首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the present study was to evaluate the protective effects of isoflavone (ISO) against zearalenone (ZEA) residues in the muscle and liver tissues of prepubertal gilts. Seventy 75-day-old, prepubertal, female pigs (Duroc × Landrace × Yorkshire, 26.5 ± 0.60 kg) were allocated randomly to seven diet treatments for 21days as follows: one control group (fed the basal diet) and six groups fed the basal diet with the addition of either 0.5 or 2.0 mg/kg ZEA plus either 0, 300 or 600 mg/kg ISO. The results showed that the diet with 2.0 mg/kg ZEA added caused an increase of ZEA residue level in muscle tissue (P < 0.05), and that the addition of both 0.5 and 2.0 mg/kg ZEA increased the residue level of ZEA in the liver of prepubertal gilts (P < 0.05). Addition of 600 mg/kg ISO to 2.0 mg/kg ZEA-contaminated diet decreased the ZEA residue level in liver tissue (P < 0.05), and the addition of 300 or 600 mg/kg ISO to the 2.0 mg/kg ZEA-contaminated diet decreased the residue levels of ZEA in muscle tissue (P < 0.05). Western blot analysis demonstrated that feeding ZEA to prepubertal gilts increased their protein expression of 3α/3β-hydroxysteroid dehydrogenase (HSD; P < 0.05), and that the addition of 300 or 600 mg/kg ISO to the 2.0 mg/kg ZEA-contaminated diet decreased the protein expression of 3α/3β-HSD (P < 0.05), compared with the addition of 2.0 mg/kg ZEA alone. The results demonstrated that muscle and liver tissues retain residual ZEA when pigs are fed a diet contaminated with high concentrations of ZEA, and that the concentration of ZEA in muscle and liver tissues increased with increased amounts of ZEA in the feed. In diets contaminated with high levels of ZEA, the addition of ISO may accelerate the biotransformation and degradation of ZEA and its metabolites, and reduce the residues of ZEA in liver and muscle tissues of prepubertal gilts.  相似文献   

2.
FSH is favored over chorionic gonadotropins for induction of estrus in various species, yet little data are available for its effects on follicle development and fertility for use in pigs. For Experiment 1, prepubertal gilts (n = 36) received saline, 100 mg FSH, or FSH with 0.5 mg LH. Treatments were divided into six injections given every 8 h on Days 0 and 1. Proportions of gilts developing medium follicles were increased for FSH and FSH-LH (P < 0.05) compared to saline, but follicles were not sustained and fewer hormone-treated gilts developed large follicles (P < 0.05). No gilts expressed estrus and few ovulated. Experiment 2 tested FSH preparations with greater LH content. Prepubertal gilts (n = 56) received saline, FSH-hCG (100 mg FSH with 200 IU hCG), FSH-LH5 (FSH with 5 mg LH), FSH-LH10 (FSH with 10 mg LH), or FSH-LH20 (FSH with 20 mg LH). FSH-LH was administered as previously described, while 100 IU of hCG was given at 0 h and 24 h. Hormone treated gilts showed increased (P < 0.05) medium and large follicle development, estrus (>70%), ovulation (100%), and ovulation rate (>30 CL) compared to saline. There was an increase (P < 0.05) in the proportion of hormone-treated gilts with follicular cysts at Day 5, but these did not persist to Day 22. These gilts also showed an increase in poorly formed CL (P < 0.05). FSH alone or with small amounts of LH can induce medium follicle growth but greater amounts of LH at the same time is needed to sustain medium follicles, stimulate development of large follicles and induce estrus and ovulation in prepubertal gilts.  相似文献   

3.
This study evaluated the effects of altering dose of PG600 on estrus and ovulation responses in prepubertal gilts and weaned sows. Experiment 1 tested the effects of one (1.0x, 400IU eCG+200IU hCG, n=74), one and a half (1.5x, n=82), or two (2.0x, n=71) doses of PG600 for prepubertal gilts. Estrus (58%) and ovulation (90%) were not affected (P>0.10) by dose. Higher doses increased (P<0.01) numbers of corpora lutea (17, 24, and 25), but not (P>0.10) the proportion of gilts with cysts (26, 36, and 46% for 1.0x, 1.5x, and 2.0x, respectively). Experiment 2 tested the effects of 0x (n=30), 0.5x (n=32), 1.0x (n=29), or 1.5x (n=30) doses of PG600 in weaned sows. Dose did not influence return to estrus (90%, P>0.10). There was an effect of dose (P<0.05) on incidence of cysts (3.4, 1.8, 6.4, and 29.8%, for 0x, 0.5x, 1.0x, and 1.5x doses, respectively). The 0.5x dose increased (P<0.01) farrowing rate (83.2%) compared to 0x (72.1%) and 1.5x (58.6%), but was not different from 1.0x (76.4%). Total pigs born (10.5+/-0.8) did not differ (P>0.10) among treatments. These data suggest that increasing dose of PG600 to 1.5x for gilts increases the number of corpora lutea but does not alter the proportion expressing estrus or ovulating. Reducing dose of PG600 for weaned sows did not alter estrus or ovulation, but the 0.5x dose increased farrowing rate compared to no PG600.  相似文献   

