled lacunae. We gathered experimental facts suggesting that this gel network is capable of a volume-reducing phase-transition (an established physico-chemical phenomenon), which could be the motor of the whole-cell ultrastructural compaction. The present paper revisits our relevant observations and speculates how such a continuous whole-cell gel network can do both whole-cell and compartmentalized mechanical work.  相似文献   

7.
J. C. Vogel  A. Fuls  A. Danin 《Oecologia》1986,70(2):258-265
Summary The relation between photosynthetic pathway and habitat of the grass species recorded in the desert regions of Sinai, Negev, and Judea was investigated. The climatic conditions and micro-environments in the study area vary considerably, and the distribution of the various species is found to conform to specific patterns which reveal the adaptive advantages of the different photosynthetic pathways. There is also a distinct correlation between the phytogeographic origin of the grass species and the photosynthetic pathways that they utilize.The survey shows that the majority of the grass species in the region are of the C3 type and all except one of these species belong to the Holarctic domain. This is in accordance with the fact that the region forms part of the Mediterranean winter rainfall regime and that C3 species have an adaptive advantage where minimum temperatures are low during the winter growing season.The occurence of C4 species increases with decreasing rainfall and they dominate in those districts where temperatures are high throughout the year. These C4 grasses are of both Holarctic and Palaeotropic origin according to the classification adopted here, but they are essentially all elements of the Saharo-Arabian, Irano-Turanian, Sudanian, or Tropical phytogeographic regions and are not typical of the Mediterranean or Euro-Siberian floras. The plants with multi-regional distributions that occur in Mediterranean communities may well be intrusive.Analysis of the three subtypes of the C4 species suggests that the malate-forming NADP-me grasses grow where water stress is not a dominating factor, while the aspartateforming NAD-me grasses are more successful under xeric conditions. The PEP-ck species are not abundant and form an intermediate group between the NADP-me and NAD-me subtypes.  相似文献   

8.

Background and Aims

Inflorescence forms of panicoid grasses (Panicoideae s.s.) are remarkably diverse and they look very labile to human eyes; however, when performing a close inspection one can identify just a small subset of inflorescence types among a huge morphospace of possibilities. Consequently, some evolutionary constraints have restricted, to some extent, the diversification of their inflorescence. Developmental and genetic mechanisms, the photosynthetic type and plant longevity have been postulated as candidate constraints for angiosperms and panicoids in particular; however, it is not clear how these factors operate and which of these have played a key role during the grass inflorescence evolution. To gain insight into this matter the macroevolutionary aspects of panicoid inflorescences are investigated.

Methods

The inflorescence aspect (lax versus condensed), homogenization, truncation of the terminal spikelet, plant longevity and photosynthetic type were the traits selected for this study. Maximum likelihood and Bayesian Markov chain Monte Carlo methods were used to test different models of evolution and to evaluate the existence of evolutionary correlation among the traits. Both, models and evolutionary correlation were tested and analysed in a phylogenetic context by plotting the characters on a series of trees. For those cases in which the correlation was confirmed, test of contingency and order of trait acquisition were preformed to explore further the patterns of such co-evolution.

Key Results

The data reject the independent model of inflorescence trait evolution and confirmed the existence of evolutionary contingency. The results support the general trend of homogenization being a prerequisite for the loss of the terminal spikelet of the main axis. There was no evidence for temporal order in the gain of homogenization and condensation; consequently, the homogenization and condensation could occur simultaneously. The correlation between inflorescence traits with plant longevity and photosynthetic type is not confirmed.

Conclusions

The findings indicate that the lability of the panicoid inflorescence is apparent, not real. The results indicate that the history of the panicoids inflorescence is a combination of inflorescence trait contingency and order of character acquisition. These indicate that developmental and genetic mechanisms may be important constraints that have limited the diversification of the inflorescence form in panicoid grasses.Key words: Inflorescence, morphology, evolution, panicoids, Panicoideae, Poaceae  相似文献   

