首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
奶牛乳腺组织RPS6KB1基因启动子甲基化分析   总被引:1,自引:0,他引:1  
DNA甲基化是目前生命科学领域的研究热点之一,DNA甲基化在维持细胞功能、遗传印记、个体生长发育中起着重要作用.本研究采用亚硫酸氢盐测序(BSP)技术检测了不同发育时期奶牛乳腺组织及不同乳品质泌乳期奶牛乳腺组织RPS6KB1启动子的甲基化特征,实时荧光定量PCR检测RPS6KB1基因mRNA差异表达.实验结果显示,在RPS6KB1基因启动子内存在CpG及非CpG的甲基化模式,其中泌乳期奶牛之间甲基化水平相似,妊娠期奶牛甲基化程度高于泌乳期奶牛.荧光定量结果显示不同发育时期,RPS6KB1基因mRNA水平表达差异显著(P<0.05),而两组泌乳期奶牛之间差异不显著(P>0.05).说明RPS6KB1的表达受到其启动子甲基化的调控,非CpG甲基化模式可能具有与CpG甲基化模式相似的生物学功能,参与RPS6KB1的表达调控.  相似文献   

3.
Genetic variation in CYP17 is suspected to be related to endometrial cancer risk based on its role in the regulation of steroid and non-steroid hormone biosynthesis. Reported associations between CYP17 and higher levels of estradiol in some studies suggest that the C allele of a T-to-C single nucleotide polymorphism (SNP) in the 5′UTR of CYP17 (rs743572) may be associated with an increased risk of hormone-related cancers. However, five relatively small epidemiologic studies of endometrial cancer have reported that women with the rs743572 C allele have a decreased risk of endometrial cancer. To examine this association, we genotyped rs743572 and eight other haplotype-tagging SNPs (htSNPs), which are estimated to capture >80% of the variation in CYP17 in a population-based study of 497 endometrial cancer cases and 1,024 controls in Poland. Significant associations were not found for rs743572 (per C allele: OR = 1.12, 95%CI 0.96–1.30; P-trend = 0.15), for individual htSNPs, or for extended haplotypes (global P-value = 0.60). When we pooled data from previously published studies with our own (a total of 1,004 endometrial cases and 1,907 controls), we observed significant study heterogeneity in summary estimates of the association between rs743572 and endometrial cancer, as well as evidence of publication bias. In conclusion, our data are not consistent with a decreased endometrial cancer risk associated with rs743572, as previously reported, or with other haplotype-tagging polymorphisms. Further evaluation in consortia is necessary to confirm potential weak associations between common variation in CYP17 and endometrial cancer risk and to address the concern of publication bias. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Background: Micronutrients may protect against colorectal cancer. Especially folate has been considered potentially preventive. However, studies on folate and colorectal cancer have found contradicting results; dietary folate seems preventive, whereas folic acid in supplements and fortification may increase the risk. Objective: To evaluate the association between intake of vitamins C, E, folate and beta-carotene and colorectal cancer risk, focusing on possibly different effects of dietary, supplemental and total intake, and on potential effect modification by lifestyle factors. Design: In a prospective cohort study of 56,332 participants aged 50–64 years, information on diet, supplements and lifestyle was collected through questionnaires. 465 Colon and 283 rectal cancer cases were identified during follow-up. Incidence rate ratios of colon and rectal cancers related to micronutrient intake were calculated using Cox proportional hazard analyses. Results: The present study found a protective effect of dietary but not supplemental folate on colon cancer. No association with any other micronutrient was found. Rectal cancer did not seem associated with any micronutrient. For both colon and rectal cancer, we found an interaction between dietary folate and alcohol intake, with a significant, preventive effect among those consuming above 10 g alcohol/day only. Conclusions: This study adds further weight to the evidence that dietary folate protects against colon cancer, and specifies that there is a source-specific effect, with no preventive effect of supplemental folic acid. Further studies should thus take source into account. Vitamins C, E and beta-carotene showed no relation with colorectal cancer.  相似文献   

