首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many behavioural states are modulated by food availability and nutritional status. Here, we report that in Caenorhabditis elegans, the presence of an external food source enhances avoidance responses to soluble repellents sensed by the polymodal ASH neurons. This enhancement requires dopamine signalling and is mimicked by exogenous dopamine. Food modulation is dependent on the mechanosensory cilia of the dopaminergic neurons, indicating that dopamine is released in response to sensation of bacteria. Activation of the dopamine neurons leads within seconds to a transient state of increased sensory acuity. In vivo imaging experiments indicate that this dopamine-dependent sensitization results in part from modality-specific increases in the magnitude and duration of gustatory responses in the ASH neurons. The D1-like dopamine receptor DOP-4 acts cell autonomously in ASH to mediate effects on response magnitude. Thus, dopamine functions as a direct signal of the presence of food to control context-dependent behavioural states.  相似文献   

2.
Efflux of dopamine through the dopamine transporter (DAT) is critical for the psychostimulatory properties of amphetamines, but the underlying mechanism is unclear. Here we show that Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) plays a key role in this efflux. CaMKIIalpha bound to the distal C terminus of DAT and colocalized with DAT in dopaminergic neurons. CaMKIIalpha stimulated dopamine efflux via DAT in response to amphetamine in heterologous cells and in dopaminergic neurons. CaMKIIalpha phosphorylated serines in the distal N terminus of DAT in vitro, and mutation of these serines eliminated the stimulatory effects of CaMKIIalpha. A mutation of the DAT C terminus impairing CaMKIIalpha binding also impaired amphetamine-induced dopamine efflux. An in vivo role for CaMKII was supported by chronoamperometry measurements showing reduced amphetamine-induced dopamine efflux in response to the CaMKII inhibitor KN93. Our data suggest that CaMKIIalpha binding to the DAT C terminus facilitates phosphorylation of the DAT N terminus and mediates amphetamine-induced dopamine efflux.  相似文献   

3.
The response of the central nervous system to stress is often critical to the adaptation of an organism to its environment. However, in humans the response to stress also can be maladaptive, resulting in the expression or exacerbation of many neurological and psychiatric disorders. In this review, we examine the impact of stress on the synthesis and release of dopamine within mesocortical, mesoaccumbens, and nigrostriatal dopamine projections. We note that whereas stress increases the neurochemical activity of each of these populations of dopamine neurons, heterogeneities do exist. Specifically, acute stress evokes a greater increase in dopamine metabolism and release within the prefrontal cortex than the subcortical sites. Furthermore, whereas prior exposure to chronic stress enhances the response of mesocortical dopamine neurons to an acute novel stressor, this does not occur in the subcortical sites. In addition to these regional heterogeneities, we also note that even within a single dopamine projection there can be heterogeneous regulation of dopamine synthesis and release. Specifically, whereas stress-induced dopamine release in the neostriatum is mediated by an action of glutamate on the dopamine cell body, stress-induced dopamine synthesis in the neostriatum is mediated by an action of glutamate on the dopamine nerve terminal. Finally, we propose that regional heterogeneities in the responsiveness of central dopamine neurons to stress may ultimately play a role in the expression and exacerbation of symptoms associated with schizophrenia.  相似文献   

4.
Mutations in alpha-synuclein gene cause familial form of Parkinson disease, and deposition of wild-type alpha-synuclein as Lewy bodies occurs as a hallmark lesion of sporadic Parkinson disease and dementia with Lewy bodies, implicating alpha-synuclein in the pathogenesis of Parkinson disease and related neurodegenerative diseases. Dopamine neurons in substantia nigra are the major site of neurodegeneration associated with alpha-synuclein deposition in Parkinson disease. Here we establish transgenic Caenorhabditis elegans (TG worms) that overexpresses wild-type or familial Parkinson mutant human alpha-synuclein in dopamine neurons. The TG worms exhibit accumulation of alpha-synuclein in the cell bodies and neurites of dopamine neurons, and EGFP labeling of dendrites is often diminished in TG worms expressing familial Parkinson disease-linked A30P or A53T mutant alpha-synuclein, without overt loss of neuronal cell bodies. Notably, TG worms expressing A30P or A53T mutant alpha-synuclein show failure in modulation of locomotory rate in response to food, which has been attributed to the function of dopamine neurons. This behavioral abnormality was accompanied by a reduction in neuronal dopamine content and was treatable by administration of dopamine. These phenotypes were not seen upon expression of beta-synuclein. The present TG worms exhibit dopamine neuron-specific dysfunction caused by accumulation of alpha-synuclein, which would be relevant to the genetic and compound screenings aiming at the elucidation of pathological cascade and therapeutic strategies for Parkinson disease.  相似文献   

