首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genetic mechanisms that influence memory formation and sensitivity to the effects of ethanol on behavior in Drosophila have some common elements. So far, these have centered on the cAMP/PKA signaling pathway, synapsin and fas2-dependent processes, pumilio-dependent regulators of translation, and a few other genes. However, there are several genes that are important for one or the other behaviors, suggesting that there is an incomplete overlap in the mechanisms that support memory and ethanol sensitive behaviors. The basis for this overlap is far from understood. We therefore examined memory in arouser (aru) mutant flies, which have recently been identified as having ethanol sensitivity deficits. The aru mutant flies showed memory deficits in both short-term place memory and olfactory memory tests. Flies with a revertant aru allele had wild-type levels of memory performance, arguing that the aru gene, encoding an EPS8L3 product, has a role in Drosophila memory formation. Furthermore, and interestingly, flies with the aru(8-128) insertion allele had deficits in only one of two genetic backgrounds in place and olfactory memory tests. Flies with an aru imprecise excision allele had deficits in tests of olfactory memory. Quantitative measurements of aru EPS8L3 mRNA expression levels correlate decreased expression with deficits in olfactory memory while over expression is correlated with place memory deficits. Thus, mutations of the aru EPS8L3 gene interact with the alleles of a particular genetic background to regulate arouser expression and reveals a role of this gene in memory.  相似文献   

2.
L-Arginine biosynthesis in Serratia marcescens Sr41 was found to be controlled by (a) feedback inhibition of N-acetylglutamate synthetase and (b) repression of some L-arginine biosynthetic enzymes, and an L-arginine-degrading system was found to exist. Accordingly, an L-arginine-producing mutant (aru argR argA) of S. marcescens Sr41 was constructed as follows. A mutant incapable of L-arginine utilization (aru) was obtained from the wild strain. Subsequently, from the lysine auxotroph (lysA) of aru mutant, a mutant having derepressed L-arginine biosynthetic enzymes (argR) was isolated by screening for colonies that could utilize Nalpha-acetyl-L-lysine in the presence of L-arginine. This selection was based on the finding that acetylornithinase of S. marcescens hydrolyzed Nalpha-acetyl-L-lysine. On the other hand, to obtain a mutant with feedback-resistant N-acetylglutamate synthetase (argA), the proAB argD argR triple mutant was isolated from the indirectly suppressed revertant (proAB argD) of the proline auxotroph (proAB). Next, the argA mutant was isolated from the triple mutant by selection for resistance to 3,4-dehydro-DL-proline in the presence of L-arginine. The argA mutation was introduced into the aru lysA argR strain by PS20-mediated cotransduction with lysA+. The aru argR argA lysA+ transductant produced 25 mg/ml of L-arginine in the medium.  相似文献   

3.
The heavy consumption of ethanol can lead to alcohol use disorders (AUDs) which impact patients, their families, and societies. Yet the genetic and physiological factors that predispose humans to AUDs remain unclear. One hypothesis is that alterations in mitochondrial function modulate neuronal sensitivity to ethanol exposure. Using Drosophila genetics we report that inactivation of the mitochondrial outer membrane translocator protein 18kDa (TSPO), also known as the peripheral benzodiazepine receptor, affects ethanol sedation and tolerance in male flies. Knockdown of dTSPO in adult male neurons results in increased sensitivity to ethanol sedation, and this effect requires the dTSPO depletion-mediated increase in reactive oxygen species (ROS) production and inhibition of caspase activity in fly heads. Systemic loss of dTSPO in male flies blocks the development of tolerance to repeated ethanol exposures, an effect that is not seen when dTSPO is only inactivated in neurons. Female flies are naturally more sensitive to ethanol than males, and female fly heads have strikingly lower levels of dTSPO mRNA than males. Hence, mitochondrial TSPO function plays an important role in ethanol sensitivity and tolerance. Since a large array of benzodiazepine analogues have been developed that interact with the peripheral benzodiazepine receptor, the mitochondrial TSPO might provide an important new target for treating AUDs.  相似文献   

