首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Previous studies have shown that copy-number variants (CNVs) contribute to the risk of complex developmental phenotypes. However, the contribution of global CNV burden to the risk of sporadic congenital heart disease (CHD) remains incompletely defined. We generated genome-wide CNV data by using Illumina 660W-Quad SNP arrays in 2,256 individuals with CHD, 283 trio CHD-affected families, and 1,538 controls. We found association of rare genic deletions with CHD risk (odds ratio [OR] = 1.8, p = 0.0008). Rare deletions in study participants with CHD had higher gene content (p = 0.001) with higher haploinsufficiency scores (p = 0.03) than they did in controls, and they were enriched with Wnt-signaling genes (p = 1 × 10−5). Recurrent 15q11.2 deletions were associated with CHD risk (OR = 8.2, p = 0.02). Rare de novo CNVs were observed in ∼5% of CHD trios; 10 out of 11 occurred on the paternally transmitted chromosome (p = 0.01). Some of the rare de novo CNVs spanned genes known to be involved in heart development (e.g., HAND2 and GJA5). Rare genic deletions contribute ∼4% of the population-attributable risk of sporadic CHD. Second to previously described CNVs at 1q21.1, deletions at 15q11.2 and those implicating Wnt signaling are the most significant contributors to the risk of sporadic CHD. Rare de novo CNVs identified in CHD trios exhibit paternal origin bias.  相似文献   

3.
Congenital heart disease (CHD) is the most common congenital malformation, with evidence of a strong genetic component. We analyzed data from 223 consecutively ascertained families, each consisting of at least one child affected by a conotruncal defect (CNT) or hypoplastic left heart disease (HLHS) and both parents. The NimbleGen HD2-2.1 comparative genomic hybridization platform was used to identify de novo and rare inherited copy number variants (CNVs). Excluding 10 cases with 22q11.2 DiGeorge deletions, we validated de novo CNVs in 8 % of 148 probands with CNTs, 12.7 % of 71 probands with HLHS and none in 4 probands with both. Only 2 % of control families showed a de novo CNV. We also identified a group of ultra-rare inherited CNVs that occurred de novo in our sample, contained a candidate gene for CHD, recurred in our sample or were present in an affected sibling. We confirmed the contribution to CHD of copy number changes in genes such as GATA4 and NODAL and identified several genes in novel recurrent CNVs that may point to novel CHD candidate loci. We also found CNVs previously associated with highly variable phenotypes and reduced penetrance, such as dup 1q21.1, dup 16p13.11, dup 15q11.2-13, dup 22q11.2, and del 2q23.1. We found that the presence of extra-cardiac anomalies was not related to the frequency of CNVs, and that there was no significant difference in CNV frequency or specificity between the probands with CNT and HLHS. In agreement with other series, we identified likely causal CNVs in 5.6 % of our total sample, half of which were de novo.  相似文献   

4.
Recurrent deletions and duplications at chromosomal region 16p11.2 are a major genetic contributor to autism but also associate with a wider range of pediatric diagnoses, including intellectual disability, coordination disorder, and language disorder. In order to investigate the potential genetic basis for phenotype variability, we assessed the parent of origin of the 16p11.2 copy-number variant (CNV) and the presence of additional CNVs in 126 families for which detailed phenotype data were available. Among de novo cases, we found a strong maternal bias for the origin of deletions (59/66, 89.4% of cases, p = 2.38 × 10−11), the strongest such effect so far observed for a CNV associated with a microdeletion syndrome. In contrast to de novo events, we observed no transmission bias for inherited 16p11.2 CNVs, consistent with a female meiotic hotspot of unequal crossover driving this maternal bias. We analyzed this 16p11.2 CNV cohort for the presence of secondary CNVs and found a significant maternal transmission bias for secondary deletions (32 maternal versus 14 paternal, p = 1.14 × 10−2). Of the secondary deletions that disrupted a gene, 82% were either maternally inherited or de novo (p = 4.3 × 10−3). Nine probands carry secondary CNVs that disrupt genes associated with autism and/or intellectual disability risk variants. Our findings demonstrate a strong bias toward maternal origin of 16p11.2 de novo deletions as well as a maternal transmission bias for secondary deletions that contribute to the clinical outcome on a background sensitized by the 16p11.2 CNV.  相似文献   