4.
During seasonal anoestrus (long-days), oestradiol can effectively inhibit the pulsatile secretion of luteinizing hormone (LH) in sheep. The aim of our trial was to determine whether the same regulatory mechanism exists in the pig. Altogether, 20 ovariectomized and oestradiol-implanted gilts (16 domestic pigs, 4 European wild boars) were randomly allocated to two treatment groups. The first group was kept under a short-day light-dark cycle of 8L:16D, and the second group under a long-day light regime of 16L:8D. After a 6-week treatment period, blood samples were taken at 20-min intervals for 12h. After sampling, the light regimens were switched. Sampling was then repeated following another 6 weeks of treatment. In both treatment groups, 2.3 LH pulses occurred every 12h. The basal LH level was 0.7+/-0.4 ng/ml for the short-day group and 1.0+/-0.5 ng/ml for the long-day group. The mean LH level was 0.9+/-0.4 and 1.3+/-0.6 ng/ml and the LH pulse amplitude 0.5+/-0.4 and 0.6+/-0.5 ng/ml, respectively. The basal and mean LH levels were therefore lower in short-day gilts (P<0.05), while LH pulse amplitude and frequency remained unaffected by treatment. In conclusion, the 6-week period under two different light regimes resulted in higher basal LH concentration in long-day gilts but was not able to produce changes in LH frequency in prepubertal gilts.  相似文献   

5.
To determine if administration of the anaesthetic cocktail, telazol-ketamine-xylazine (TKX) and pentothal (PEN) decreases serum concentrations of luteinizing hormone (LH) in pigs, the following experiment was performed. On day 1, eight gilts and six barrows of similar weight (75 kg) were anaesthetized with TKX (1 mL/22.5 kg body weight [BW] intramuscularly) and indwelling jugular catheters were inserted. On days 2, 6 and 8 blood samples were taken every 20 min, for 4 h before pigs were administered saline (day 2) or anaesthetized with TKX (day 6) and PEN (8.9 mg/kg BW intravenously, day 8). Blood samples were taken every 20 min for 4 h following administration of saline and anaesthetics. Mean serum concentrations of LH and cortisol did not differ (P > 0.05) within barrows or gilts from before administration of saline (day 2) to following saline administration. Mean serum concentrations of LH and cortisol were not different (P > 0.05) within barrows and gilts before administration of TKX (pre-TKX) or PEN compared with day 2 samples. Following administration of TKX (post-TKX), mean serum concentrations of LH decreased (P < 0.05) and remained decreased for 140 min, while mean serum concentrations of cortisol increased (P < 0.05) post-TKX and remained elevated for 140 min. In gilts, mean serum concentrations of LH did not differ (P > 0.05) from pre- to post-TKX. However, mean serum concentrations of cortisol increased (P < 0.05) post-TKX in gilts and remained elevated for 240 min. Following administration of PEN, mean serum concentrations of LH and cortisol within barrows and gilts were not different (P > 0.05) from concentrations before administration of PEN. Administration of TKX to barrows and gilts increased serum concentrations of cortisol, but transient decreases in serum concentrations of LH were observed only in barrows, indicating gonadal status and/or sex may influence the ability of TKX to alter circulating concentrations of LH in pigs.  相似文献   