5.
Steroid hormones are believed to play an important role in prostate carcinogenesis, but epidemiological evidence linking prostate cancer and steroid hormone genes has been inconclusive, in part due to small sample sizes or incomplete characterization of genetic variation at the locus of interest. Here we report on the results of a comprehensive study of the association between HSD17B1 and prostate cancer by the Breast and Prostate Cancer Cohort Consortium, a large collaborative study. HSD17B1 encodes 17β-hydroxysteroid dehydrogenase 1, an enzyme that converts dihydroepiandrosterone to the testosterone precursor Δ5-androsterone-3β,17β-diol and converts estrone to estradiol. The Breast and Prostate Cancer Cohort Consortium researchers systematically characterized variation in HSD17B1 by targeted resequencing and dense genotyping; selected haplotype-tagging single nucleotide polymorphisms (htSNPs) that efficiently predict common variants in U.S. and European whites, Latinos, Japanese Americans, and Native Hawaiians; and genotyped these htSNPs in 8,290 prostate cancer cases and 9,367 study-, age-, and ethnicity-matched controls. We found no evidence that HSD17B1 htSNPs (including the nonsynonymous coding SNP S312G) or htSNP haplotypes were associated with risk of prostate cancer or tumor stage in the pooled multiethnic sample or in U.S. and European whites. Analyses stratified by age, body mass index, and family history of disease found no subgroup-specific associations between these HSD17B1 htSNPs and prostate cancer. We found significant evidence of heterogeneity in associations between HSD17B1 haplotypes and prostate cancer across ethnicity: one haplotype had a significant (p < 0.002) inverse association with risk of prostate cancer in Latinos and Japanese Americans but showed no evidence of association in African Americans, Native Hawaiians, or whites. However, the smaller numbers of Latinos and Japanese Americans in this study makes these subgroup analyses less reliable. These results suggest that the germline variants in HSD17B1 characterized by these htSNPs do not substantially influence the risk of prostate cancer in U.S. and European whites.  相似文献   

6.

Background

Telomeres at the ends of eukaryotic chromosomes play a critical role in maintaining the integrity and stability of the genome and participate in the initiation of DNA damage/repair responses.

Methods

We performed a case-control study to evaluate the role of three SNPs (TERT-07, TERT-54 and POT1-03) in telomere maintenance genes previously found to be significantly associated with breast cancer risk. We used sister-sets obtained from the New York site of the Breast Cancer Family Registry (BCFR). Among the 313 sister-sets, there were 333 breast cancer cases and 409 unaffected sisters who were evaluated in the current study. We separately applied conditional logistic regression and generalized estimating equations (GEE) models to evaluate associations between the three SNPs and breast cancer risk within sister-sets. We examined the associations between genotype, covariates and telomere length among unaffected sisters using a GEE model.

Results

We found no significant associations between the three SNPs in telomere maintenance genes and breast cancer risk by both conditional logistic regression and GEE models, nor were these SNPs significantly related to telomere length. Among unaffected sisters, shortened telomeres were statistically significantly correlated with never hormone replacement therapy (HRT) use. Increased duration of HRT use was significantly associated with reduced telomere length. The means of telomere length were 0.77 (SD = 0.35) for never HRT use, 0.67 (SD = 0.29) for HRT use <5yrs and 0.59 (SD = 0.24) for HRT use ≥5yrs after adjusting for age of blood donation and race and ethnicity.

Conclusions

We found that exogenous hormonal exposure was inversely associated with telomere length. No significant associations between genetic variants and telomere length or breast cancer risk were observed. These findings provide initial evidence to understand hormonal exposure in the regulation of telomere length and breast cancer risk but need replication in prospective studies.  相似文献   

7.
Objective The glutathione S-transferases (GSTs) are a superfamily of proteins that participates in detoxification. The GSTs were dividing into several classes including omega (GSTO), mu (GSTM) and theta (GSTT) classes. In human GSTO2, GSTM1, and GSTT1 are polymorphic. In order to study whether GSTO2, GSTM1, and GSTT1 polymorphisms are associated with increased gastric cancer risk in Iranian patients, the present case–control study was done. Methods Genomic DNA was extracted from peripheral blood of 67 gastric cancer patients and 134 control subjects. The genotyping was performed using PCR-based method. The possible association of gastric cancer with the GSTO2 N142D polymorphism was estimated with assuming additive, dominant, and recessive effect of the variant 142D allele. To investigate whether profiles of GST genotypes are associated with the risk of gastric cancer, we used unconditional logistic regression analysis. Results The GSTO2 142D allele in additive, dominant and recessive models was not associated with the risk. Because GSTM1, GSTT1, and GSTO2 genes belong to low-penetrance genes which might be involved in the carcinogenesis, patients and controls without family of cancer in first-degree relatives were also analyzes separately. To investigate whether profiles of GST genotypes are associated with the risk of gastric cancer, we used unconditional logistic regression analysis with GSTM1, GSTT1, and GSTO2 genotypes as predictor factors. The GSTO2 DD genotype was associated with decreased risk as compared to GSTO2 NN genotype (OR = 0.21, 95% CI: 0.05–0.92, P = 0.038). Conclusions Present findings show that GSTO2 DD genotype decreases the risk of gastric cancer in individuals without history of cancer in their first-degree relatives.  相似文献   

8.