9.
Summary Leaf blades of 42 grasses (Poaceae) have been examined ultrastructurally for the occurrence of a suberized lamella in walls of parenchymatous bundle sheaths and PCR (= Kranz) sheaths in both large and small vascular bundles. The sample includes species from a range of major grass taxa, and represents all photosynthetic types found in the grasses. Three grasses with unusual C4 leaf anatomy were also included:Alloteropsis semialata, Aristida biglandulosa, Arundinella nepalensis. The presence of a suberized lamella in PCR cell walls was perfectly correlated with photosynthetic type. All PEP-carboxykinase type and NADP-malic enzyme type C4 species examined possessed a suberized lamella in outer tangential and radial walls, but with variable presence in inner tangential walls. PCR cells of bothAlloteropsis semialata andArundinella nepalensis also possessed a suberized lamella. A lamella was totally absent from parenchymatous bundle sheath cells of the C3 species examined (5 spp.) and ofPanicum milioides, a C3-C4 intermediate. It was also absent from PCR cells of NAD-malic enzyme type C4 species (14 spp.) andAristida biglandulosa. The results are discussed in relation to the leakage of CO2 from PCR cells, and to differences between C4 types in 13C values, chloroplast position in PCR cells, and other anatomical characteristics.  相似文献   

10.
Grasslands account for a large proportion of global terrestrial productivity and play a critical role in carbon and water cycling. Within grasslands, photosynthetic pathway is an important functional trait yielding different rates of productivity along environmental gradients. Recently, C3-C4 sorting along spatial environmental gradients has been reassessed by controlling for confounding traits in phylogenetically structured comparisons. C3 and C4 grasses should sort along temporal environmental gradients as well, resulting in differing phenologies and growing season lengths. Here we use 10 years of satellite data (NDVI) to examine the phenology and greenness (as a proxy for productivity) of C3 and C4 grass habitats, which reflect differences in both environment and plant physiology. We perform phylogenetically structured comparisons based on 3,595 digitized herbarium collections of 152 grass species across the Hawaiian Islands. Our results show that the clade identity of grasses captures differences in their habitats better than photosynthetic pathway. Growing season length (GSL) and associated productivity (GSP) were not significantly different when considering photosynthetic type alone, but were indeed different when considering photosynthetic type nested within clade. The relationship between GSL and GSP differed most strongly between C3 clade habitats, and not between C3-C4 habitats. Our results suggest that accounting for the interaction between phylogeny and photosynthetic pathway can help improve predictions of productivity, as commonly used C3-C4 classifications are very broad and appear to mask important diversity in grassland ecosystem functions.  相似文献   

11.
Summary A study was made on the morphology and ultrastructure of Chlorogloea fritschii at different growth stages and under various environmental conditions. The environmental effects tested were a comparison of various light intensities, and the use of media, one with, and one without, a source of combined nitrogen. Both filamentous and endospore stages have the general ultrastructural features typical of a blue-green alga.The most marked differences found were in the arrangement of lamellae. These run parallel to the cell wall in young filaments, particularly in those grown at low light intensities. At the endospore stage these are much more scattered in arrangement.Two striking variations in this pattern were found. One cell type, possibly a spore, showed, along with other interesting features, marked reticulation of the lamellae. Material subcultured in the dark with sucrose for 3 years had the lamellae scattered throughout the cell.Differences were found also in the abundance of -granules (probable polyglucoside bodies). These differences could to a certain extent be correlated with the growth conditions used.A brief comparison of Chlorogloea with other blue-green algae is included. Based on this, tentative hypotheses are presented concerning correlations between ultrastructural features and taxonomic groupings.  相似文献   

12.
Recent advances in genomics open promising opportunities to investigate adaptive trait evolution at the molecular level. However, the accuracy of comparative genomic studies strongly relies on the taxonomic coverage, which can be insufficient when based solely on a few completely sequenced genomes. In particular, when distantly-related genomes are compared, orthology of some genes can be misidentified and long branches of the phylogenetic reconstructions make inappropriate positive selection tests, as recently exemplified with investigations on the evolution of the C4 photosynthetic pathway in grasses. Complementary studies addressing the diversification of multigene families in a broad taxonomic sample can help circumvent these issues.  相似文献   

