首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have revealed that miR-186 is involved in the pathogenesis of many malignancies. However, the role of miR-186 in hepatocellular carcinoma (HCC) carcinogenesis and its detailed mechanism are poorly understood. This study was to investigate the function of miR-186 in modulating HCC cell proliferation, cell cycle, migration, and invasion. We found that miR-186 was decreased in HCC tissues and cell lines. Loss-of-function experiments showed that reduction of miR-186 dramatically enhanced tumor cell proliferation and metastasis. Besides, miR-186 also participated in the modulation of the cell cycle. In addition, luciferase reporter assays and Western blot analysis showed that MCRS1 was a novel target of miR-186 in HCC cells. Notably, upregulation of miR-186 suppressed the nuclear β-catenin accumulation and blocked the activation of Wnt/β-catenin signaling in HCC cells. Forced MCRS1 expression abrogated the inhibitory effect of miR-186 on cell growth, metastasis and Wnt/β-catenin signaling in HCC cells. Our findings may provide new insight into the pathogenesis of HCC and miR-186/ MCRS1 might function as new therapeutic targets for HCC.  相似文献   

2.
Aberrant expression of microRNA-34a (miR-34a) has been reported to be involved in the tumorigenesis and progression of various classes of malignancies. However, its role in hepatocellular carcinoma (HCC) has not been completely clarified. In the current study, we have investigated the clinical significance and the in vitro contribution of miR-34a on biological functions of human HCCs. miR-34a expression in eighty-three cases of HCC formalin-fixed paraffin-embedded (FFPE) tissues decreased significantly compared to that in the adjacent liver tissues (P<0.01), as detected by real-time quantitative RT-PCR (RT-qPCR). miR-34a expression in the groups of TNM stage I and II, without metastasis and without portal vein tumor embolus, was significantly higher than that of their corresponding groups (P<0.05). In functional experiments, miR-34a mimic suppressed cell growth, migration and invasion, meanwhile it increased cellular apoptosis and caspase activity in HCC cells. miR-34a mimic also reduced phospho-ERK1/2 and phospho-stat5 signaling. In addition, miR-34a mimic enhanced the effect of cell proliferation inhibition and caspase activity induction of agents targeting c-MET (siRNAs and small molecular inhibitor su11274). In conclusion, miR-34a may act as a tumor suppressor miRNA of HCC. The strategies to increase miR-34a level might be a critical targeted therapy for HCC in future.  相似文献   

3.

Aim

To investigate the metastatic effects and mechanisms of miR-197 in hepatocellular carcinoma (HCC).

Methods and results

The levels of miR-197 increased in HCC cells and tissues compared with a normal hepatic cell line (LO2) and adjacent nontumorous liver tissues, respectively. miR-197 expression negatively correlated with CD82 mRNA expression in these cell lines and tissues. Dual luciferase reporter assay and Western blot confirmed a direct interaction between miR-197 and CD82 3′UTR sequences. After miR-197 was silenced in HCC cells, CD82 expression increased. In the presence of human hepatocyte growth factor (HGF), cells silenced for anti-miR-197 exhibited elongated cellular tails and diminished lamellipodia due to reductions in both ROCK activity and the levels of Rac 1 protein. Downregulation of miR-197 along with the upregulation of CD82 in HCC cells resulted in the inhibition of HCC migration and invasion in vitro and in vivo.

Conclusion

Taken together, these data suggest that anti-miR-197 suppresses HCC migration and invasion by targeting CD82. The regulation of the miR-197/CD82 axis could be a novel therapeutic target in future HCC effective therapy.  相似文献   

4.
5.
6.
Mucin 15 (MUC15) is reportedly aberrant in human malignancies, including hepatocellular carcinoma (HCC). However, the role of MUC15 in the regulation of liver tumor-initiating cells (T-ICs) remains unknown. Here, we report that expression of MUC15 is downregulated in liver T-ICs, chemoresistance and recurrent HCC samples. Functional studies reveal that MUC15 inhibits hepatoma cells self-renewal, malignant proliferation, tumorigenicity, and chemoresistance. Mechanistically, MUC15 interacts with c-MET and subsequently inactivates the PI3K/AKT/SOX2 signaling pathway. Moreover, we find that miR-183-5p.1 directly targets MUC15 3′-UTR in liver T-ICs. Coincidentally, SOX2 feedback inhibits MUC15 expression by directly transactivating miR-183-5p.1, thus completing a feedforward regulatory circuit in liver T-ICs. Importantly, MUC15/c-MET/PI3K/AKT/SOX2 axis determines the responses of hepatoma cells to lenvatinib treatment, and MUC15 overexpression abrogated lenvatinib resistance. Analysis of patient cohort, patient-derived tumor organoids and patient-derived xenografts further suggests that the MUC15 may predict lenvatinib benefits in HCC patients. Collectively, our findings suggest the crucial role of the miR-183-5p.1/MUC15/c-MET/PI3K/AKT/SOX2 regulatory circuit in regulating liver T-ICs properties, suggesting potential therapeutic targets for HCC.Subject terms: Cancer stem cells, Tumour biomarkers, Liver cancer  相似文献   