Meeting announcement

Current controversies in colon and rectal cancer  相似文献   

9.
10.
Genetic polymorphisms in DNA repair genes may impact individual variation in DNA repair capacity and alter cancer risk. In order to examine the association of common genetic variation in the base-excision repair (BER) pathway with bladder cancer risk, we analyzed 43 single nucleotide polymorphisms (SNPs) in 12 BER genes (OGG1, MUTYH, APEX1, PARP1, PARP3, PARP4, XRCC1, POLB, POLD1, PCNA, LIG1, and LIG3). Using genotype data from 1,150 cases of urinary bladder transitional cell carcinomas and 1,149 controls from the Spanish Bladder Cancer Study we estimated odds ratios (ORs) and 95% confidence intervals (CIs) adjusting for age, gender, region and smoking status. SNPs in three genes showed significant associations with bladder cancer risk: the 8-oxoG DNA glycosylase gene (OGG1), the Poly (ADP-ribose) polymerase family member 1 (PARP1) and the major gap filling polymerase-β (POLB). Subjects who were heterozygous or homozygous variant for an OGG1 SNP in the promoter region (rs125701) had significantly decreased bladder cancer risk compared to common homozygous: OR (95%CI) 0.78 (0.63–0.96). Heterozygous or homozygous individuals for the functional SNP PARP1 rs1136410 (V762A) or for the intronic SNP POLB rs3136717 were at increased risk compared to those homozygous for the common alleles: 1.24 (1.02–1.51) and 1.30 (1.04–1.62), respectively. In summary, data from this large case-control study suggested bladder cancer risk associations with selected BER SNPs, which need to be confirmed in other study populations. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
12.
Dietary polyunsaturated fatty acids (PUFAs) can be converted to prostaglandins and leukotrienes. Oxygenation of omega-6 PUFAs generally results in the production of pro-inflammatory mediators, whereas oxygenated products of omega-3 (n-3) PUFAs generally have lower inflammatory activity. We hypothesize that elevated n-3 PUFA intakes from fish are associated with lower risk of colorectal cancer among those with genetic variants that result in higher levels of pro-inflammatory mediators. In population-based case–control studies of colon (case n = 1,574) and rectal cancer (case n = 791) and disease-free controls (n = 2,969), we investigated interactions between dietary fatty acid intake and 107 candidate polymorphisms and tagSNPs in PTGS1, PTGS2, ALOX12, ALOX5, ALOX15, and FLAP. The two studies used an identical genotyping protocol. We observed interactions and statistically significant increases in colon cancer risk for low docosahexaenoic acid intake among those with the PTGS1 rs10306110 (−1,053 A > G) variant genotypes (OR = 1.6, 95 % confidence interval = 1.1–2.3, adj. p = 0.06) and rectal cancer risk for low total fat intake among those with the variant PTGS1 rs10306122 (7,135 A > G) (ORvs.wt = 1.80, 1.02–2.99; adj. p = 0.08). The ALOX15 rs11568131 (10,339 C > T) wild type in combination with a high inflammation score (low EPA intake, high AA intake, no regular NSAID use, high BMI, smoking) was associated with increased colon cancer risk (OR = 2.28, 1.7–3.07). Rectal cancer risk was inversely associated with a low inflammation score among PTGS2 rs4648276 (3,934 T > C) variant allele carriers (OR = 0.49, 0.25–0.75). Overall, these data provide some modest evidence for interactions between dietary fat intake and genetic variation in genes involved in eicosanoid metabolism and colorectal cancer risk.

Electronic supplementary material

The online version of this article (doi:10.1007/s12263-012-0302-x) contains supplementary material, which is available to authorized users.  相似文献   

13.
Recent evidence indicates the involvement of microRNAs (miRNAs), in cell growth control, differentiation, and apoptosis, thus playing a role in tumorigenesis. Single-nucleotide polymorphisms (SNPs) located at miRNA-binding sites (miRNA-binding SNPs) are likely to affect the expression of the miRNA target and may contribute to the susceptibility of humans to common diseases. We genotyped SNPs hsa-mir196a2 (rs11614913), hsa-mir146a (rs2910164), and hsa-mir499 (rs3746444) in a case–control study including 159 prostate cancer patients and 230 matched controls. Patients with heterozygous genotype in hsa-mir196a2 and hsa-mir499, showed significant risk for developing prostate cancer (P = 0.01; OR = 1.70 and P ≤ 0.001; OR = 2.27, respectively). Similarly, the variant allele carrier was also associated with prostate cancer, (P = 0.01; OR = 1.66 and P ≤ 0.001; OR = 1.97, respectively) whereas, hsa-mir146a revealed no association in prostate cancer. None of the miRNA polymorphisms were associated with Gleason grade and bone metastasis. This is the first study on Indian population substantially presenting that individual as well as combined genotypes of miRNA-related variants may be used to predict the risk of prostate cancer and may be useful for identifying patients at high risk.  相似文献   

