首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In cycling tissues that exhibit high turnover, tissue maintenance and repair are coordinated by stem cells. But, how frequently stem cells are replaced following differentiation, aging or injury remains unclear. By drawing together the results of recent lineage-tracing studies, we propose that tissue stem cells are routinely lost and replaced in a stochastic manner. We show that stem cell replacement leads to neutral competition between clones, resulting in two characteristic and recurring patterns of clone fate dynamics, which provide a unifying framework for interpreting clone fate data and for measuring rates of stem cell loss and replacement in vivo. Thus, we challenge the concept of the stem cell as an immortal, slow-cycling, asymmetrically dividing cell.  相似文献   

2.
3.
Neural stem cells are the most immature progenitor cells in the nervous system and are defined by their ability to self-renew by symmetric division as well as to give rise to more mature progenitors of all neural lineages by asymmetric division (multipotentiality). The interest in neural stem cells has been growing in the past few years following the demonstration of their presence also in the adult nervous system of several mammals, including humans. This observation implies that the brain, once thought to be entirely post-mitotic, must have at least a limited capacity for self-renewal. This raises the possibility that the adult nervous system may still have the necessary plasticity to undergo repair of inborn defects and acquired injuries, if ways can be found to exploit the potential of neural stem cells (either endogenous or derived from other sources) to replace damaged or defective cells. A full understanding of the molecular mechanisms regulating generation and maintenance of neural stem cells, their choice between different differentiation programmes and their migration properties is essential if these cells are to be used for therapeutic applications. Here, we summarize what is currently known of the genes and the signalling pathways involved in these mechanisms.  相似文献   

4.
5.
In both infection and autoimmunity, the development of high-affinity Abs and memory requires B cells to efficiently capture and process Ags for presentation to cognate T cells. Although a great deal is known about how Ags are processed, the molecular mechanisms by which the BCR captures Ag for processing are still obscure. In this study, we demonstrate that the Ig beta component of the BCR is diubiquitinylated and that this is dependent on the E3 ligase Itch. Itch-/- B lymphocytes manifest both a defect in ligand-induced BCR internalization and endocytic trafficking to late endosomal Ag-processing compartments. In contrast, analysis of ubiquitinylation-defective receptors demonstrated that the attachment of ubiquitins to Ig beta is required for endosomal sorting and for the presentation of Ag to T cells, yet, ubiquitinylation is dispensable for receptor internalization. Membrane-bound Ig mu was not detectably ubiquitinylated nor were the conserved lysines in the mu cytosolic tail required for trafficking to late endosomes. These results demonstrate that ubiquitinylation of a singular substrate, Ig beta, is required for a specific receptor trafficking event. However, they also reveal that E3 ligases play a broader role in multiple processes that determine the fate of Ag-engaged BCR complexes.  相似文献   

6.
To characterize the properties of adult neural stem cells (NSCs), we generated and analyzed Sox2-GFP transgenic mice. Sox2-GFP cells in the subgranular zone (SGZ) express markers specific for progenitors, but they represent two morphologically distinct populations that differ in proliferation levels. Lentivirus- and retrovirus-mediated fate-tracing studies showed that Sox2+ cells in the SGZ have potential to give rise to neurons and astrocytes, revealing their multipotency at the population as well as at a single-cell level. A subpopulation of Sox2+ cells gives rise to cells that retain Sox2, highlighting Sox2+ cells as a primary source for adult NSCs. In response to mitotic signals, increased proliferation of Sox2+ cells is coupled with the generation of Sox2+ NSCs as well as neuronal precursors. An asymmetric contribution of Sox2+ NSCs may play an important role in maintaining the constant size of the NSC pool and producing newly born neurons during adult neurogenesis.  相似文献   

7.
Li Q  Gregory RI 《Cell Stem Cell》2008,2(3):195-196
MicroRNAs modulate target gene expression and are essential for normal development, but how does this pathway impact cell fate decisions? In this issue of Cell Stem Cell, Ivey et al. (2008) find that muscle-specific microRNAs repress nonmuscle genes to direct embryonic stem cell differentiation to mesoderm and muscle.  相似文献   

