首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously demonstrated that double-strand breaks (DSBs) in regions near telomeres are much more likely to result in large deletions, gross chromosome rearrangements, and chromosome instability than DSBs at interstitial sites within chromosomes. In the present study, we investigated whether this response of subtelomeric regions to DSBs is a result of a deficiency in DSB repair by comparing the frequency of homologous recombination repair (HRR) and nonhomologous end joining (NHEJ) at interstitial and telomeric sites following the introduction of DSBs by I-SceI endonuclease. We also monitored the frequency of small deletions, which have been shown to be the most common mutation at I-SceI-induced DSBs at interstitial sites. We observed no difference in the frequency of small deletions or HRR at interstitial and subtelomeric DSBs. However, the frequency of NHEJ was significantly lower at DSBs near telomeres compared to interstitial sites. The frequency of NHEJ was also lower at DSBs occurring at interstitial sites containing telomeric repeat sequences. We propose that regions near telomeres are deficient in classical NHEJ as a result of the presence of cis-acting telomere-binding proteins that cause DSBs to be processed as though they were telomeres, resulting in excessive resection, telomere loss, and eventual chromosome rearrangements by alternative NHEJ.  相似文献   

2.
3.
Little is known about the quantitative contributions of nonhomologous end joining (NHEJ) and homologous recombination (HR) to DNA double-strand break (DSB) repair in different cell cycle phases after physiologically relevant doses of ionizing radiation. Using immunofluorescence detection of gamma-H2AX nuclear foci as a novel approach for monitoring the repair of DSBs, we show here that NHEJ-defective hamster cells (CHO mutant V3 cells) have strongly reduced repair in all cell cycle phases after 1 Gy of irradiation. In contrast, HR-defective CHO irs1SF cells have a minor repair defect in G(1), greater impairment in S, and a substantial defect in late S/G(2). Furthermore, the radiosensitivity of irs1SF cells is slight in G(1) but dramatically higher in late S/G(2), while V3 cells show high sensitivity throughout the cell cycle. These findings show that NHEJ is important in all cell cycle phases, while HR is particularly important in late S/G(2), where both pathways contribute to repair and radioresistance. In contrast to DSBs produced by ionizing radiation, DSBs produced by the replication inhibitor aphidicolin are repaired entirely by HR. irs1SF, but not V3, cells show hypersensitivity to aphidicolin treatment. These data provide the first evaluation of the cell cycle-specific contributions of NHEJ and HR to the repair of radiation-induced versus replication-associated DSBs.  相似文献   

4.
DNA double strand break repair in mammalian cells   总被引:24,自引:0,他引:24  
Human cells can process DNA double-strand breaks (DSBs) by either homology directed or non-homologous repair pathways. Defects in components of DSB repair pathways are associated with a predisposition to cancer. The products of the BRCA1 and BRCA2 genes, which normally confer protection against breast cancer, are involved in homology-directed DSB repair. Defects in another homology-directed pathway, single-strand annealing, are associated with genome instability and cancer predisposition in the Nijmegen breakage syndrome and a radiation-sensitive ataxia-telangiectasia-like syndrome. Many DSB repair proteins also participate in the signaling pathways which underlie the cell's response to DSBs.  相似文献   

5.
Mice homozygous for the scid (severe combined immune deficiency) mutation are defective in the repair of DNA double-strand breaks (DSBs) and are consequently very X-ray sensitive and defective in the lymphoid V(D)J recombination process. Recently, a strong candidate for the scid gene has been identified as the catalytic subunit of the DNA-dependent protein kinase (DNA-PK) complex. Here, we show that the activity of the DNA-PK complex is regulated in a cell cycle-dependent manner, with peaks of activity found at the G1/early S phase and again at the G2 phase in wild-type cells. Interestingly, only the deficit of the G1/early S phase DNA-PK activity correlated with an increased hypersensitivity to X-irradiation and a DNA DSB repair deficit in synchronized scid pre-B cells. Finally, we demonstrate that the DNA-PK activity found at the G2 phase may be required for exit from a DNA damage-induced G2 checkpoint arrest. These observations suggest the presence of two pathways (DNA-PK-dependent and -independent) of illegitimate mammalian DNA DSB repair and two distinct roles (DNA DSB repair and G2 checkpoint traversal) for DNA-PK in the cellular response to ionizing radiation.  相似文献   