4.
Protein kinase C theta (PKC theta) is unique among PKC isozymes in its translocation to the center of the immune synapse in T cells and its unique downstream signaling. Here we show that the hematopoietic protein tyrosine phosphatase (HePTP) also accumulates in the immune synapse in a PKC theta-dependent manner upon antigen recognition by T cells and is phosphorylated by PKC theta at Ser-225, which is required for lipid raft translocation. Immune synapse translocation was completely absent in antigen-specific T cells from PKC theta-/- mice. In intact T cells, HePTP-S225A enhanced T-cell receptor (TCR)-induced NFAT/AP-1 transactivation, while the acidic substitution mutant was as efficient as wild-type HePTP. We conclude that HePTP is phosphorylated in the immune synapse by PKC theta and thereby targeted to lipid rafts to temper TCR signaling. This represents a novel mechanism for the active immune synapse recruitment and activation of a phosphatase in TCR signaling.  相似文献   

5.
Ethanol enhances gamma-aminobutyrate (GABA) signaling in the brain, but its actions are inconsistent at GABA(A) receptors, especially at low concentrations achieved during social drinking. We postulated that the epsilon isoform of protein kinase C (PKCepsilon) regulates the ethanol sensitivity of GABA(A) receptors, as mice lacking PKCepsilon show an increased behavioral response to ethanol. Here we developed an ATP analog-sensitive PKCepsilon mutant to selectively inhibit the catalytic activity of PKCepsilon. We used this mutant and PKCepsilon(-/-) mice to determine that PKCepsilon phosphorylates gamma2 subunits at serine 327 and that reduced phosphorylation of this site enhances the actions of ethanol and benzodiazepines at alpha1beta2gamma2 receptors, which is the most abundant GABA(A) receptor subtype in the brain. Our findings indicate that PKCepsilon phosphorylation of gamma2 regulates the response of GABA(A) receptors to specific allosteric modulators, and, in particular, PKCepsilon inhibition renders these receptors sensitive to low intoxicating concentrations of ethanol.  相似文献   

6.
N D Khaustova  V N Totski? 《Genetika》1990,26(8):1427-1434
The subject of this research is activity and allozyme spectra of alcohol dehydrogenase (ADH), and survival of mutant strains of Drosophila kept in standard nutrient medium with added ethanol. In all experiments the ADH of flies revealed greater affinity to isopropanol than ethanol. The mutant strains considerably differed from one another and from the wild type of flies in the level of enzyme activity, which may be connected with genotypic properties in the mutants studied. The ADH variability in mutant strains seems to be caused by different alleles of the structural ADH gene, which was established as a result of investigation of activity, electrophoretic mobility and thermostability of corresponding allozymes. As follows from experiments on the genotypical structure of populations in the conditions of fly selection in the medium containing ethanol (10%), the adaptation of flies to exogenous ethanol takes place via mechanisms of allele control of the ADH activity. Phenotypical manifestation of the ADH locus and its effect on the resistance of Drosophila to alcohol are supposed to depend on complex gene interactions determined by the genotype as a whole.  相似文献   

7.
Plants and fungi often produce toxic secondary metabolites that limit their consumption, but herbivores and fungivores that evolve resistance gain access to these resources and can also gain protection against nonresistant predators and parasites. Given that Drosophila melanogaster fruit fly larvae consume yeasts growing on rotting fruit and have evolved resistance to fermentation products, we decided to test whether alcohol protects flies from one of their common natural parasites, endoparasitoid wasps. Here, we show that exposure to ethanol reduces wasp oviposition into fruit fly larvae. Furthermore, if infected, ethanol consumption by fruit fly larvae causes increased death of wasp larvae growing in the hemocoel and increased fly survival without need of the stereotypical antiwasp immune response. This multifaceted protection afforded to fly larvae by ethanol is significantly more effective against a generalist wasp than a wasp that specializes on D. melanogaster. Finally, fly larvae seek out ethanol-containing food when infected, indicating that they use alcohol as an antiwasp medicine. Although the high resistance of D. melanogaster may make it uniquely suited to exploit curative properties of alcohol, it is possible that alcohol consumption may have similar protective effects in other organisms.  相似文献   