8.
Ex vivo‐expanded stem cells have long been a cornerstone of biotherapeutics and have attracted increasing attention for treating intractable diseases and improving tissue regeneration. However, using exogenous cellular materials to develop restorative treatments for large numbers of patients has become a major concern for both economic and safety reasons. Advances in cell biological research over the past two decades have expanded the potential for using endogenous stem cells during wound healing processes, and in particular, recent insight into stem cell movement and homing has prompted regenerative research and therapy based on recruiting endogenous cells. Inspired by the natural healing process, artificial administration of specific chemokines as signals systemically or at the injury site, typically using biomaterials as vehicles, is a state‐of‐the‐art strategy that potentiates stem cell homing and recreates an anti‐inflammatory and immunomodulatory microenvironment to enhance in situ tissue regeneration. However, pharmacologically coaxing endogenous stem cells to act as therapeutics in the field of biomedicine remains in the early stages; its efficacy is limited by the lack of innovative methodologies for chemokine presentation and release. This review describes how to direct the homing of endogenous stem cells via the administration of specific signals, with a particular emphasis on targeted signalling molecules that regulate this homing process, to enhance in situ tissue regeneration. We also provide an outlook on and critical considerations for future investigations to enhance stem cell recruitment and harness the reparative potential of these recruited cells as a clinically relevant cell therapy.  相似文献   

9.
10.
《Cell Stem Cell》2021,28(8):1457-1472.e12
  1. Download : Download high-res image (227KB)
  2. Download : Download full-size image
  相似文献   

11.
The neural precursor surface marker CD133 is thought to be enriched in brain cancer stem cells and in radioresistant DAOY medulloblastoma-derived tumor cells. Given that membrane type-1 matrix metalloproteinase (MT1-MMP) expression is a hallmark of highly invasive, radioresistant, and hypoxic brain tumor cells, we sought to determine whether MT1-MMP and other MMPs could regulate the invasive phenotype of CD133(+) DAOY cells. We found that when DAOY medulloblastoma or U87 glioblastoma cells were implanted in nude mice, only those cells specifically implanted in the brain environment generated CD133(+) brain tumors. Vascular endothelial growth factor and basic fibroblast growth factor gene expression increases in correlation with CD133 expression in those tumors. When DAOY cultures were induced to generate in vitro neurosphere-like cells, gene expression of CD133, MT1-MMP, MMP-9, and MDR-1 was induced and correlated with an increase in neurosphere invasiveness. Specific small interfering RNA gene silencing of either MT1-MMP or MMP-9 reduced the capacity of the DAOY monolayers to generate neurospheres and concomitantly abrogated their invasive capacity. On the other hand, overexpression of MT1-MMP in DAOY triggered neurosphere-like formation which was further amplified when cells were cultured in neurosphere medium. Collectively, we show that both MT1-MMP and MMP-9 contribute to the invasive phenotype during CD133(+) neurosphere-like formation in medulloblastoma cells. Increases in MMP-9 may contribute to the opening of the blood-brain barrier, whereas increased MT1-MMP would promote brain tumor infiltration. Our study suggests that MMP-9 or MT1-MMP targeting may reduce the formation of brain tumor stem cells.  相似文献   

12.
Reich J  Papoulas O 《PloS one》2012,7(4):e35365
Adult stem cells must balance self-renewal and differentiation for tissue homeostasis. The Drosophila ovary has provided a wealth of information about the extrinsic niche signals and intrinsic molecular processes required to ensure appropriate germline stem cell renewal and differentiation. The factors controlling behavior of the more recently identified follicle stem cells of the ovary are less well-understood but equally important for fertility. Here we report that translational regulators play a critical role in controlling these cells. Specifically, the translational regulator Caprin (Capr) is required in the follicle stem cell lineage to ensure maintenance of this stem cell population and proper encapsulation of developing germ cells by follicle stem cell progeny. In addition, reduction of one copy of the gene fmr1, encoding the translational regulator Fragile X Mental Retardation Protein, exacerbates the Capr encapsulation phenotype, suggesting Capr and fmr1 are regulating a common process. Caprin was previously characterized in vertebrates as Cytoplasmic Activation/Proliferation-Associated Protein. Significantly, we find that loss of Caprin alters the dynamics of the cell cycle, and we present evidence that misregulation of CycB contributes to the disruption in behavior of follicle stem cell progeny. Our findings support the idea that translational regulators may provide a conserved mechanism for oversight of developmentally critical cell cycles such as those in stem cell populations.  相似文献   