6.
7.
DNA double-strand breaks (DSBs) occur in the context of a highly organized chromatin environment and are, thus, a significant threat to the epigenomic integrity of eukaryotic cells. Changes in break-proximal chromatin structure are thought to be a prerequisite for efficient DNA repair and may help protect the structural integrity of the nucleus. Unlike most bona fide DNA repair factors, chromatin influences the repair process at several levels: the existing chromatin context at the site of damage directly affects the access and kinetics of the repair machinery; DSB induced chromatin modifications influence the choice of repair factors, thereby modulating repair outcome; lastly, DNA damage can have a significant impact on chromatin beyond the site of damage. We will discuss recent findings that highlight both the complexity and importance of dynamic and tightly orchestrated chromatin reorganization to ensure efficient DSB repair and nuclear integrity. This article is part of a Special Issue entitled: Chromatin in time and space.  相似文献   

8.
9.
Agarwal S  Tafel AA  Kanaar R 《DNA Repair》2006,5(9-10):1075-1081
Translocations are genetic aberrations that occur when a broken fragment of a chromosome is erroneously rejoined to another chromosome. The initial event in the creation of a translocation is the formation of a DNA double-strand break (DSB), which can be induced both under physiological situations, such as during the development of the immune system, or by exogenous DNA damaging agents. Two major repair pathways exist in cells that repair DSBs as they arise, namely homologous recombination, and non-homologous end-joining. In some situations these pathways can function inappropriately and rejoin ends incorrectly to produce genomic rearrangements, including translocations. Translocations have been implicated in cancer because of their ability to activate oncogenes. Due to selection at the level of the DNA, the cell, and the tissue certain forms of cancer are associated with specific translocations that can be used as a tool for diagnosis and prognosis of these cancers.  相似文献   

10.
Molecular mechanisms of DNA double-strand break repair   总被引:24,自引:0,他引:24  
DNA double-strand breaks (DSBs) are major threats to the genomic integrity of cells. If not taken care of properly, they can cause chromosome fragmentation, loss and translocation, possibly resulting in carcinogenesis. Upon DSB formation, cell-cycle checkpoints are triggered and multiple DSB repair pathways can be activated. Recent research on the Nijmegen breakage syndrome, which predisposes patients to cancer, suggests a direct link between activation of cell-cycle checkpoints and DSB repair. Furthermore, the biochemical activities of proteins involved in the two major DSB repair pathways, homologous recombination and DNA end-joining, are now beginning to emerge. This review discusses these new findings and their implications for the mechanisms of DSB repair.  相似文献   

11.
12.
We assayed error-prone double-strand break (DSB) repair in wild-type and isogenic Mlh1-null mouse embryonic fibroblasts containing a stably integrated DSB repair substrate. The substrate contained a thymidine kinase (tk) gene fused to a neomycin-resistance (neo) gene; the tk-neo fusion gene was disrupted in the tk portion by a 22bp oligonucleotide containing the 18 bp recognition site for endonuclease I-SceI. Following DSB-induction by transient expression of I-SceI endonuclease, cells that repaired the DSB by error-prone nonhomologous end-joining (NHEJ) and restored the correct reading frame to the tk-neo fusion gene were recovered by selecting for G418-resistant clones. The number of G418-resistant clones induced by I-SceI expression did not differ significantly between wild-type and Mlh1-deficient cells. While most DSB repair events were consistent with simple NHEJ in both wild-type and Mlh1-deficient cells, complex repair events were more common in wild-type cells. Furthermore, genomic deletions associated with NHEJ events were strikingly larger in wild-type versus Mlh1-deficient cells. Additional experiments revealed that the stable transfection efficiency of Mlh1-null cells is higher than that of wild-type cells. Collectively, our results suggest that Mlh1 modulates error-prone NHEJ by inhibiting the annealing of DNA ends containing noncomplementary base pairs or by promoting the annealing of microhomologies.  相似文献   