8.
Bainton RJ  Tsai LT  Schwabe T  DeSalvo M  Gaul U  Heberlein U 《Cell》2005,123(1):145-156
We identified moody in a genetic screen for Drosophila mutants with altered cocaine sensitivity. Hypomorphic mutations in moody cause an increased sensitivity to cocaine and nicotine exposure. In contrast, sensitivity to the acute intoxicating effects of ethanol is reduced. The moody locus encodes two novel GPCRs, Moody-alpha and Moody-beta. While identical in their membrane-spanning domains, the two Moody proteins differ in their long carboxy-terminal domains, which are generated by use of alternative reading frames. Both Moody forms are required for normal cocaine sensitivity, suggesting that they carry out distinct but complementary functions. Moody-alpha and Moody-beta are coexpressed in surface glia that surround the nervous system, where they are actively required to maintain the integrity of the blood-brain barrier in the adult fly. We propose that a Moody-mediated signaling pathway functions in glia to regulate nervous system insulation and drug-related behaviors.  相似文献   

9.
Although it is well established that the WAVE/SCAR complex transduces Rac1 signaling to trigger Arp2/3-dependent actin nucleation, regulatory mechanisms of this complex and its versatile function in the nervous system are poorly understood. Here we show that the Drosophila proteins SCAR, CYFIP and Kette, orthologs of WAVE/SCAR complex components, all show strong accumulation in axons of the central nervous system and indeed form a complex in vivo. Neuronal defects of SCAR, CYFIP and Kette mutants are, despite the initially proposed function of CYFIP and Kette as SCAR silencers, indistinguishable and are as diverse as ectopic midline crossing and nerve branching as well as synapse undergrowth at the larval neuromuscular junction. The common phenotypes of the single mutants are readily explained by the finding that loss of any one of the three proteins leads to degradation of its partners. As a consequence, each mutant is unambiguously to be judged as defective in multiple components of the complex even though each component affects different signaling pathways. Indeed, SCAR-Arp2/3 signaling is known to control axonogenesis whereas CYFIP signaling to the Fragile X Mental Retardation Protein fly ortholog contributes to synapse morphology. Thus, our results identify the Drosophila WAVE/SCAR complex as a multifunctional unit orchestrating different pathways and aspects of neuronal connectivity.  相似文献   

10.
In humans, KCNQ2/3 channels form an M-current that regulates neuronal excitability, with mutations in these channels causing benign neonatal familial convulsions. The M-current is important in mechanisms of neural plasticity underlying associative memory and in the response to ethanol, with KCNQ controlling the release of dopamine after ethanol exposure. We show that dKCNQ is broadly expressed in the nervous system, with targeted reduction in neuronal KCNQ increasing neural excitability and KCNQ overexpression decreasing excitability and calcium signalling, consistent with KCNQ regulating the resting membrane potential and neural release as in mammalian neurons. We show that the single KCNQ channel in Drosophila (dKCNQ) has similar electrophysiological properties to neuronal KCNQ2/3, including conserved acute sensitivity to ethanol block, with the fly channel (IC50 = 19.8 mM) being more sensitive than its mammalian ortholog (IC50 = 42.1 mM). This suggests that the role of KCNQ in alcohol behaviour can be determined for the first time by using Drosophila. We present evidence that loss of KCNQ function in Drosophila increased sensitivity and tolerance to the sedative effects of ethanol. Acute activation of dopaminergic neurons by heat-activated TRP channel or KCNQ-RNAi expression produced ethanol hypersensitivity, suggesting that both act via a common mechanism involving membrane depolarisation and increased dopamine signalling leading to ethanol sedation.  相似文献   