5.
Evoked Extracellular Dopamine In Vivo in the Medial Prefrontal Cortex   总被引:5,自引:2,他引:3  
Abstract: The measurement of evoked extracellular dopamine in the medial prefrontal cortex by using fast-scan cyclic voltammetry with carbon-fiber microelectrodes was established and release characteristics of mesoprefrontal dopamine neurons were examined in vivo in anesthetized rats. Despite the sparse dopaminergic innervation and the presence of more dense noradrenergic and serotonergic innervations overall in the medial prefrontal cortex, the measurement of extracellular dopamine was achieved by selective recording in dopamine-rich terminal fields and selective activation of ascending dopamine neurons. This was confirmed by electrochemical, pharmacological, and anatomical evidence. An increased release capacity for mesoprefrontal dopamine neurons was also demonstrated by the slower decay of the evoked dopamine response after inhibition of catecholamine synthesis and the maintenance of the evoked dopamine response at higher levels in the medial prefrontal cortex compared with the striatum during supraphysiological stimulation.  相似文献   

6.
Dopamine is a mediator of the stimulant properties of drugs of abuse, including ethanol, in mammals and in the fruit fly Drosophila. The neural substrates for the stimulant actions of ethanol in flies are not known. We show that a subset of dopamine neurons and their targets, through the action of the D1-like dopamine receptor DopR, promote locomotor activation in response to acute ethanol exposure. A bilateral pair of dopaminergic neurons in the fly brain mediates the enhanced locomotor activity induced by ethanol exposure, and promotes locomotion when directly activated. These neurons project to the central complex ellipsoid body, a structure implicated in regulating motor behaviors. Ellipsoid body neurons are required for ethanol-induced locomotor activity and they express DopR. Elimination of DopR blunts the locomotor activating effects of ethanol, and this behavior can be restored by selective expression of DopR in the ellipsoid body. These data tie the activity of defined dopamine neurons to D1-like DopR-expressing neurons to form a neural circuit that governs acute responding to ethanol.  相似文献   

7.
Activation of dopamine receptors in forebrain regions, for minutes or longer, is known to be sufficient for positive reinforcement of stimuli and actions. However, the firing rate of dopamine neurons is increased for only about 200 milliseconds following natural reward events that are better than expected, a response which has been described as a "reward prediction error" (RPE). Although RPE drives reinforcement learning (RL) in computational models, it has not been possible to directly test whether the transient dopamine signal actually drives RL. Here we have performed optical stimulation of genetically targeted ventral tegmental area (VTA) dopamine neurons expressing Channelrhodopsin-2 (ChR2) in mice. We mimicked the transient activation of dopamine neurons that occurs in response to natural reward by applying a light pulse of 200 ms in VTA. When a single light pulse followed each self-initiated nose poke, it was sufficient in itself to cause operant reinforcement. Furthermore, when optical stimulation was delivered in separate sessions according to a predetermined pattern, it increased locomotion and contralateral rotations, behaviors that are known to result from activation of dopamine neurons. All three of the optically induced operant and locomotor behaviors were tightly correlated with the number of VTA dopamine neurons that expressed ChR2, providing additional evidence that the behavioral responses were caused by activation of dopamine neurons. These results provide strong evidence that the transient activation of dopamine neurons provides a functional reward signal that drives learning, in support of RL theories of dopamine function.  相似文献   