14.
Phosphoinositide-dependent kinase 1 (PDK1) is a critical activator of multiple prosurvival and oncogenic protein kinases and has garnered considerable interest as an oncology drug target. Despite progress characterizing PDK1 as a therapeutic target, pharmacological support is lacking due to the prevalence of nonspecific inhibitors. Here, we benchmark literature and newly developed inhibitors and conduct parallel genetic and pharmacological queries into PDK1 function in cancer cells. Through kinase selectivity profiling and x-ray crystallographic studies, we identify an exquisitely selective PDK1 inhibitor (compound 7) that uniquely binds to the inactive kinase conformation (DFG-out). In contrast to compounds 1-5, which are classical ATP-competitive kinase inhibitors (DFG-in), compound 7 specifically inhibits cellular PDK1 T-loop phosphorylation (Ser-241), supporting its unique binding mode. Interfering with PDK1 activity has minimal antiproliferative effect on cells growing as plastic-attached monolayer cultures (i.e. standard tissue culture conditions) despite reduced phosphorylation of AKT, RSK, and S6RP. However, selective PDK1 inhibition impairs anchorage-independent growth, invasion, and cancer cell migration. Compound 7 inhibits colony formation in a subset of cancer cell lines (four of 10) and primary xenograft tumor lines (nine of 57). RNAi-mediated knockdown corroborates the PDK1 dependence in cell lines and identifies candidate biomarkers of drug response. In summary, our profiling studies define a uniquely selective and cell-potent PDK1 inhibitor, and the convergence of genetic and pharmacological phenotypes supports a role of PDK1 in tumorigenesis in the context of three-dimensional in vitro culture systems.  相似文献   

15.
16.
NBS1 plays important roles in maintaining genomic stability as a key DNA repair protein in the homologous recombination repair pathway and as a signal modifier in the intra-S phase checkpoint. We hypothesized that polymorphisms of NBS1 are associated with hepatic cancer (HCC) risk. The NBS1 rs1805794 C/G polymorphism has been frequently studied in some cancers with discordant results, but its association with HCC has not been investigated. Moreover, studies of the 3'UTR variant rs2735383 have not touched upon HCC. This study examined the contribution of these two polymorphisms to the risk of developing HCC in a Chinese population. NBS1 genotypes were determined in 865 HCC patients and 900 controls and the associations with risk of HCC were estimated by logistic regression. Compared with the rs1805794 GG genotype, the GC genotype had a significantly increased risk of HCC (adjusted odds ratios [OR]=1.41; 95% confidence interval [CI]=1.11-1.80), the CC carriers had a further increased risk of HCC (OR=2.27; 95% CI=1.68-3.14), and there was a trend for an allele dose effect on risk of HCC (p<0.001). Also, we found that the risk effect of rs1805794 CC+CG was more pronounced in HCC patients that drank (OR=2.28, 95% CI=1.55-3.29 for drinkers; OR=1.31, 95% CI=1.00-1.77 for nondrinkers). However, there was no significant difference in genotype frequencies of rs2735383 G/C site between cases and controls. These findings suggest that rs1805794 C/G polymorphism in NBS1 may be a genetic modifier for developing HCC.  相似文献   

17.
Our previous studies have shown that methyl-2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate (CDDO-Me), a oleanane synthetic triterpenoid induces apoptosis in prostate cancer cells by inhibiting the Akt/NF-κB/mTOR signaling cascade; however, the mechanism by which CDDO-Me inhibits Akt/NF-κB/mTOR signaling has remained undetermined. Present studies show that Akt plays a critical role in the response of prostate cancer cells to CDDO-Me. Silencing of Akt sensitized PC-3 cells to CDDO-Me, whereas its overexpression rendered them resistant to CDDO-Me. Evaluation of the effect of CDDO-Me on Akt which lies upstream of NF-κB and mTOR showed that CDDO-Me directly inhibits the Akt kinase activity in cell-free kinase activity assay and in vivo without modulating the activity of PDK1, the upstream kinase that phosphorylates and activates Akt. The inhibition of Akt activity resulted in inhibition of phosphorylation/inactivation of proapoptotic procaspase-9, Bad and Foxo3a. Further, inhibition of p-Akt by CDDO-Me was not attributable to an increase in the activity of protein phosphatase 2A (PP2A) or PH domain/leucine-rich repeat protein phosphatase1 (PHLPP1) both of which dephosphorylate p-Akt. These findings show that Akt is a direct target of CDDO-Me in the Akt/NF-κB/mTOR prosurvival signaling axis.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号