6.
The temporal relationships of serum prolactin, oestrogen and LH concentrations during the perioestrous period were compared in prepubertal gilts induced to ovulate by PMSG and hCG and in mature gilts. In Exp. 1, 2 sustained prolactin surges, beginning 4 days and 1 day before the preovulatory LH surge, occurred in all mature gilts. A single preovulatory prolactin surge occurred in 3 prepubertal gilts, starting just before the preovulatory LH surge, but 4 prepubertal gilts had neither a prolactin nor an LH surge. A status (prepubertal or mature) versus time interaction (P less than 0.01) was detected for serum prolactin concentrations. A preovulatory oestrogen surge occurred in all gilts but was of lesser magnitude (P less than 0.01) and duration (P less than 0.05) in the prepubertal gilts without prolactin and LH surges compared to mature gilts and of lesser magnitude (P less than 0.01) compared to prepubertal gilts with prolactin and LH surges. The relative timing of the oestrogen surge in prepubertal gilts corresponded with that of mature gilts when adjusted to the LH surge (if present) but was delayed (P less than 0.01) in all prepubertal gilts if standardized to the hCG injection. In Exp. 2, mature gilts were examined to determine whether 2 perioestrous prolactin surges were characteristic of all cycling gilts. Of 9 gilts, 8 exhibited an initial prolactin surge 4-5 days before oestrus and 5/9 gilts exhibited a periovulatory prolactin surge. The presence of 2 perioestrous serum prolactin surges was not a requirement for subsequent pregnancy maintenance.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The overall objective was to evaluate the use of porcine luteinizing hormone (pLH) for synchronization of ovulation in cyclic gilts and its effect on reproductive function. In an initial study, four littermate pairs of cyclic gilts were given altrenogest (15 mg/d for 14 d). Gilts received 500 microg cloprostenol (Day 15), 600 IU equine chorionic gonadotropin (eCG) (Day 16) and either 5mg pLH or saline (Control) 80 h after eCG. Blood samples were collected every 4h, from 8h before pLH/saline treatment to the end of estrus. Following estrus detection, transcutaneous real-time ultrasonography and AI, all gilts were slaughtered 6d after the estimated time of ovulation. Peak plasma pLH concentrations (during the LH surge), as well as the amplitude of the LH surge, were greater in pLH-treated gilts than in the control (P=0.01). However, there were no significant differences between treatments in the timing and duration of estrus, or the timing of ovulation within the estrous period. In a second study, 45 cyclic gilts received altrenogest for 14-18d, 600 IU eCG (24h after last altrenogest), and 5mg pLH, 750 IU human chorionic gonadotropin (hCG), or saline, 80 h after eCG. For gilts given pLH or hCG, the diameter of the largest follicle before the onset of ovulation (mean+/-S.E.M.; 8.1+/-0.2 and 8.1+/-0.2mm, respectively) was smaller than in control gilts (8.6+/-0.2mm, P=0.05). The pLH and hCG groups ovulated sooner after treatment compared to the saline-treated group (43.2+/-2.5, 47.6+/-2.5 and 59.5+/-2.5h, respectively; P<0.01), with the most synchronous ovulation (P<0.01) in pLH-treated gilts. Embryo quality (total cell counts and embryo diameter) was not significantly different among groups. In conclusion, pLH reliably synchronized ovulation in cyclic gilts without significantly affecting embryo quality.  相似文献   