8.
9.
A mechanism of attention is proposed according to which its influence on visual processing is switched on by release of dopamine into the striatum. A dopamine release during involuntary attention is promoted by visual activation of striatonigral cells via the thalamus and subsequent disinhibition through the basal ganglia of the superior colliculus. A dopamine release during voluntary attention is promoted by activation of prefrontal cortex. The strengthening of responses of neocortical neurons to attended stimulus, and suppression of responses to other stimuli is the result of opposite modulatory action of dopamine on the efficacy of strong and weak corticostriatal inputs. This leads to changes in the output basal ganglia signals ("attentional filter") that exert disinhibitory and inhibitory influence (via the thalamus) on neocortical cells that initially were strongly and weakly activated by a stimulus, respectively. From proposed mechanism follows, that attention modulates only those components of responses of cortical neurons which latency exceeds the latency of reactions of dopaminergic cells (80-100 ms).  相似文献   

10.
T-cells are circulating dopamine-sensitive cells and may mirror, at the peripheral level, biochemical modifications occurring in dopaminergic neurons. The human CD4+ T leukemic Jurkat cell line has been thoroughly used and characterized as a suitable cell model to investigate T-cell signaling and apoptosis. Here, we describe their characterization as a model of circulating dopamine-sensitive cells and their response to a dopamine challenge by analyzing changes in the cell proteome. Jurkat cells express both D1- and D2-like dopamine receptors and both membrane and vesicular transporters, while they lack D4 receptor and tyrosine hydroxylase expression. A saturating, non-toxic, non-oxidant 50 μM dopamine challenge induces the upregulation of an interacting chaperone network known to protect specifically dopaminergic neurons, thus validating T-cells as a biomarker discovery source in Parkinson’s disease. Remodeling of the distribution pattern of β-actin and 14-3-3 isoforms is consistently observed upon dopamine treatment. As a whole, dopamine-specific alterations here observed might represent a biosensor for dopamine response at the peripheral level.  相似文献   

11.
Classically, two neurotransmitters in the brain have been implicated in thermoregulation: 5-hydroxytryptamine and norepinephrine. A dopamine action is less well-known and usually has been studied by means of pharmacological rather than physiological procedures. In the present work using a physiological approach to the problem, the role of different central dopaminergic systems in the thermoregulatory response of rats exposed to cold (4 degrees C) or warm (45 degrees C) environments has been studied. Rostral incertohypothalamic neurons in the medial preoptic area synthesized and released more dopamine in response to a warm but not to a cold environment. On the other hand DA and DOPAC levels in nigrostriatal systems were decreased by cold but not warm environments. The dopaminergic neurons projecting to nucleus accumbens or hypothalamus do not appear to be related to the thermoregulatory response in the rat.  相似文献   

12.
1. The effects of dopamine and several synthetic agonists and antagonists were studied using two identified neurons of the snail Lymnaea stagnalis. 2. In both the buccal-2 (B-2) neurons and the pedal giant (RPeD1) neuron dopamine elicited a hyperpolarizing response at least partly due to potassium efflux. RPeD1 is itself dopaminergic, implicating autoreceptors in its response to dopamine. 3. The following agents were tested: agonists--LY171555, pergolide, SKF38393, (-)-3-PPP, R(-)NPA and dopamine; antagonists--SCH23390, sulpiride, and metaclopramide. Dibutyryl cAMP was applied to determine whether the response is cAMP-mediated. 4. Results indicate that the pharmacological profiles of dopamine receptors on these neurons are inconsistent with those of either D-1, D-2 or autoreceptors in mammals.  相似文献   