11.
The biogenic amine tyramine has been implicated in drug‐induced behavior. The Drosophila inactive mutant is characterized by reduced tyramine and octopamine levels and is defective in cocaine sensitization. To test whether there is an overlap in the use of the amine neurotransmitter system in ethanol‐ and cocaine‐induced behaviors, mutant analyses were extended to the phenotypic characterization of inactive and other mutants effecting the tyramine and octopamine neurotransmitter system. The inactive mutant displays increased ethanol sensitivity and is impaired in the initial startle response upon ethanol application. Furthermore, this mutant fails to regulate its alcohol‐induced hyperactivity properly. In contrast to the defects seen after cocaine application, inactive mutants develop normal ethanol tolerance and sensitize to the locomotor activating effect of ethanol. The tyramine‐β‐hydroxylase mutant (TβH) with increased tyramine and depleted octopamine levels displays normal ethanol sensitivity, a startle repression, and hyperactivates more in response to ethanol. In addition, TβH mutants fail to develop a tolerance to the hyperactivating effect of ethanol. Ethanol‐induced sensitization does not seem to be impaired in either mutant, suggesting that tyramine is not required for this process. The comparative analysis of the phenotypes associated with inactive and TβH mutants suggests that the fine tuning of ethanol‐induced hyperactivity can be correlated with different tyramine levels. Defects in other aspects of ethanol‐induced behaviors might be due to different molecules or mechanisms. © 2005 Wiley Periodicals, Inc. J Neurobiol, 2005  相似文献   

12.
Substantial evidence indicates that one consequence of alcohol intoxication is a reduction in retinoic acid (RA) levels. Studies on the mechanism have shown that chronic ethanol consumption induces P450 enzymes that increase RA degradation, thus accounting for much but not all of the observed decrease in RA. A reduction in RA synthesis may also be involved as ethanol competitively inhibits retinol oxidation catalyzed by alcohol dehydrogenase (ADH) in vitro. This may be important during acute ethanol intoxication and may contribute to adverse retinol/ethanol drug interactions. Here we have examined mice for the effect of either acute ethanol intoxication or Adh1 gene disruption on RA synthesis and degradation. RA produced following a dose of retinol (50 mg/kg) was reduced 87% by pretreatment with an intoxicating dose of ethanol (3.5 g/kg). RA produced in Adh1-null mutant mice following a 50-mg/kg dose of retinol was reduced 82% relative to wild-type mice, thus similar to wild-type mice pretreated with ethanol. Reduced RA production was associated with increased retinol levels in both ethanol-treated wild-type mice and Adh1-null mutant mice, indicating reduced clearance of the retinol dose. RA degradation following a dose of RA (10 mg/kg) was increased only 42% by ethanol pretreatment (3.5 g/kg) and only 26% in Adh1-null mutant mice relative to wild-type mice. These findings demonstrate that the reduced RA levels observed during acute retinol/ethanol drug interaction are due primarily to a decrease in ADH-catalyzed RA synthesis and secondarily to an increase in RA degradation.  相似文献   

13.
The transmembrane ephrinB ligands and their Eph receptor tyrosine kinases are known to regulate excitatory synaptic functions in the hippocampus. In the CA3-CA1 synapse, ephrinB ligands are localized to the post-synaptic membrane, while their cognate Eph receptors are presumed to be pre-synaptic. Interaction of ephrinB molecules with Eph receptors leads to changes in long-term potentiation (LTP), which has been reported to be mediated by reverse signaling into the post-synaptic membrane. Here, we demonstrate that the cytoplasmic domain of ephrinB3 and hence reverse signaling is not required for ephrinB dependent learning and memory tasks or for LTP of these synapses. Consistent with previous reports, we find that ephrinB3(KO) null mutant mice exhibit a striking reduction in CA3-CA1 LTP that is associated with defective learning and memory tasks. We find the null mutants also show changes in both pre- and post-synaptic proteins including increased levels of synapsin and synaptobrevin and reduced levels of NMDA receptor subunits. These abnormalities are not observed in ephrinB3(lacZ) reverse signaling mutants that specifically delete the ephrinB3 intracellular region, supporting a cytoplasmic domain-independent forward signaling role for ephrinB3 in these processes. We also find that both ephrinB3(KO) and ephrinB3(lacZ) mice show an increased number of excitatory synapses, demonstrating a cytoplasmic-dependent reverse signaling role of ephrinB3 in regulating synapse number. Together, these data suggest that ephrinB3 may act like a receptor to transduce reverse signals to regulate the number of synapses formed in the hippocampus, and that it likely acts to stimulate forward signaling to modulate a number of other proteins involved in synaptic activity and learning/memory.  相似文献   