8.
Three experiments were conducted to evaluate the role of endogenous opioid peptides (EOP) in modulating luteinizing hormone (LH) secretion in the prepubertal gilt. In Experiment I, 8 prepubertal (P) gilts, 160-170 days of age (puberty = 197 +/- 10 days), received either 1 (n = 2), 3 (n = 3), or 6 (n = 3) mg/kg BW of naloxone (NAL), an opiate antagonist, in saline i.v. Blood was collected by jugular vein cannula every 15 min for 2 h before and 2 h after NAL. All doses of NAL failed to alter serum LH concentrations. In Experiment II, 21 P gilts 160-170 days of age and 21 mature (M) gilts were ovariectomized (OVX). At the time of OVX, gilts were classified as prepubertal if their ovaries were devoid of corpora albicantia and corpora lutea. Three weeks after OVX, P and M gilts were injected twice daily for 10 days with either 0.85 mg/kg BW of progesterone (P4) or oil vehicle (V), resulting in the following groups: PP4 (n = 11), PV (n = 10), MP4 (n = 11), and MV (n = 10). All gilts received 1 mg/kg BW of NAL on the last day of treatment. Blood samples were collected via a jugular cannula every 15 min for 4 h before and 2 h after NAL treatment. NAL treatment resulted in an increase (p less than 0.05) in serum LH concentrations only in the MP4 gilts. In Experiment III, 15 OVX gilts 280 days of age were used. Ten of the 15 gilts were OVX prior to puberty at 160 days of age and were classified as chronologically mature (CM) at the time of treatment. The remaining 5 gilts were OVX after puberty, and were classified as sexually mature (SM) at the time of treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The objectives were to determine hypothalamic regulation of pulsatile luteinizing hormone (LH) secretion in female pigs and the biphasic feedback actions of estradiol-17beta (E(2)-17beta). In the first study, the minimum effective dosage of E(2)-17beta that would induce estrus in ovariectomized gilts was determined to be 20microg/kg body weight. In the second study, ovariectomized gilts were assigned randomly on day 0 to treatments: (a) hypophyseal stalk transection (HST), (b) cranial sham-operated control (SOC), and (c) unoperated control (UOC). On day 3, gilts from each group received a single i.m. injection of either E(2)-17beta (20microg/kg body weight) or sesame oil. Blood was collected from an indwelling jugular cannula at 15min intervals for 3h before (day -2) and after treatment (day 2) from HST, SOC and UOC gilts. On day 3, blood was collected at 2h intervals for 12h after E(2)-17beta or sesame oil injection and at 4h intervals thereafter for 108h. Pulsatile LH secretion in all gilts 2 days after ovariectomy exhibited a frequency of 0.9+/-0.06peaks/h, amplitude of 1.3+/-0.13ng/ml, baseline of 0.8+/-0.07. Serum LH concentrations from SOC and UOC gilts were similar on day 2 and profiles did not differ from those on day -2. In HST gilts pulsatile LH release was abolished and mean LH concentration decreased compared with controls (0 versus 0.9+/-0. 06peaks/h and 0.77+/-0.03 versus 1.07+/-0.07ng/ml, respectively; P<0. 05). E(2)-17beta or sesame oil did not affect serum LH concentration in HST gilts, and LH remained constant throughout 120h (0.7+/-0. 07ng/ml). In SOC and UOC control gilts, E(2)-17beta induced a 60% decrease (P<0.05) in LH concentration within 12h, and LH remained low until 48h, then increased to peak values (P<0.05) by 72h, followed by a gradual decline to 120h. Although pituitary weight decreased 31% in HST gilts compared with controls (228 versus 332mg, P<0.05), an abundance of normal basophils was evident in coronal sections of the adenohypophysis of HST comparable to that seen in control gilts. The third and fourth studies determined that hourly i. v. infusions of LHRH (2microg) and a second injection of E(2)-17beta 48h after the first had no effect on the positive feedback action of estrogen in UOC. However, in HST gilts that received LHRH hourly, the first injection of E(2)-17beta decreased (P<0.05) plasma LH concentrations while the second injection of E(2)-17beta failed to induce a positive response to estrogen. These results indicate that both pulsatile LH secretion and the biphasic feedback action of E(2)-17beta on LH secretion depend on hypothalamic regulatory mechanisms in the gilts. The isolated pituitary of HST gilts is capable of autonomous secretion of LH; E(2)-17beta will elicit direct negative feedback action on the isolated pituitary gland if the gonadotropes are supported by exogenous LHRH, but E(2)-17beta at high concentrations will not induce positive feedback in isolated pituitaries. Thus, the direct effect of E(2)-17beta on the pituitary of monkeys cannot be mimicked in pigs.  相似文献   

10.
Two experiments were conducted with prepuberal gilts at 60, 120 and 160 days of age to a) determine the effect of 6-methoxybenzoxazolinone 6-MBOA) on reproductive plasma hormone concentrations and organ development, and b) determine how plasma follicle-stimulating hormone (FSH) and luteinizing hormone (LH) concentrations before and after injection of gonadotropin-releasing hormone (GnRH) or 6-MBOA varied in relation to ovarian development. In Exp. 1, 12 gilts were used in a 4×4 Latin square design. Four gilts/age group were injected once with: 1) vehicle, 2.5% propylene glycol in 50% ethanol, 2) 2 μg of GnRH/kg body weight (BW), 3) 0.2 mg of 6-MBOA/kg BW, and 4) 2 mg of 6-MBOA/kg BW on four successive days in random order. Blood was collected via indwelling vena cava catheters. Injection of GnRH into gilts increased plasma FSH and LH at each age compared with vehicle (P<0.05). Hormone profiles for FSH and LH differed among age groups (P<0.01), but area under curves did not differ significantly among age groups. Injection of 6-MBOA did not significantly affect plasma FSH and LH. Plasma FSH and LH before the GnRH injection or on days when GnRH was not injected were greater at 60 than at 120 and 160 days (FSH, 128 vs 54 and 42 ng/ml; LH, 0.38 vs 0.16 and 0.13 ng/ml for 60, 120 and 160 days, respectively (P<0.05). In Exp. 2, vehicle, 0.2 or 2 mg of 6-MBOA/kg BW were injected once daily for 7 days in 19 gilts. Injections of 6-MBOA had no detectable effects on gonadotropin secretion, ovarian development or uterine weight. Between 60 and 120 days of age, vesicular follicles developed, ovarian weight increased 20-fold, and uterine weight increased 10-fold (P<0.05); basal concentrations of plasma FSH and LH decreased three- and twofold, respectively.  相似文献   