5.
Structural variation of chromosomes in autism spectrum disorder   总被引:2,自引:0,他引:2       下载免费PDF全文
Structural variation (copy number variation [CNV] including deletion and duplication, translocation, inversion) of chromosomes has been identified in some individuals with autism spectrum disorder (ASD), but the full etiologic role is unknown. We performed genome-wide assessment for structural abnormalities in 427 unrelated ASD cases via single-nucleotide polymorphism microarrays and karyotyping. With microarrays, we discovered 277 unbalanced CNVs in 44% of ASD families not present in 500 controls (and re-examined in another 1152 controls). Karyotyping detected additional balanced changes. Although most variants were inherited, we found a total of 27 cases with de novo alterations, and in three (11%) of these individuals, two or more new variants were observed. De novo CNVs were found in approximately 7% and approximately 2% of idiopathic families having one child, or two or more ASD siblings, respectively. We also detected 13 loci with recurrent/overlapping CNV in unrelated cases, and at these sites, deletions and duplications affecting the same gene(s) in different individuals and sometimes in asymptomatic carriers were also found. Notwithstanding complexities, our results further implicate the SHANK3-NLGN4-NRXN1 postsynaptic density genes and also identify novel loci at DPP6-DPP10-PCDH9 (synapse complex), ANKRD11, DPYD, PTCHD1, 15q24, among others, for a role in ASD susceptibility. Our most compelling result discovered CNV at 16p11.2 (p = 0.002) (with characteristics of a genomic disorder) at approximately 1% frequency. Some of the ASD regions were also common to mental retardation loci. Structural variants were found in sufficiently high frequency influencing ASD to suggest that cytogenetic and microarray analyses be considered in routine clinical workup.  相似文献   

6.
Copy number variations (CNVs) are an important cause of ASD and those located at 15q11-q13, 16p11.2 and 22q13 have been reported as the most frequent. These CNVs exhibit variable clinical expressivity and those at 15q11-q13 and 16p11.2 also show incomplete penetrance. In the present work, through multiplex ligation-dependent probe amplification (MLPA) analysis of 531 ethnically admixed ASD-affected Brazilian individuals, we found that the combined prevalence of the 15q11-q13, 16p11.2 and 22q13 CNVs is 2.1% (11/531). Parental origin could be determined in 8 of the affected individuals, and revealed that 4 of the CNVs represent de novo events. Based on CNV prediction analysis from genome-wide SNP arrays, the size of those CNVs ranged from 206 kb to 2.27 Mb and those at 15q11-q13 were limited to the 15q13.3 region. In addition, this analysis also revealed 6 additional CNVs in 5 out of 11 affected individuals. Finally, we observed that the combined prevalence of CNVs at 15q13.3 and 22q13 in ASD-affected individuals with epilepsy (6.4%) was higher than that in ASD-affected individuals without epilepsy (1.3%; p<0.014). Therefore, our data show that the prevalence of CNVs at 15q13.3, 16p11.2 and 22q13 in Brazilian ASD-affected individuals is comparable to that estimated for ASD-affected individuals of pure or predominant European ancestry. Also, it suggests that the likelihood of a greater number of positive MLPA results might be found for the 15q13.3 and 22q13 regions by prioritizing ASD-affected individuals with epilepsy.  相似文献   

7.
Rare copy-number variation (CNV) is an important source of risk for autism spectrum disorders (ASDs). We analyzed 2,446 ASD-affected families and confirmed an excess of genic deletions and duplications in affected versus control groups (1.41-fold, p = 1.0 × 10−5) and an increase in affected subjects carrying exonic pathogenic CNVs overlapping known loci associated with dominant or X-linked ASD and intellectual disability (odds ratio = 12.62, p = 2.7 × 10−15, ∼3% of ASD subjects). Pathogenic CNVs, often showing variable expressivity, included rare de novo and inherited events at 36 loci, implicating ASD-associated genes (CHD2, HDAC4, and GDI1) previously linked to other neurodevelopmental disorders, as well as other genes such as SETD5, MIR137, and HDAC9. Consistent with hypothesized gender-specific modulators, females with ASD were more likely to have highly penetrant CNVs (p = 0.017) and were also overrepresented among subjects with fragile X syndrome protein targets (p = 0.02). Genes affected by de novo CNVs and/or loss-of-function single-nucleotide variants converged on networks related to neuronal signaling and development, synapse function, and chromatin regulation.  相似文献   