13.
? Premise of the study: The grass subfamily Anomochlooideae is phylogenetically significant as the sister group to all other grasses. Thus, comparison of their structure with that of other grasses could provide clues to the evolutionary origin of these characters. ? Methods: We describe the structure, embryology, and development of the flower and partial inflorescence of the monotypic Brazilian grass Anomochloa marantoidea. We compare these features with those of other early-divergent grasses such as Pharus and Streptochaeta and closely related Poales such as Ecdeiocolea. ? Key results: Anomochloa possesses several features that are characteristic of Poaceae, notably a scutellum, a solid style, reduced stamen number, and an ovary with a single ovule that develops into a single indehiscent fruit. Interpretation of floral patterning in Anomochloa is problematic because the ramification pattern of the florets places the bracts and axes in unusual positions relative to the primary inflorescence axis. Our study indicates that there is a single abaxial carpel in Anomochloa, probably due to a cryptic type of pseudomonomery in Anomochloa that resembles the pseudomonomery of other grasses. On the other hand, the Anomochloa flower differs from the "typical" grass flower in lacking lodicules and possessing four stamens, in contrast with the tristaminate condition that characterizes many other grasses. ? Conclusions: Using the median part of the innermost bract as a locator, we tentatively homologize the inner bract of the Anomochloa partial inflorescence with the palea of other grasses. In this interpretation, the pattern of monosymmetry due to stamen suppression differs from that of Ecdeiocolea.  相似文献   

14.
We addressed the question: “Are short-term, leaf-level measurements of photosynthesis correlated with long-term patterns of plant success?” in a productive grassland where interspecific competitive interactions are important. To answer this question, seasonal patterns of leaf-level photosynthesis were measured in 27 tallgrass prairie species growing in sites that differed in species composition and productivity due to differences in fire history. Our specific goals were to assess the relationship between gas exchange under field conditions and success (defined as aerial plant cover) for a wide range of species, as well as for these species grouped as dominant and sub-dominant grasses, forbs, and woody plants. Because fire increases productivity and dominance by grasses in this system, we hypothesized that any relationship between photosynthesis and success would be strongest in annually burned sites. We also predicted that regardless of fire history, the dominant species (primarily C4 grasses) would have higher photosynthetic rates than the less successful species (primarily C3 grasses, forbs and woody plants). Because forbs and woody species are less abundant in annually burned sites, we expected that these species would have lower photosynthetic rates in annually burned than in infrequently burned sites. As expected, the dominant C4?grasses had the highest cover on all sites, relative to?other growth forms, and they had the highest maximum and seasonally averaged photosynthetic rates (17.6 ± 0.42 μmol m?2 s?1). Woody species had the lowest average cover as well as the lowest average photosynthetic rates, with subdominant grasses and forbs intermediate in both cover and photosynthesis. Also as predicted, the highest overall photosynthetic rates were found on the most productive annually burned site. Perhaps most importantly, a positive relationship was found between leaf-level photosynthesis and cover for a core group of species when data were combined across all sites. These data support the hypothesis that higher instantaneous rates of leaf-level photosynthesis are indicative of long-term plant success in this grassland. However, in contrast to our predictions, the subdominant grasses, forbs and woody species on the annually burned site had higher photosynthetic rates than in the less frequently burned sites, even though their average cover was lower on annually burned sites, and hence they were less successful. The direct negative effect of fire on plant cover and species-specific differences in the availability of resources may explain why photosynthesis was high but cover was low in some growth forms in annually burned sites.  相似文献   

15.
Pineal samples of the viscacha, which were taken in winter and in summer, were analysed using both light and electron microscopy. The differences found between the two seasons were few in number but significant. The parenchyma showed two main cell populations. Type I cells occupied the largest volume of the pineal and showed the characteristics of typical pinealocytes. Many processes, some of which were filled with vesicles, could be seen in intimate contact with the neighbouring cells. The presence in the winter samples of "synaptic" ribbons and spherules, which were almost absent in the summer pineals, suggests a seasonal rhythm. These synaptic-like structures, as well as the abundant subsurface cisterns present in type I cells, appeared as basic differential features which allowed these cells to be distinguished from type II cells. These latter cells, which can be classified as interstitial cells, showed some other distinguishing features, such as irregular-shaped nuclei, abundant deposits of glycogen-like particles and structures of unknown function consisting of concentric cisterns surrounding a dense body. In the summer, interstitial cells displayed numerous large round bodies, which contributed to increase the cellular volume slightly. Regarding other constituents, like glial cell processes, vessels of non-fenestrated endothelium and sympathetic innervation, no qualitative differences were observed between the two seasons studied. We have presented here some morphological evidences of the circannual rhythm of the viscacha pineal, as well as ultrastructural criteria for distinguishing the main cell populations of this organ, which could be useful for studies carried out in other mammals.  相似文献   