11.
Limited information is available on lysine requirement estimates of modern, high-producing gestating sows Therefore, the objective of this study was to evaluate the effects of increasing standardized ileal digestible (SID) lysine during gestation on piglet birthweight and reproductive performance of gilts and sows. A total of 936 females (498 gilts, 438 sows; Camborough®, PIC, Hendersonville, TN) were group-housed (approximately 275 females per pen) and individually fed with electronic sow feeders. Females were moved from the breeding stall to pens on d 4 of gestation and allotted to one of four dietary treatments on d 5. Dietary treatments included increasing SID lysine intake (11.0, 13.5, 16.0, and 18.5 g/d). Gilts (parity 1) and sows (parity 2+) received 2.1 and 2.3 kg (22.2 and 24.3 MJ net energy per day) of feed throughout the entire gestation period, respectively. Dietary treatments were achieved by different blends of low (0.48% SID lysine) and high (0.88% SID lysine) lysine diets, prepared by changing the amount of corn and soybean meal in these two diets. Female weight and backfat were recorded on d 4 and 111 of gestation. Individual piglet weight was obtained within 12 h of birth on litters from 895 females. Final weight, and calculated maternal BW, body lipid, and body lean at d 111 of gestation increased (linear, P < 0.01) for gilts and sows as SID lysine increased. There was no evidence for differences in final backfat depth. Average total born for gilts and sows was 15.3 and 16.0 pigs with no evidence for differences among treatments. The percentage of pigs born alive increased (P = 0.01) with increasing SID lysine intake for sows, but not in gilts as a result of a treatment by parity group interaction (P = 0.04) for percentage of stillborn pigs. Increasing SID lysine intake during gestation did not affect the percentage of mummified fetuses, total born, or birthweight of piglets born alive in this study. In addition, increasing SID lysine intake during gestation did not affect subsequent reproductive performance. In conclusion, increasing dietary SID lysine intake in gestation increased female BW, without changing backfat depth. The minimal effects on female reproductive performance and piglet birthweight suggest that 11 g/day of SID lysine intake appears to be adequate for gestating gilts and sows; however, providing sows with 18.5 g/d SID lysine reduced (P = 0.01) stillbirth rate by 2.3 percentage points.  相似文献   

12.
This study was conducted to investigate the toxicity of cadmium and to evaluate the effectiveness of maifanite in preventing cadmium-induced adverse effects. Thirty-two crossbred pigs (Duroc × Landrace × Large white, sex balanced, 17.25?±?0.07 kg average body weight) were randomly allotted to one of four dietary treatments in a 2?×?2 factorial arrangement, with eight replicates per treatment and one pig per replicate. The dietary treatments included two cadmium (as CdCl2) doses (0.32 and 30.49 mg/kg) and two maifanite doses (0 and 1 %). The results showed that pigs treated with cadmium decreased their average daily feed intake (P?<?0.05) and increased (P?<?0.05) the feed/gain ratio. Cadmium was found in the tissues of pigs that were fed with cadmium-contaminated diets, but the level of cadmium was much lower when maifanite was added to the cadmium-contaminated diets. Ingestion of diets that were artificially contaminated with cadmium (30.49 mg/kg of cadmium) reduced (P?<?0.05) the number of lymphocytes, the total erythrocyte count, the hemoglobin level, and the hematocrit. However, the activities of serum aspartate aminotransferase and gamma glutamyltransferase were increased (P?<?0.05). The total protein level was lower (P?<?0.05) in pigs fed with cadmium-contaminated diets. The contents of malondialdehyde increased (P?<?0.05), while the total antioxidant capacity and the activities of total superoxide dismutase, glutathione peroxidase, glutathione S-transferase, and catalase decreased (P?<?0.05) in pigs fed with cadmium-contaminated diets. Dietary addition of maifanite can, to some extent, prevent the negative effects associated with feeding cadmium diets (30.49 mg/kg of cadmium) to pigs.  相似文献   