13.
Transfected linear DNA molecules are substrates for double-strand break (DSB) repair in mammalian cells. The DSB repair process can involve recombination between the transfected DNA molecules, between the transfected molecules and chromosomal DNA, or both. In order to determine whether these different types of repair events are linked, we devised assays enabling us to follow the fate of linear extrachromosomal DNA molecules involved in both interplasmid and chromosome-plasmid recombination, in the presence or absence of a pre-defined chromosomal DSB. Plasmid-based vectors were designed that could either recombine via interplasmid recombination or chromosome-plasmid recombination to produce a functional beta-galactosidase (betagal) fusion gene. By measuring the frequency of betagal+ cells at 36 h post-transfection versus the frequency of betagal+ clones after 14 days, we found that the number of cells containing extrachromosomal recombinant DNA molecules at 36 h (i.e., betagal+), either through interplasmid or chromosome-plasmid recombination, was nearly the same as the number of cells integrating these recombinant molecules. Furthermore, when a predefined DSB was created at a chromosomal site, the extrachromosomal recombinant DNA molecules were shown to integrate preferentially at that site by Southern and fiber-FISH (fluorescence in situ hybridization) analysis. Together these data indicate that the initial recombination event can potentiate or commit extrachromosomal DNA to integration in the genome at the site of a chromosomal DSB. The efficiency at which extrachromosomal recombinant molecules are used as substrates in chromosomal DSB repair suggests extrachromosomal DSB repair can be coupled to the repair of chromosomal DSBs in mammalian cells.  相似文献   

14.
Double-strand breaks pose a major threat to the genome and must be repaired accurately if structural and functional integrity are to be preserved. This is usually achieved via homologous recombination, which enables the ends of a broken DNA molecule to engage an intact duplex and prime synthesis of the DNA needed for repair. In Escherichia coli, repair relies on the RecBCD and RecA proteins, the combined ability of which to initiate recombination and form joint-molecule intermediates is well understood. To shed light on subsequent events, we exploited the I-SceI homing endonuclease of yeast to make breaks at I-SceI cleavage sites engineered into the chromosome. We show that survival depends on RecA and RecBCD, and that subsequent events can proceed via either of two pathways, one dependent on the RuvABC Holliday junction resolvase and the other on RecG helicase. Both pathways rely on PriA, presumably to facilitate DNA replication. We discuss the possibility that classical Holliday junctions may not be essential intermediates in repair and consider alternative pathways for RecG-dependent separation of joint molecules formed by RecA.  相似文献   

15.
The induction of double-strand breaks (DSBs) in DNA by exposure to DNA damaging agents, or as intermediates in normal cellular processes, constitutes a severe threat for the integrity of the genome. If not properly repaired, DSBs may result in chromosomal aberrations, which, in turn, can lead to cell death or to uncontrolled cell growth. To maintain the integrity of the genome, multiple pathways for the repair of DSBs have evolved during evolution: homologous recombination (HR), non-homologous end joining (NHEJ) and single-strand annealing (SSA). HR has the potential to lead to accurate repair of DSBs, whereas NHEJ and SSA are essentially mutagenic. In yeast, DSBs are primarily repaired via high-fidelity repair of DSBs mediated by HR, whereas in higher eukaryotes, both HR and NHEJ are important. In this review, we focus on the functional conservation of HR from fungi to mammals and on the role of the individual proteins in this process.  相似文献   