7.
The biological behaviors of hepatocellular carcinoma (HCC) are complex mainly due to heterogeneity of progressive genetic and epigenetic mutations as well as tumor environment. Hepatocyte growth factor (HGF)/c-Met signaling pathway is regarded to be a prototypical example for stromal-epithelial interactions during developmental morphogenesis, wound healing, organ regeneration and cancer progression. And p53 plays as an important regulator of Met-dependent cell motility and invasion. Present study showed that 2 HCC cell lines, Hep3B and HepG2, displayed different invasive capacity when treated with HGF which was secreted by hepatic stellate cells (HSCs). We found that HGF promoted Hep3B cells invasion and migration as well as epithelial-mesenchymal transition (EMT) occurrence because Hep3B was p53 deficient, which leaded to the c-Met over-expression. Then we found that HGF/c-Met promoted Hep3B cells invasion and migration by upregulating Snail expression. In conclusion, HGF/c-Met signaling is enhanced by loss of p53 expression, resulting in increased ability of invasion and migration by upregulating the expression of Snail.  相似文献   

8.
miR-101 is considered to play an important role in hepato-cellular carcinoma (HCC), but the underlying molecular mechanism remains to be elucidated. Here, we aimed to confirm whether Girdin is a target gene of miR-101 and determine the tumor suppressor of miR-101 through Girdin pathway. In our previous studies, we firstly found Girdin protein was overexpressed in HCC tissues, and it closely correlated to tumor size, T stage, TNM stage and Edmondson-Steiner stage of HCC patients. After specific small interfering RNA of Girdin was transfected into HepG2 and Huh7.5.1 cells, the proliferation and invasion ability of tumor cells were significantly inhibited. In this study, we further explored the detailed molecular mechanism of Girdin in HCC. Interestingly, we found that miR-101 significantly low-expressed in HCC tissues compared with that in matched normal tissues while Girdin had a relative higher expression, and miR-101 was inversely correlated with Girdin expression. In addition, after miR-101 transfection, the proliferation, migration and invasion abilities of HepG2 cells were weakened. Furthermore, we confirmed that Girdin is a direct target gene of miR-101. Finally we confirmed Talen-mediated Girdin knockout markedly suppressed cell proliferation, migration and invasion in HCC while down-regulation of miR-101 significantly restored the inhibitory effect. Our findings suggested that miR-101/Girdin axis could be a potential application of HCC treatment.  相似文献   

9.
We have previously shown that human liver myofibroblasts promote in vitro invasion of human hepatocellular carcinoma (HCC) cells through a hepatocyte growth factor (HGF)/urokinase/plasmin-dependent mechanism. In this study, we demonstrate that myofibroblasts synthesize the serine proteinase inhibitor tissue factor pathway inhibitor-2 (TFPI-2). Despite the fact that recombinant TFPI-2 readily inhibits plasmin, we show that it potentiates HGF-induced invasion of HCC cells and is capable of inducing invasion on its own. Furthermore, HCC cells stably transfected with a TFPI-2 expression vector became spontaneously invasive. HCC cells express tissue factor and specifically factor VII. Addition of an antibody to factor VII abolished the pro-invasive effect of TFPI-2. We suggest that TFPI-2 induces invasion following binding to a tissue factor-factor VIIa complex preformed on HCC cells. Our data thus demonstrate an original mechanism of cell invasion that may be specific for liver tumor cells.  相似文献   