13.
This study was undertaken to compare the effects of FSH-pituitary (FSH-P), eCG, and a combination of gonadotropins containing 400 IU eCG and 200 IU hCG (PG 600) on the growth of large follicles, oocyte quality and in vitro fertilization (IVF) rate of in vitro matured (IVM) oocytes in prepubertal gilts. The ovaries were removed via midventral laparotomy 48 h (Experiment 1) or 72 h (Experiment 2) after the first injection. In Experiment 1, 30 gilts received 1 of 5 treatments: 1) saline (3 ml i.m., once, n = 6); 2) FSH-P8 (8 mg i.m., twice, with a 24-h interval, n = 6); 3) FSH-P16 (16 mg i.m., twice, with a 24-h interval, n = 6; 4) eCG (1000 IU i.m., once, n = 6); or 5) PG 600 (5 ml i.m., once, n = 6). Compared with saline, treatment with PG 600 or eCG induced significant (P < 0.05) growth of large follicles (> or = 6 mm). In Experiment 2, 16 gilts received 1 of 5 treatments: 1) saline (n = 4); 2) FSH-P8 (n = 4); 3) FSH-P16 (n = 4); 4) eCG (n = 4), or 5) PG 600 (n = 4). The same injection protocol as in Experiment 1 was used. Compared with treatment with FSH-P8 or FSH-P16, eCG increased (P<0.05) the number of large follicles. The proportion of good oocytes was increased (P<0.05) with FSH-P8 or FSH-P16 compared with treatment with eCG or PG 600. Moreover, oocytes from eCG-treated gilts had a greater (P<0.05) rate of male and female pronuclei than FSH-P or saline-treated gilts. In conclusion, treatment with FSH-P resulted in a higher proportion of oocytes with multilayer cumulus cells, whereas treatment with eCG resulted in higher pronuclear rates following in vitro fertilization in prepubertal gilts.  相似文献   

14.
Farm animals are at risk of exposure to zearalenone (ZEA) in feedstuffs, which may lead to aberrations in their reproductive development, thereby adversely affecting production outcomes. The objective of this study was to determine the effect of long-term (48 days), per os administration of low ZEA doses (50% [20 μg ZEA/kg body weight (bw)] and 100% [40 μg ZEA/kg bw] NOAEL values) on anatomopathological changes in the ovaries of sexually immature gilts. The experiment involved 12 clinically healthy gilts aged 2 months with an initial body weight of about 40 kg and a determined immune status. The animals were randomly divided into two experimental groups (E1, E2) and a control group (C; all n = 4). Group E1 received per os 20 μg ZEA/kg bw for 48 days; group E2 received per os 40 μg ZEA/kg bw for 48 days; and group C received per os placebo for 48 days. Analytical samples of the mycotoxin were administered daily per os in gelatine capsules before morning feeding. Animals were sacrificed at the end of the experiment. The results of anatomopathological examinations of the ovaries in immature gilts subjected to long-term, low-dose ZEA exposure showed that ZEA-induced experimental hyperoestrogenism lowered the proliferative ability of granulosa cells of the ovarian follicle walls and of the connective tissue of the ovarian stroma, in particular at the lower ZEA dose.  相似文献   

15.
This experiment was conducted to evaluate the effects of chromium methionine with/without zinc sulfate or zinc amino acid complex on the growth performance, carcass traits, meat quality, serum parameters, endocrine parameters, and antioxidant status of growing-finishing pigs. A total of 180 (32.0 ± 1.7 kg body weight, BW) crossbred pigs (Duroc × Landrace × Yorkshire) were used in a completely randomized design with three dietary treatments and 10 replicates per treatment (five pens of barrows and five pens of gilts with six pigs per replicate). Three treatments were corn-soybean meal-based diets supplemented with 100 mg Zn/kg from zinc sulfate (ZnSO4), 100 mg Zn/kg from ZnSO4 + 0.2 mg Cr/kg from chromium methionine complex (CrMet), or 50 mg Zn/kg from ZnSO4 + 50 mg Zn/kg from zinc amino acid complex (ZnAA) + 0.2 mg Cr/kg from CrMet, respectively. The experiment lasted 105 days, of which was divided into three stages including phase 1 (30 to 50 kg BW), phase 2 (50 to 80 kg BW), and phase 3 (80 to 110 kg BW). Results showed that supplementation with CrMet and ZnAA improved (P < 0.05) the feed conversion of the pigs in phase 2, phase 3, and the overall experiment. Hot carcass weight, dressing percentage, and a longissimus dorsi muscle area were increased (P < 0.05) in pigs fed with diets supplemented with both CrMet and ZnAA compared with pigs fed with diets containing only ZnSO4 (P < 0.05). There was also an increase (P < 0.01) pH24 h in the longissimus dorsi muscle in pigs fed with diets supplemented with CrMet and ZnAA. The concentration of serum glucose in pigs fed with diets containing CrMet and ZnAA was decreased (P < 0.05) compared with that in pigs fed with the diet containing ZnSO4. Supplementation with CrMet and ZnAA increased (P < 0.05) the circulating levels of insulin and decreased (P < 0.05) cortisol. There was an increase (P < 0.05) in total serum antioxidant capacity and Cu/Zn superoxide dismutase activity as well as a decrease (P < 0.05) in serum malondialdehyde concentrations in pigs fed with diets supplemented with CrMet and ZnAA compared with pigs fed with the diet supplemented only with ZnSO4. In conclusion, supplementation of CrMet only or CrMet together with ZnAA improved feed conversion, carcass traits, and meat quality in the growing-finishing pigs.  相似文献   