13.
The remarkable ability of rapid self-renewal makes the intestinal epithelium an ideal model for the study of adult stem cells. The intestinal epithelium is organized into villus and crypt, and a group of intestinal stem cells located at the base of crypt are responsible for this constant self-renewal throughout the life. Identification of the intestinal stem cell marker Lgr5, isolation and in vitro culture of Lgr5+ intestinal stem cells and the use of transgenic mouse models have significantly facilitated the studies of intestinal stem cell homeostasis and differentiation, therefore greatly expanding our knowledge of the regulatory mechanisms underlying the intestinal stem cell fate determination. In this review, we summarize the current understanding of how signals of Wnt, BMP, Notch and EGF in the stem cell niche modulate the intestinal stem cell fate.  相似文献   

14.
Towards predictive models of stem cell fate   总被引:1,自引:0,他引:1  
  相似文献   

15.
《Developmental cell》2022,57(5):610-623.e8
  1. Download : Download high-res image (131KB)
  2. Download : Download full-size image
  相似文献   

16.
Redox regulation of plant stem cell fate   总被引:1,自引:0,他引:1       下载免费PDF全文
Despite the importance of stem cells in plant and animal development, the common mechanisms of stem cell maintenance in both systems have remained elusive. Recently, the importance of hydrogen peroxide (H2O2) signaling in priming stem cell differentiation has been extensively studied in animals. Here, we show that different forms of reactive oxygen species (ROS) have antagonistic roles in plant stem cell regulation, which were established by distinct spatiotemporal patterns of ROS‐metabolizing enzymes. The superoxide anion () is markedly enriched in stem cells to activate WUSCHEL and maintain stemness, whereas H2O2 is more abundant in the differentiating peripheral zone to promote stem cell differentiation. Moreover, H2O2 negatively regulates biosynthesis in stem cells, and increasing H2O2 levels or scavenging leads to the termination of stem cells. Our results provide a mechanistic framework for ROS‐mediated control of plant stem cell fate and demonstrate that the balance between and H2O2 is key to stem cell maintenance and differentiation.  相似文献   

17.
Epigenetic control of neural stem cell fate   总被引:18,自引:0,他引:18  
  相似文献   

18.
19.
20.
Human pluripotent stem cells (hPSCs), including both embryonic stem cells and induced pluripotent stem cells, offer a potential cell source for research, drug screening, and regenerative medicine applications due to their unique ability to self-renew or differentiate to any somatic cell type. Before the full potential of hPSCs can be realized, robust protocols must be developed to direct their fate. Cell fate decisions are based on components of the surrounding microenvironment, including soluble factors, substrate or extracellular matrix, cell–cell interactions, mechanical forces, and 2D or 3D architecture. Depending on their spatio-temporal context, these components can signal hPSCs to either self-renew or differentiate to cell types of the ectoderm, mesoderm, or endoderm. Researchers working at the interface of engineering and biology have identified various factors which can affect hPSC fate, often based on lessons from embryonic development, and they have utilized this information to design in vitro niches which can reproducibly direct hPSC fate. This review highlights culture systems that have been engineered to promote self-renewal or differentiation of hPSCs, with a focus on studies that have elucidated the contributions of specific microenvironmental cues in the context of those culture systems. We propose the use of microsystem technologies for high-throughput screening of spatial–temporal presentation of cues, as this has been demonstrated to be a powerful approach for differentiating hPSCs to desired cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号