13.
14.
Phosphodiesterase (PDE) 10A is highly expressed in medium spiny neurons of the striatum, at the confluence of the corticostriatal glutamatergic and the midbrain dopaminergic pathways, both believed to be involved in the physiopathology of schizophrenia. There is a growing body of evidence suggesting that targeting PDE10A may be beneficial for the treatment of positive symptoms in schizophrenia. The aim of the present study was to investigate how PDE10A inhibition modulates mesolimbic dopaminergic neurotransmission. We found that the selective PDE10A inhibitor, MP-10, blocked d -amphetamine-induced hyperactivity as well as d -amphetamine-induced dopamine efflux in the nucleus accumbens in a dose-dependent manner. We further investigated the mechanism by which PDE10A inhibition affects dopaminergic neurotransmission. We report that MP-10 potentiated the effect of a high but not a low dose of d -amphetamine on the mean firing rate of dopaminergic neurons recorded from the ventral tegmental area. Similarly, the effect of a high, but not a low dose of d -amphetamine, was completely reversed by the selective D1 antagonist, SCH23390. These data suggest that the D1-regulated feedback control of midbrain dopamine neurons is a critical pathway involved in the modulation of the response of mesolimbic dopamine neurons to d -amphetamine by PDE10A inhibition.  相似文献   

15.
Wang DV  Tsien JZ 《PloS one》2011,6(2):e17047
Dopamine neurons in the ventral tegmental area (VTA) have been traditionally studied for their roles in reward-related motivation or drug addiction. Here we study how the VTA dopamine neuron population may process fearful and negative experiences as well as reward information in freely behaving mice. Using multi-tetrode recording, we find that up to 89% of the putative dopamine neurons in the VTA exhibit significant activation in response to the conditioned tone that predict food reward, while the same dopamine neuron population also respond to the fearful experiences such as free fall and shake events. The majority of these VTA putative dopamine neurons exhibit suppression and offset-rebound excitation, whereas ~25% of the recorded putative dopamine neurons show excitation by the fearful events. Importantly, VTA putative dopamine neurons exhibit parametric encoding properties: their firing change durations are proportional to the fearful event durations. In addition, we demonstrate that the contextual information is crucial for these neurons to respectively elicit positive or negative motivational responses by the same conditioned tone. Taken together, our findings suggest that VTA dopamine neurons may employ the convergent encoding strategy for processing both positive and negative experiences, intimately integrating with cues and environmental context.  相似文献   

16.
《Life sciences》1996,59(12):PL199-PL205
Ibogaine, an indole containing alkaloid, has been shown to reduce the rate of injection of morphine and cocaine in self-administration protocols. Since morphine- and cocaine-induced modulation of dopamine release is impulse dependent and essential for their reinforcing effects, disruption of dopamine neuronal activity by ibogaine could explain its purported ‘antiaddictive’ properties. Therefore, the present study was designed to determine: (1) the acute effects of ibogaine on the activity of VTA dopamine neurons, and (2) whether ibogaine pretreatment causes a persistent modification of the dopamine neuronal response to morphine and cocaine. Extracellular recordings in anesthetized animals found that intravenous ibogaine markedly excited VTA dopamine neuronal firing. However, ibogaine pretreatment (6–8 hr and 19 hr before) failed to alter either the spontaneous activity of VTA neurons, or the response of these dopamine neurons to morphine or cocaine. Thus, ibogaine's excitatory effect on VTA neurons is not longlasting nor does it persistently alter cocaine- or morphine-induced changes in dopamine neuron impulse activity. Therefore, other mechanisms must be explored to account for the proposed antiaddictive properties of ibogaine.  相似文献   

17.
Extracellular single-unit activities of dopamine neurons were recorded using chloral hydrate anaesthetized rats. We examined the reversal effects of the selective dopamine D4 receptor blockers, NRA0160 (2-Carbamoyl-4-(4-fluorophenyl)-5-[2-[4-(3-fluorobenzylidene) piperidin-1-yl] ethyl] thiazole) and L-745,870 (3-[[4-(4-chlorophenyl) piperazin-1-yl] methyl]-1H-pyrrolo [2,3-b] pyridine), on dopamine agonists induced inhibition of dopamine neural activity. The firing rates of the substantia nigra pars compacta (A9) and the ventral tegmental area (A10) dopamine neurons were inhibited by methamphetamine (MAP: 1 mg/kg, i.v.) and apomorphine (APO: 40 microg/kg, i.v). NRA0160 dose-dependently reversed the inhibitory effects of MAP and APO on both A9 and A10 dopamine neurons. NRA0160 was more potent in reversing the inhibitory effects of both MAP and APO on A10 than A9 dopamine neurons. L-745,870 failed to reverse the inhibition produced by MAP on A9 and A10 dopamine neurons, whereas L-745,870, at the highest dose used, significantly reversed APO-induced inhibition of A10 but not A9 dopamine neurons. These results suggest that NRA0160 has different electrophysiological profiles on dopaminergic neural activity compared to L-745,870 and may have atypical antipsychotic effects.  相似文献   