16.
Prepubertal gilts, having undergone a 7-day period of feed restriction to a maintenance ration, were allocated to one of 4 treatments; restricted feeding at 09:00 and 17:00 h for an 8th day both with (Group RN) and without (Group R) administration of the opioid antagonist naloxone hydrochloride (1 mg.kg-1 at 09:30 h followed by 0.5 mg.kg-1 at hourly intervals for 7 h), or feed to appetite with (Group ALN) and without (Group AL) naloxone administration. Gilts were bled at 10-min intervals on Day 8 from morning to evening feed and plasma LH, FSH and prolactin concentrations were measured by radioimmunoassay. Compared with Group R gilts, Group AL gilts exhibited significantly (P less than or equal to 0.05) higher mean and maximum LH concentrations and pulsatility, lower prolactin concentrations (P less than 0.05) but no significant difference in FSH secretion. Naloxone significantly depressed the increase in LH after re-feeding (Group ALN) (P less than 0.05). Once again there were no significant effects on FSH secretion. Naloxone also significantly depressed prolactin secretion in feed-restricted gilts (P less than 0.05). These results confirm that re-feeding of feed-restricted prepubertal gilts stimulates an immediate increase in LH secretion and that this elevation is not mediated via a suppression of inhibitory endogenous opioidergic tone. Rather, naloxone treatment appeared to expose a latent inhibition of LH secretion. The control of LH secretion is distinct from that of FSH in this model.  相似文献   

17.
Two experiments were conducted to evaluate the effects of vitamin C supplementation on performance, iron status and immune function of pigs during the 21-day post-weaning period. In experiment one, 48 crossbred pigs (Chester White ‐ Large White ‐ Yorkshire), weaned at 30 days of age and weighing 7.7 ± 0.9kg, were allotted to diets containing either 0 or 300 mg/kg vitamin C. In experiment two, 96 crossbred pigs (Chester White ‐ Large White ‐ Yorkshire), weaned at 20 ± 2 days and weighing 7.1 ± 0.5kg, were allotted to diets containing 0,75 or 300 mg/kg vitamin C. Six replicate pens were assigned to each treatment in experiment one while experiment two had eight replicates. All pens housed two barrows and two gilts. In both experiments, no improvement (P > 0.05) in growth rate, feed intake or feed conversion was observed as a result of vitamin C supplementation. Plasma iron concentration increased (P < 0.10) with increased vitamin C in the diet while free and total iron binding capacity were unaffected by treatment. There were no differences in the intradermal response to the mitogen phytohemaggutinin used as an indicator of cellular immunity (P > 0.05). In trial 2, the plasma levels of the immunoglobulin IgG showed a linear (P = 0.07) increase with increasing levels of vitamin C and the same trend was noted in trial 1. Antibody titers to bovine serum albumin also tended to increase in both trials but the increases were not statistically significant. In conclusion, the overall results of these experiments indicate that weanling pig performance is not improved as a result of vitamin C supplementation. Whether or not vitamin C plays a role in stimulating humoral immune function in pigs requires further study since the results of our experiments do not completely rule out the possibility that such a role exists.  相似文献   