16.
Insect herbivory on C3 and C4 grasses   总被引:2,自引:0,他引:2  
Summary This study tested the hypothesis that grasses with the C4 photosynthetic pathway are avoided as a food source by insect herbivores in natural communities. Insects were sampled from ten pairs of C3–C4 grasses and their distributions analyzed by paired comparisons tests. Results showed no statistically significant differences in herbivore utilization of C3–C4 species. However, there was a trend towards heavier utilization of C3 species when means for both plant groups were compared. In particular, Homoptera and Diptera showed heavier usage of C3 plants. Significant correlations between insect abundances and plant protein levels suggest that herbivores respond to the higher protein content of C3 grasses. 13C values for six of the most common grasshopper species in the study area indicated that three species fed on C3 plants, two species fed on C4 plants, and one species consumed a mixture of C3 and C4 tissue.Welder Wildlife Refuge Contribution Number 213  相似文献   

17.
18.
Large proportions of the Earth's land surface are covered by biomes dominated by C(4) grasses. These C(4)-dominated biomes originated during the late Miocene, 3-8 million years ago (Ma), but there is evidence that C(4) grasses evolved some 20 Ma earlier during the early Miocene/Oligocene. Explanations for this lag between evolution and expansion invoke changes in atmospheric CO(2), seasonality of climate and fire. However, there is still no consensus about which of these factors triggered C(4) grassland expansion. We use a vegetation model, the adaptive dynamic global vegetation model (aDGVM), to test how CO(2), temperature, precipitation, fire and the tolerance of vegetation to fire influence C(4) grassland expansion. Simulations are forced with late Miocene climates generated with the Hadley Centre coupled ocean-atmosphere-vegetation general circulation model. We show that physiological differences between the C(3) and C(4) photosynthetic pathways cannot explain C(4) grass invasion into forests, but that fire is a crucial driver. Fire-promoting plant traits serve to expand the climate space in which C(4)-dominated biomes can persist. We propose that three mechanisms were involved in C(4) expansion: the physiological advantage of C(4) grasses under low atmospheric CO(2) allowed them to invade C(3) grasslands; fire allowed grasses to invade forests; and the evolution of fire-resistant savanna trees expanded the climate space that savannas can invade.  相似文献   

19.
Summary Tundra plant growth forms can generally be characterized as consisting predominantly of low-growing perennial grasses and sedges, perennial herbaceous forbs, dwarf deciduous shrubs, and dwarf evergreen shrubs. Gross aboveground carbon allocation, leaf growth, and photosynthesis pattern studies were initiated to develop a quantitative understanding of the functional importance of these particular tundra growth forms. Photosynthetic capacities of 13 species were determined under standardized exposure conditions using a14CO2 field system and ranged between 5 and 47 mg CO2·g dry wt-1·h-1. These results, in conjunction with detailed leaf growth determinations, support the generalization that species with an evergreen growth form have lower photosynthetic capacities than species with a perennial graminoid, forb, or deciduous shrub growth form. However, these low photosynthetic capacities in evergreen shrubs are associated with relatively extended leaf longevities. Conversely, deciduous shrub forms exhibited high photosynthetic capacities, but were offset by relatively short leaf longevity periods. The perennial grasses, sedges, and forbs showed patterns intermediate to these. As a result, it appears that among tundra species of different growth form, photosynthetic capacity is inversely related to leaf longevity.  相似文献   

20.
At micro‐site scale, the spatial pattern of a plant species depends on several factors including interactions with neighbours. It has been seen that unfavourable effects generate a negative association between plants, while beneficial effects generate a positive association. In grasslands, the presence of shrubby species promotes a particular microenvironment beneath their canopy that could affect differently the spatial distribution of plants with different tolerance to abiotic conditions. We measured photosynthetic active radiation, air temperature and wind speed under shrub canopies and in adjacent open sites and analysed the spatial distribution of four grass species (two C3 and two C4) in relation to shrub canopy in a grazed sub‐humid natural grassland in southern Uruguay. Radiation, air temperature and wind speed were lower under shrubs than in adjacent open sites. The spatial distribution of grasses relative to the shrub canopy varied depending on the photosynthetic metabolism of grasses. C4 grasses showed a negative association or no correlation with the shrubs, whereas C3 grasses showed a positive association. Our results highlight the importance of the photosynthetic metabolism of the grasses in the final outcome of interactions between grasses and shrubs. Micro‐environmental conditions generated underneath shrubs create a more suitable site for the establishment of C3 than for C4 grasses. These results show that facilitation could be more important than previously thought in sub‐humid grasslands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号