18.
Effects of dopamine on the background spike activity of functionally (according to their electrophysiological characteristics) identified dopaminergic (DA) or non-dopaminergic (non-DA) neurons of the compact zone of thesubstantia nigra were studied on slices of the midbrain of adult rats. In the majority of DA neurons, dopamine suppressed the background activity in a dose-dependent manner. Sensitivity of these cells to dopamine varied within a wide range: IC50, the concentration providing the 50% maximum effect, equalled from 3 to 3,000 µM in different units. A part of DA neurons responded to dopamine with an increase in their activity. Mixed responses, in which an initial suppression of impulsation was replaced by a slow-developing activation, was observed in some neurons. Non-DA neurons usually responded to dopamine by an enhancement of impulsation; yet, the cells with inhibitory or mixed responses similar to those of DA neurons could be found in this population as well. Sensitivity of non-DA neurons to dopamine was about the same as that of DA-cells, without the dependence on the direction of responses. S(–)-suipiride, a blocker of D2 receptors, decreased the inhibitory component of all tested responses to dopamine both in DA and non-DA neurons and evoked no changes in the excitatory component. At the same time, R(+)-SCH 23390 HC1, a blocker of D1 receptors, suppressed the activatory component of responses with no effect on the inhibitory component. We conclude that both types of DA receptors, D2 and D1 receptors, can be present on the DA and non-DA neurons. Dopamine, influencing these receptors, suppresses or facilitates, respectively, the spike activity of these cells. The relative amount of such receptors is the main factor determining the pattern and dynamics of the integral response to dopamine application. The possible functional role of the presence of both D1 and D2 receptors on the membrane of a single neuron is discussed.Neirofiziologiya/Neurophysiology, Vol. 27, No. 4, pp. 268–277, July–August, 1995.  相似文献   

19.
Y Ohno  M Sasa  S Takaori 《Life sciences》1985,37(16):1515-1521
Microiontophoretic studies using cats anesthetized with alpha-chloralose were performed to elucidate whether the excitatory response of caudate nucleus (CN) neurons upon stimulation of the pars compacta of the substantia nigra (SN) is mediated by the dopamine D-1 or D-2 receptor. There were rare convergent inputs from the SN and motor cortex (MC) in the CN neurons. Iontophoretic application of haloperidol and domperidone (dopamine D-2 receptor antagonist) produced dose-dependent inhibition of spikes elicited by SN stimulation in 25 of 42 and 50 of 82 CN neurons, respectively, however, no alterations of spikes elicited by MC stimulation occurred in any 11 neurons tested. Iontophoretically applied SCH 23390 (D-1 antagonist) did not inhibit the SN-induced spikes in any CN neurons, of which spikes were inhibited by domperidone. These results suggest that the SN-induced spikes are mediated by dopamine, which acts on postsynaptic D-2 receptors.  相似文献   

20.
Animals assess food availability in their environment by sensory perception and respond to the absence of food by changing hormone and neurotransmitter signals. However, it is largely unknown how the absence of food is perceived at the level of functional neurocircuitry. In Caenorhabditis elegans, octopamine is released from the RIC neurons in the absence of food and activates the cyclic AMP response element binding protein in the cholinergic SIA neurons. In contrast, dopamine is released from dopaminergic neurons only in the presence of food. Here, we show that dopamine suppresses octopamine signalling through two D2‐like dopamine receptors and the G protein Gi/o. The D2‐like receptors work in both the octopaminergic neurons and the octopamine‐responding SIA neurons, suggesting that dopamine suppresses octopamine release as well as octopamine‐mediated downstream signalling. Our results show that C. elegans detects the absence of food by using a small neural circuit composed of three neuron types in which octopaminergic signalling is activated by the cessation of dopamine signalling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号