8.
Genome-wide screenings for copy number variations (CNVs) in patients with schizophrenia have demonstrated the presence of several CNVs that increase the risk of developing the disease and a growing number of large rare CNVs; the contribution of these rare CNVs to schizophrenia remains unknown. Using Affymetrix 6.0 arrays, we undertook a systematic search for CNVs in 172 patients with schizophrenia and 160 healthy controls, all of Italian origin, with the aim of confirming previously identified loci and identifying novel schizophrenia susceptibility genes. We found five patients with a CNV occurring in one of the regions most convincingly implicated as risk factors for schizophrenia: NRXN1 and the 16p13.1 regions were found to be deleted in single patients and 15q11.2 in 2 patients, whereas the 15q13.3 region was duplicated in one patient. Furthermore, we found three distinct patients with CNVs in 2q12.2, 3q29 and 17p12 loci, respectively. These loci were previously reported to be deleted or duplicated in patients with schizophrenia but were never formally associated with the disease. We found 5 large CNVs (>900 kb) in 4q32, 5q14.3, 8q23.3, 11q25 and 17q12 in five different patients that could include some new candidate schizophrenia susceptibility genes. In conclusion, the identification of previously reported CNVs and of new, rare, large CNVs further supports a model of schizophrenia that includes the effect of multiple, rare, highly penetrant variants.  相似文献   

9.
Bipolar disorder (BPD) is a common psychiatric illness with a complex mode of inheritance. Besides traditional linkage and association studies, which require large sample sizes, analysis of common and rare chromosomal copy number variants (CNVs) in extended families may provide novel insights into the genetic susceptibility of complex disorders. Using the Illumina HumanHap550 BeadChip with over 550,000 SNP markers, we genotyped 46 individuals in a three-generation Old Order Amish pedigree with 19 affected (16 BPD and three major depression) and 27 unaffected subjects. Using the PennCNV algorithm, we identified 50 CNV regions that ranged in size from 12 to 885 kb and encompassed at least 10 single nucleotide polymorphisms (SNPs). Of 19 well characterized CNV regions that were available for combined genotype-expression analysis 11 (58%) were associated with expression changes of genes within, partially within or near these CNV regions in fibroblasts or lymphoblastoid cell lines at a nominal P value <0.05. To further investigate the mode of inheritance of CNVs in the large pedigree, we analyzed a set of four CNVs, located at 6q27, 9q21.11, 12p13.31 and 15q11, all of which were enriched in subjects with affective disorders. We additionally show that these variants affect the expression of neuronal genes within or near the rearrangement. Our analysis suggests that family based studies of the combined effect of common and rare CNVs at many loci may represent a useful approach in the genetic analysis of disease susceptibility of mental disorders.  相似文献   

10.
We searched for disruptive, genic rare copy-number variants (CNVs) among 411 families affected by sporadic autism spectrum disorder (ASD) from the Simons Simplex Collection by using available exome sequence data and CoNIFER (Copy Number Inference from Exome Reads). Compared to high-density SNP microarrays, our approach yielded ∼2× more smaller genic rare CNVs. We found that affected probands inherited more CNVs than did their siblings (453 versus 394, p = 0.004; odds ratio [OR] = 1.19) and that the probands’ CNVs affected more genes (921 versus 726, p = 0.02; OR = 1.30). These smaller CNVs (median size 18 kb) were transmitted preferentially from the mother (136 maternal versus 100 paternal, p = 0.02), although this bias occurred irrespective of affected status. The excess burden of inherited CNVs among probands was driven primarily by sibling pairs with discordant social-behavior phenotypes (p < 0.0002, measured by Social Responsiveness Scale [SRS] score), which contrasts with families where the phenotypes were more closely matched or less extreme (p > 0.5). Finally, we found enrichment of brain-expressed genes unique to probands, especially in the SRS-discordant group (p = 0.0035). In a combined model, our inherited CNVs, de novo CNVs, and de novo single-nucleotide variants all independently contributed to the risk of autism (p < 0.05). Taken together, these results suggest that small transmitted rare CNVs play a role in the etiology of simplex autism. Importantly, the small size of these variants aids in the identification of specific genes as additional risk factors associated with ASD.  相似文献   