14.
Drosophila is a useful model organism in which the genetics of human diseases, including recent advances in identification of the genetics of heart development and disease in the fly, can be studied. To identify novel genes that cause cardiomyopathy, we performed a deficiency screen in adult Drosophila. Using optical coherence tomography to phenotype cardiac function in awake adult Drosophila, we identified Df(1)Exel6240 as having cardiomyopathy. Using a number of strategies including customized smaller deletions, screening of mutant alleles, and transgenic rescue, we identified CG3226 as the causative gene for this deficiency. CG3226 is an uncharacterized gene in Drosophila possessing homology to the mammalian Siah-interacting protein (SIP) gene. Mammalian SIP functions as an adaptor protein involved in one of the β-catenin degradation complexes. To investigate the effects of altering β-catenin/Armadillo signaling in the adult fly, we measured heart function in flies expressing either constitutively active Armadillo or transgenic constructs that block Armadillo signaling, specifically in the heart. While, increasing Armadillo signaling in the heart did not have an effect on adult heart function, decreasing Armadillo signaling in the fly heart caused the significant reduction in heart chamber size. In summary, we show that deletion of CG3226, which has homology to mammalian SIP, causes cardiomyopathy in adult Drosophila. Alterations in Armadillo signaling during development lead to important changes in the size and function of the adult heart.  相似文献   

15.
Perturbations in neuregulin-1 (NRG1)/ErbB4 function have been associated with schizophrenia. Affected patients exhibit altered levels of these proteins and display hypofunction of glutamatergic synapses as well as altered neuronal circuitry. However, the role of NRG1/ErbB4 in regulating synapse maturation and neuronal process formation has not been extensively examined. Here we demonstrate that ErbB4 is expressed in inhibitory interneurons at both excitatory and inhibitory postsynaptic sites. Overexpression of ErbB4 postsynaptically enhances size but not number of presynaptic inputs. Conversely, knockdown of ErbB4 using shRNA decreases the size of presynaptic inputs, demonstrating a specific role for endogenous ErbB4 in synapse maturation. Using ErbB4 mutant constructs, we demonstrate that ErbB4-mediated synapse maturation requires its extracellular domain, whereas its tyrosine kinase activity is dispensable for this process. We also demonstrate that depletion of ErbB4 decreases the number of primary neurites and that stimulation of ErbB4 using a soluble form of NRG1 results in exuberant dendritic arborization through activation of the tyrosine kinase domain of ErbB4 and the phosphoinositide 3-kinase pathway. These findings demonstrate that NRG1/ErbB4 signaling differentially regulates synapse maturation and dendritic morphology via two distinct mechanisms involving trans-synaptic signaling and tyrosine kinase activity, respectively.  相似文献   

16.
In Drosophila melanogaster, alcohol dehydrogenase (ADH) activity is essential for ethanol tolerance, but its role may not be restricted to alcohol metabolism alone. Here we describe ADH activity and Adh expression level upon selection for increased alcohol tolerance in different life-stages of D. melanogaster lines with two distinct Adh genotypes: Adh(FF) and Adh(SS). We demonstrate a positive within genotype response for increased alcohol tolerance. Life-stage dependent selection was observed in larvae only. A slight constitutive increase in adult ADH activity for all selection regimes and genotypes was observed, that was not paralleled by Adh expression. Larval Adh expression showed a constitutive increase, that was not reflected in ADH activity. Upon exposure to environmental ethanol, sex, selection regime life stage and genotype appear to have differential effects. Increased ADH activity accompanies increased ethanol tolerance in D. melanogaster but this increase is not paralleled by expression of the Adh gene.  相似文献   