16.
DNA DSBs (double-strand breaks) represent a critical lesion for a cell, with misrepair being potentially as harmful as lack of repair. In mammalian cells, DSBs are predominantly repaired by non-homologous end-joining or homologous recombination. The kinetics of repair of DSBs can differ widely, and recent studies have shown that the higher-order chromatin structure can dramatically affect the pathway utilized, the rate of repair and the genetic factors required for repair. Studies of the repair of DSBs arising within heterochromatic DNA regions have provided insight into the constraints that higher-order chromatin structure poses on repair and the processing that is uniquely required for the repair of such DSBs. In the present paper, we provide an overview of our current understanding of the process of heterochromatic DSB repair in mammalian cells and consider the evolutionary conservation of the processes.  相似文献   

17.
DNA double-strand break repair by homologous recombination   总被引:11,自引:0,他引:11  
DNA double-strand breaks (DSB) are presumed to be the most deleterious DNA lesions as they disrupt both DNA strands. Homologous recombination (HR), single-strand annealing, and non-homologous end-joining are considered to be the pathways for repairing DSB. In this review, we focus on DSB repair by HR. The proteins involved in this process as well as the interactions among them are summarized and characterized. The main emphasis is on eukaryotic cells, particularly the budding yeast Saccharomyces cerevisiae and mammals. Only the RAD52 epistasis group proteins are included.  相似文献   

18.
唐子执  刘聪  曾鸣 《生命科学》2014,(11):1172-1175
在各种DNA损伤中,DNA双链断裂(double-strand break,DSB)是最为严重的一种,快速准确地修复DSB对维持基因组稳定性起着至关重要的作用。真核生物细胞通过一系列复杂的信号转导途径激活对DSB的修复,其中最为重要的是同源重组和非同源末端连接机制。最近的研究表明,这两种方式在DSB修复的早期是相互竞争的关系,其选择在很大程度上受到53BP1及同源蛋白质的调控。将讨论53BP1作为DSB修复途径的核心因子,在染色质水平整合BRCA1、Ct IP等修复因子和多种组蛋白修饰构成的信号途径,介导同源重组和非同源末端连接通路选择的分子机制。  相似文献   

19.
20.
DNA double-strand breaks (DSBs) are repaired by nonhomologous end-joining (NHEJ) and homologous recombination (HR). The NHEJ/HR decision is under complex regulation and involves DNA-dependent protein kinase (DNA-PKcs). HR is elevated in DNA-PKcs null cells, but suppressed by DNA-PKcs kinase inhibitors, suggesting that kinase-inactive DNA-PKcs (DNA-PKcs-KR) would suppress HR. Here we use a direct repeat assay to monitor HR repair of DSBs induced by I-SceI nuclease. Surprisingly, DSB-induced HR in DNA-PKcs-KR cells was 2- to 3-fold above the elevated HR level of DNA-PKcs null cells, and ~4- to 7-fold above cells expressing wild-type DNA-PKcs. The hyperrecombination in DNA-PKcs-KR cells compared to DNA-PKcs null cells was also apparent as increased resistance to DNA crosslinks induced by mitomycin C. ATM phosphorylates many HR proteins, and ATM is expressed at a low level in cells lacking DNA-PKcs, but restored to wild-type level in cells expressing DNA-PKcs-KR. Several clusters of phosphorylation sites in DNA-PKcs, including the T2609 cluster, which is phosphorylated by DNA-PKcs and ATM, regulate access of repair factors to broken ends. Our results indicate that ATM-dependent phosphorylation of DNA-PKcs-KR contributes to the hyperrecombination phenotype. Interestingly, DNA-PKcs null cells showed more persistent ionizing radiation-induced RAD51 foci (but lower HR levels) compared to DNA-PKcs-KR cells, consistent with HR completion requiring RAD51 turnover. ATM may promote RAD51 turnover, suggesting a second (not mutually exclusive) mechanism by which restored ATM contributes to hyperrecombination in DNA-PKcs-KR cells. We propose a model in which DNA-PKcs and ATM coordinately regulate DSB repair by NHEJ and HR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号