11.
Epidemiological and genetic studies suggest that schizophrenia and autism may share genetic links. Besides common single nucleotide polymorphisms, recent data suggest that some rare copy number variants (CNVs) are risk factors for both disorders. Because we have previously found that schizophrenia and psychosis in Alzheimer''s disease (AD+P) share some genetic risk, we investigated whether CNVs reported in schizophrenia and autism are also linked to AD+P. We searched for CNVs associated with AD+P in 7 recurrent CNV regions that have been previously identified across autism and schizophrenia, using the Illumina HumanOmni1-Quad BeadChip. A chromosome 16p11.2 duplication CNV (chr16: 29,554,843-30,105,652) was identified in 2 of 440 AD+P subjects, but not in 136 AD subjects without psychosis, or in 593 AD subjects with intermediate psychosis status, or in 855 non-AD individuals. The frequency of this duplication CNV in AD+P (0.46%) was similar to that reported previously in schizophrenia (0.46%). This duplication CNV was further validated using the NanoString nCounter CNV Custom CodeSets. The 16p11.2 duplication has been associated with developmental delay, intellectual disability, behavioral problems, autism, schizophrenia (SCZ), and bipolar disorder. These two AD+P patients had no personal of, nor any identified family history of, SCZ, bipolar disorder and autism. To the best of our knowledge, our case report is the first suggestion that 16p11.2 duplication is also linked to AD+P. Although rare, this CNV may have an important role in the development of psychosis.  相似文献   

12.
Copy number variants (CNVs) are thought to play an important role in the predisposition to autism spectrum disorder (ASD). However, their relatively low frequency and widespread genomic distribution complicates their accurate characterization and utilization for clinical genetics purposes. Here we present a comprehensive analysis of multi-study, genome-wide CNV data from AutDB (http://mindspec.org/autdb.html), a genetic database that accommodates detailed annotations of published scientific reports of CNVs identified in ASD individuals. Overall, we evaluated 4,926 CNVs in 2,373 ASD subjects from 48 scientific reports, encompassing ∼2.12×109 bp of genomic data. Remarkable variation was seen in CNV size, with duplications being significantly larger than deletions, (P  =  3×10−105; Wilcoxon rank sum test). Examination of the CNV burden across the genome revealed 11 loci with a significant excess of CNVs among ASD subjects (P<7×10−7). Altogether, these loci covered 15,610 kb of the genome and contained 166 genes. Remarkable variation was seen both in locus size (20 - 4950 kb), and gene content, with seven multigenic (≥3 genes) and four monogenic loci. CNV data from control populations was used to further refine the boundaries of these ASD susceptibility loci. Interestingly, our analysis indicates that 15q11.2-13.3, a genomic region prone to chromosomal rearrangements of various sizes, contains three distinct ASD susceptibility CNV loci that vary in their genomic boundaries, CNV types, inheritance patterns, and overlap with CNVs from control populations. In summary, our analysis of AutDB CNV data provides valuable insights into the genomic characteristics of ASD susceptibility CNV loci and could therefore be utilized in various clinical settings and facilitate future genetic research of this disorder.  相似文献   

13.
Although heritable factors are an important determinant of risk of early-onset cancer, the majority of these malignancies appear to occur sporadically without identifiable risk factors. Germline de novo copy-number variations (CNVs) have been observed in sporadic neurocognitive and cardiovascular disorders. We explored this mechanism in 382 genomes of 116 early-onset cancer case-parent trios and unaffected siblings. Unique de novo germline CNVs were not observed in 107 breast or colon cancer trios or controls but were indeed found in 7% of 43 testicular germ cell tumor trios; this percentage exceeds background CNV rates and suggests a rare de novo genetic paradigm for susceptibility to some human malignancies.  相似文献   

14.
While numerous studies have implicated copy number variants (CNVs) in a range of neurological phenotypes, the impact relative to disease severity has been difficult to ascertain due to small sample sizes, lack of phenotypic details, and heterogeneity in platforms used for discovery. Using a customized microarray enriched for genomic hotspots, we assayed for large CNVs among 1,227 individuals with various neurological deficits including dyslexia (376), sporadic autism (350), and intellectual disability (ID) (501), as well as 337 controls. We show that the frequency of large CNVs (>1 Mbp) is significantly greater for ID-associated phenotypes compared to autism (p = 9.58 × 10(-11), odds ratio = 4.59), dyslexia (p = 3.81 × 10(-18), odds ratio = 14.45), or controls (p = 2.75 × 10(-17), odds ratio = 13.71). There is a striking difference in the frequency of rare CNVs (>50 kbp) in autism (10%, p = 2.4 × 10(-6), odds ratio = 6) or ID (16%, p = 3.55 × 10(-12), odds ratio = 10) compared to dyslexia (2%) with essentially no difference in large CNV burden among dyslexia patients compared to controls. Rare CNVs were more likely to arise de novo (64%) in ID when compared to autism (40%) or dyslexia (0%). We observed a significantly increased large CNV burden in individuals with ID and multiple congenital anomalies (MCA) compared to ID alone (p = 0.001, odds ratio = 2.54). Our data suggest that large CNV burden positively correlates with the severity of childhood disability: ID with MCA being most severely affected and dyslexics being indistinguishable from controls. When autism without ID was considered separately, the increase in CNV burden was modest compared to controls (p = 0.07, odds ratio = 2.33).  相似文献   