17.
Neuronal signal transduction by the JNK MAP kinase pathway is altered by a broad array of stimuli including exposure to the widely abused drug ethanol, but the behavioral relevance and the regulation of JNK signaling is unclear. Here we demonstrate that JNK signaling functions downstream of the Sterile20 kinase family gene tao/Taok3 to regulate the behavioral effects of acute ethanol exposure in both the fruit fly Drosophila and mice. In flies tao is required in neurons to promote sensitivity to the locomotor stimulant effects of acute ethanol exposure and to establish specific brain structures. Reduced expression of key JNK pathway genes substantially rescued the structural and behavioral phenotypes of tao mutants. Decreasing and increasing JNK pathway activity resulted in increased and decreased sensitivity to the locomotor stimulant properties of acute ethanol exposure, respectively. Further, JNK expression in a limited pattern of neurons that included brain regions implicated in ethanol responses was sufficient to restore normal behavior. Mice heterozygous for a disrupted allele of the homologous Taok3 gene (Taok3Gt) were resistant to the acute sedative effects of ethanol. JNK activity was constitutively increased in brains of Taok3Gt/+ mice, and acute induction of phospho-JNK in brain tissue by ethanol was occluded in Taok3Gt/+ mice. Finally, acute administration of a JNK inhibitor conferred resistance to the sedative effects of ethanol in wild-type but not Taok3Gt/+ mice. Taken together, these data support a role of a TAO/TAOK3-JNK neuronal signaling pathway in regulating sensitivity to acute ethanol exposure in flies and in mice.  相似文献   

18.
During fermentation, yeast cells are exposed to increasing amounts of alcohol, which is stressful and affects both growth and viability. On the molecular level, numerous aspects of alcohol stress signaling remain unresolved. We have identified a novel yeast Ring/PHD finger protein that constitutively shuttles between nucleus and cytoplasm but accumulates in the nucleus upon exposure to ethanol, 2-propanol, or 1-butanol. Subcellular localization of this protein is not altered by osmotic, oxidative, or heat stress or during nitrogen or glucose starvation. Because of its exclusive sensitivity to environmental alcohol, the protein was called Asr1p for Alcohol Sensitive Ring/PHD finger 1 protein. Nuclear accumulation of Asr1p is rapid, reversible, and requires a functional Ran/Gsp1p gradient. Asr1p contains two N terminally located leucine-rich nuclear export sequences (NES) required for nuclear export. Consistently, it accumulates in the nucleus of xpo1-1 cells at restrictive temperature and forms a trimeric complex with the exportin Xpo1p and Ran-GTP. Deletion of ASR1 leads to sensitivity in growth on medium containing alcohol or detergent, consistent with a function of Asr1p in alcohol-related signaling. Asr1p is the first reported protein that changes its subcellular localization specifically upon exposure to alcohol and therefore represents a key element in the analysis of alcohol-responsive signaling.  相似文献   

19.
A novel ethanol-hypersensitive mutant, geko1 (gek1), was isolated from Arabidopsis thaliana. The gek1 mutant displays an enhanced sensitivity (10-100 times greater than the wild type) to ethanol in growth medium, while it grows normally in the absence of ethanol, and responds normally to other alcohols and to environmental stresses such as heat shock and high salinity. The ethanol-hypersensitive phenotype of gek1 requires alcohol dehydrogenase activity, indicating that gek1 is sensitive not to ethanol itself but to the metabolites of ethanol. Consistent with this, gek1 shows enhanced sensitivity to acetaldehyde in the medium. The endogenous acetaldehyde levels were not different between gek1-2 and wild-type seedlings treated with ethanol. These results indicate that the ethanol hypersensitivity of gek1 is due to an enhanced sensitivity to acetaldehyde toxicity, instead of abnormally elevated accumulation of toxic acetaldehyde, which has been thought to be the major cause of ethanol toxicity in mammal cells.  相似文献   

20.
RSF1, an Arabidopsis locus implicated in phytochrome A signaling   总被引:6,自引:0,他引:6       下载免费PDF全文
In Arabidopsis, phytochrome A (phyA) is the major photoreceptor both for high irradiance responses to far-red light and broad spectrum very low fluence responses, but little is known of its signaling pathway(s). rsf1 was isolated as a recessive mutant with reduced sensitivity to far-red inhibition of hypocotyl elongation. At the seedling stage rsf1 mutants are affected, to various degrees, in all described phyA-mediated responses. However, in adult rsf1 plants, the photoperiodic flowering response is normal. The rsf1 mutant has wild-type levels of phyA suggesting that RSF1 is required for phyA signaling rather than phyA stability or biosynthesis. RSF1 thus appears to be a major phyA signaling component in seedlings, but not in adult, Arabidopsis plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号