18.
The object of this investigation was to study luteinizing hormone (LH) response to different doses of synthetic gonadotropin-releasing hormone (GnRH) in prepubertal gilts. Four crossbred prepubertal gilts, 128–134 days old and body weight 57–63 kg, were used in this study. Four doses, 0. 5, 25 and 125 μg, of GnRH were administered via a jugular vein catheter in a latin square design. Each treatment consisted of 3 injections at 90 min intervals. Frequent blood samples were taken during a period of 90 min before up to 90 min after treatment. Total LH responses were measured from post-treatment samples as the area under the curve above base level obtained from pre-treatment samples. A positive relationship between GnRH dose and LH release was obtained in all gilts, except for 1 treatment given to a gilt with high plasma level of oestradiol-17β on the day of treatment. This study has demonstrated the responsiveness of the pituitary gland by LH release to different doses of GnRH in 4.5-month-old prepubertal gilts.  相似文献   

19.
Two experiments were conducted to determine whether cannulation of the jugular vein in gilts alters serum concentrations of LH, FSH, prolactin (PRL) or cortisol (C). In Experiment 1, 12 crossbred prepubertal gilts weighing 95 +/- 1.3 kg were immobilized by snaring, and tygon tubing was threaded into the anterior vena cava through a 12-gauge needle inserted into the jugular vein. Five hours later, blood samples were drawn at 20-min intervals for 4 h (Day 0). Samples were also drawn at 20-min intervals for 4-h periods 24 h (Day 1) and 48 h (Day 2) after cannulation. Serum concentrations of LH were similar (P=0.26) among Day 0 (0.40 ng/ml), Day 1 (0.39 ng/ml) and Day 2 (0.34 ng/ml). Serum PRL was similar (P=0.07) among Day 0 (4.10 ng/ml), Day 1 (3.87 ng/ml) and Day 2 (3.43 ng/ml). Serum concentrations of C were greater (P < 0.001) on Day 0 (8.32 ng/ml) than Day 1 (4.48 ng/ml) or Day 2 (3.54 ng/ml). In Experiment 2, cannulas were placed in 29 prepubertal gilts. Two days after initial cannulation, six blood samples were drawn at 20-min intervals. Gilts were then immobilized by snaring, and a second cannulae was inserted into the contralateral vein. Five blood samples were taken at 2-min intervals during the second cannulation and then six samples were drawn at 20-min intervals. Serum LH and FSH were not altered by cannulation or elevated during the subsequent 2-h sampling period (P>0.05). In contrast, serum concentrations of PRL rose slowly (P<0.05) during cannulation and remained elevated for 60 min before returning to baseline. Serum concentrations of C rose within 6 min of cannulation, remained elevated for 30 min, and then declined over the next 90 min. From these two experiments, it appears that secretory patterns of LH and FSH can be accurately assessed immediately after cannulation in prepubertal gilts. Measurements of serum PRL and C that reflect nonstressed conditions, however, cannot be obtained until at least 2 h or 1 d after cannulation, respectively.  相似文献   

20.
The objective of this study was to determine the effect of pre-treatment of prepubertal gilts with FSH on the estrus and ovulatory responses to eCG injection at two ages. A total of 149 prepubertal Hypor gilts were selected at 150 days (n=76) or 180 days (n=73) of age and assigned to injection of 400 IU eCG plus 200 IU hCG (PG600), 600IU eCG alone (Folligon), pre-treatment with 72 mg FSH (Folltropin) administered as 6 x 12 mg injections at 12 h intervals with 600 IU Folligon 12h after last FSH injection, or non-injected controls. To facilitate detection of estrus, gilts were exposed to a mature boar for 15 min daily for 7 days. To determine ovulatory responses, blood samples were obtained on the day of injection and 10 days later and assayed for progesterone content. Following treatment at 150 days, one control gilt (5.3%) was deemed estrus but ovulation did not occur. Compared to treatment with Folligon alone, PG600 injection tended (P=0.1) to increase the estrus response (52.6% compared with. 26.3%) and increased (P<0.01) the ovulatory response (89.5% compared with. 47.4%). The estrous response in gilts pretreated with Folltropin was intermediate (42.1%) but the ovulatory response (47.4%) was the same as for Folligon alone. Following treatment at 180 days, two control gilts (10.5%) were deemed estrus and ovulation did occur in these gilts. There was no difference between hormone-treated groups for estrus or ovulatory responses, although the ovulatory response of PG600-treated gilts tended (P=0.1) to be greater than for the Folligon-treated group (89.5% compared with 66.7%), with Folltropin-pretreated gilts being intermediate (76.5%). These data demonstrate that the estrus and ovulatory responses of gilts were greater for PG600 than for Folligon and that while responses to PG600 were not affected by gilt age, for the combined Folligon groups, estrous response (P<0.02) and ovulatory response (P<0.05) improved with increased gilt age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号