15.
Copy number variants (CNVs) of the Williams–Beuren syndrome (WBS) 7q11.23 region are responsible for neurodevelopmental disorders with multi-system involvement and variable expressivity. Typical features of WBS microdeletion comprise a recognizable pattern of facial dysmorphisms, supravalvular aortic stenosis, connective tissue abnormalities, hypercalcemia, and a distinctive neurobehavioral phenotype. Conversely, the phenotype of patients carrying the 7q11.23 reciprocal duplications includes less distinctive facial dysmorphisms and prominent speech delay. The common deletion/duplication ranges in size from 1.5 to 1.8 Mb and encompasses approximately 28 genes. This region is flanked by low copy repeats (LCRs) with greater than ~97% identity, which can mediate non-allelic homologous recombination resulting from misalignment of LCRs during meiosis. A clear genotype–phenotype correlation has been established in WBS only for the elastin gene, which is responsible for the vascular and connective tissue abnormalities. The molecular substrates underlying the other clinical features of 7q11.23 CNVs, including the neurocognitive phenotypes, are still debated. Recent studies suggest that besides the role of the genes in the deleted/duplicated interval, multiple factors such as regulatory sequences, epigenetic mechanisms, parental origin of the CNV, and nucleotide variations in the non-deleted/duplicated allele may be important in determining the variable expressivity of 7q11.23 CNV phenotypes. Here, we review the clinical and molecular findings and the recent insights on genomic disorders associated with CNVs involving the 7q11.23 region.  相似文献   

16.
We performed whole-genome sequencing (WGS) of 208 genomes from 53 families affected by simplex autism. For the majority of these families, no copy-number variant (CNV) or candidate de novo gene-disruptive single-nucleotide variant (SNV) had been detected by microarray or whole-exome sequencing (WES). We integrated multiple CNV and SNV analyses and extensive experimental validation to identify additional candidate mutations in eight families. We report that compared to control individuals, probands showed a significant (p = 0.03) enrichment of de novo and private disruptive mutations within fetal CNS DNase I hypersensitive sites (i.e., putative regulatory regions). This effect was only observed within 50 kb of genes that have been previously associated with autism risk, including genes where dosage sensitivity has already been established by recurrent disruptive de novo protein-coding mutations (ARID1B, SCN2A, NR3C2, PRKCA, and DSCAM). In addition, we provide evidence of gene-disruptive CNVs (in DISC1, WNT7A, RBFOX1, and MBD5), as well as smaller de novo CNVs and exon-specific SNVs missed by exome sequencing in neurodevelopmental genes (e.g., CANX, SAE1, and PIK3CA). Our results suggest that the detection of smaller, often multiple CNVs affecting putative regulatory elements might help explain additional risk of simplex autism.  相似文献   

17.

Background

Ongoing studies using genomic microarrays and next-generation sequencing have demonstrated that the genetic contributions to cardiovascular diseases have been significantly ignored in the past. The aim of this study was to identify rare copy number variants in individuals with congenital pulmonary atresia (PA).

Methods and Results

Based on the hypothesis that rare structural variants encompassing key genes play an important role in heart development in PA patients, we performed high-resolution genome-wide microarrays for copy number variations (CNVs) in 82 PA patient-parent trios and 189 controls with an Illumina SNP array platform. CNVs were identified in 17/82 patients (20.7%), and eight of these CNVs (9.8%) are considered potentially pathogenic. Five de novo CNVs occurred at two known congenital heart disease (CHD) loci (16p13.1 and 22q11.2). Two de novo CNVs that may affect folate and vitamin B12 metabolism were identified for the first time. A de novo 1-Mb deletion at 17p13.2 may represent a rare genomic disorder that involves mild intellectual disability and associated facial features.

Conclusions

Rare CNVs contribute to the pathogenesis of PA (9.8%), suggesting that the causes of PA are heterogeneous and pleiotropic. Together with previous data from animal models, our results might help identify a link between CHD and folate-mediated one-carbon metabolism (FOCM). With the accumulation of high-resolution SNP array data, these previously undescribed rare CNVs may help reveal critical gene(s) in CHD and may provide novel insights about CHD pathogenesis.  相似文献   

18.
Obesity is one of the most complex human diseases that are widely concerned and studied. More recently, copy number variations (CNVs) emerge as another important genetic marker to influence various human diseases. To elucidate the relationship between obesity and CNVs, this current study selected obesity-related candidate CNVs and analyzed their association with body mass index (BMI). Results showed that a CNV locus, 8q24.3, was significantly different (P = 0.0070) in CNV frequency between the obese and healthy controls in a young eastern Chinese cohort, while no statistical significance was observed in other seven candidate loci including well reported 10q11.22 and 16p11.2 loci. The association of 8q24.3 CNVs with BMI of the subjects only showed marginal significance, while the copy number (CN) of 5p15.33 had a significant correlation with the BMI of the subject. These results suggested that 8q24.3 CN gains was associated with obesity, and 5p15.33 might also contribute to obesity pathogenesis, highlighting the importance of these CNVs for obesity risks, as well as providing new evidence for CNVs in the pathology of common diseases.  相似文献   

19.
We review the contributions and limitations of genome-wide array-based identification of copy number variants (CNVs) in the clinical diagnostic evaluation of patients with mental retardation (MR) and other brain-related disorders. In unselected MR referrals a causative genomic gain or loss is detected in 14-18% of cases. Usually, such CNVs arise de novo, are not found in healthy subjects, and have a major impact on the phenotype by altering the dosage of multiple genes. This high diagnostic yield justifies array-based segmental aneuploidy screening as the initial genetic test in these patients. This also pertains to patients with autism (expected yield about 5-10% in nonsyndromic and 10-20% in syndromic patients) and schizophrenia (at least 5% yield). CNV studies in idiopathic generalized epilepsy, attention-deficit hyperactivity disorder, major depressive disorder and Tourette syndrome indicate that patients have, on average, a larger CNV burden as compared to controls. Collectively, the CNV studies suggest that a wide spectrum of disease-susceptibility variants exists, most of which are rare (<0.1%) and of variable and usually small effect. Notwithstanding, a rare CNV can have a major impact on the phenotype. Exome sequencing in MR and autism patients revealed de novo mutations in protein coding genes in 60 and 20% of cases, respectively. Therefore, it is likely that arrays will be supplanted by next-generation sequencing methods as the initial and perhaps ultimate diagnostic tool in patients with brain-related disorders, revealing both CNVs and mutations in a single test.  相似文献   

20.
Copy Number Variants (CNVs) are now recognized as playing a significant role in complex disease etiology. Age-related macular degeneration (AMD) is the most common cause of irreversible vision loss in the western world. While a number of genes and environmental factors have been associated with both risk and protection in AMD, the role of CNVs has remained largely unexplored. We analyzed the two major AMD risk-associated regions on chromosome 1q32 and 10q26 for CNVs using Multiplex Ligation-dependant Probe Amplification. The analysis targeted nine genes in these two key regions, including the Complement Factor H (CFH) gene, the 5 CFH-related (CFHR) genes representing a known copy number "hotspot", the F13B gene as well as the ARMS2 and HTRA1 genes in 387 cases of late AMD and 327 controls. No copy number variation was detected at the ARMS2 and HTRA1 genes in the chromosome 10 region, nor for the CFH and F13B genes at the chromosome 1 region. However, significant association was identified for the CFHR3-1 deletion in AMD cases (p = 2.38 × 10(-12)) OR = 0.31, CI-0.95 (0.23-0.44), for both neovascular disease (nAMD) (p = 8.3 × 10(-9)) OR = 0.36 CI-0.95 (0.25-0.52) and geographic atrophy (GA) (p = 1.5 × 10(-6)) OR = 0.36 CI-0.95 (0.25-0.52) compared to controls. In addition, a significant association with deletion of CFHR1-4 was identified only in patients who presented with bilateral GA (p = 0.02) (OR = 7.6 CI-0.95 1.38-41.8). This is the first report of a phenotype specific association of a CNV for a major subtype of AMD and potentially allows for pre-diagnostic identification of individuals most likely to proceed to this end stage of disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号