10.
Previous work by us and others reported decreased expression of miR-199a-3p in hepatocellular carcinoma (HCC) tissues compared to adjacent benign tissue. We report here a significant reduction of miR-199a-3p expression in 7 HCC cell lines. To determine if miR-199a-3p has a tumor suppressive role, pre-miR-199a-3p oligonucleotides were transfected into the HCC cell lines. Pre-miR-199a-3p oligonucleotide reduced cell proliferation by approximately 60% compared to control oligonucleotide in only two cell lines (SNU449 and SNU423); the proliferation of the other 5 treated cell lines was similar to control oligonucleotide. A pre-miR-199a-3p oligonucleotide formulated with chemical modifications to enhance stability while preserving processing, reduced cell proliferation in SNU449 and SNU423 to the same extent as the commercially available pre-miR-199a-3p oligonucleotide. Furthermore, only the duplex miR-199a-3p oligonucleotide, and not the guide strand alone, was effective at reducing cell viability. Since a CD44 variant was essential for c-Met signaling [V. Orian-Rousseau, L. Chen, J.P. Sleeman, P. Herrlich, H. Ponta, CD44 is required for two consecutive steps in HGF/c-Met signaling, Genes Dev. 16 (2002) 3074-3086] and c-Met is a known miR-199a-3p target, we hypothesized that miR-199a-3p may also target CD44. Immunoblotting confirmed that only the two HCC lines that were sensitive to the effects of pre-miR-199a-3p were CD44+. Direct targeting of CD44 by miR-199a-3p was confirmed using luciferase reporter assays and immunoblotting. Transfection of miR-199a-3p into SNU449 cells reduced in vitro invasion and sensitized the cells to doxorubicin; both effects were enhanced when hyaluronic acid (HA) was added to the cell cultures. An inverse correlation between the expression of miR-199a-3p and CD44 protein was noted in primary HCC specimens. The ability of miR-199a-3p to selectively kill CD44+ HCC may be a useful targeted therapy for CD44+ HCC.  相似文献   

11.
Glycosylation of cell surface proteins regulates critical cellular functions, including invasion and metastasis in cancer cells. Emerging evidence has shown that microRNAs (miRNAs) are involved in regulating both the glycosylation modifications on cell surface and the progression of cancer. In this study, we investigated the role of miR-9 in α-2,6-linked sialylation and the metastasis of mouse hepatocellular carcinoma (HCC). According to array-based miRNA expression profiling data of HCC cell lines Hepa1–6, Hca-P, and Hca-F with different lymphatic metastatic capacities, reverse correlation was found between miR-9 expression levels and the metastatic potential in these HCC cells. Additionally, β-galactoside α-2,6-sialyltransferase 1 (St6gal1) expression level is associated negatively with miR-9 and positively with metastatic potential. Bioinformatics analysis indicated that miR-9 could target St6gal1, which was verified by luciferase reporter assays. miR-9 overexpression reduced expression of St6gal1, which subsequently suppressed HCC cells metastatic potential. Moreover, upregulation of miR-9 could inhibit integrin-β1/FAK-mediated cell motility and migration signaling in mouse HCC cells. Together, our results suggest that miR-9 could act as a tumor suppressor and regulate mouse HCC cells migration and invasion by inhibiting the α-2,6-linked sialylation. This finding may provide insight into the relationship between abnormal miRNA expression and aberrant cell surface glycosylation during tumor lymphatic metastasis.  相似文献   

12.
Inappropriate activation of c-mesenchymal-epithelial transition (MET), the receptor tyrosine kinase (RTK) for hepatocyte growth factor (HGF), has been implicated in tumorigenesis and represented a promising therapeutic target for developing anticancer agents. In contrast to other solid tumors, there are limited data describing the functional role of HGF/c-MET signaling pathway in lymphoma. In the current review, we summarize recent findings about the expression, cellular mechanisms/functions, and therapeutic application of HGF/c-MET in different types of lymphoma, especially B cell lymphoma, T and NK cell lymphoma, and Hodgkin lymphoma. We also discuss the existing problems and future directions about studying the HGF/c-MET pathway in lymphoma cells.  相似文献   

13.
It has been reported that miR-623 is deregulated in lung adenocarcinoma and inhibits tumor growth and invasion. However, it is unclear whether miR-623 has a role in the progression of hepatocellular carcinoma (HCC). Herein, we found that miR-623 was significantly downregulated in HCC, and that its expression was related to poor clinical outcomes of patients with HCC. Upregulation of miR-623 decreased cell proliferation, viability, migration, and invasion and further promoted apoptosis in 7721, Huh7, and Bel-7402 cells. Moreover, we also observed that miR-623 regulated the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), Wnt/β-catenin, and extracellular regulated protein kinases/c-Jun N-terminal kinase (ERK/JNK) signaling pathways as well as the expression level of related proteins. Further, X-ray repair cross complementing 5 (XRCC5) was a direct target for miR-623, and the suppression of PI3K/Akt, Wnt/β-catenin, and ERK/JNK signaling pathways and cell proliferation and invasion abilities caused by miR-623 in HCC cells was significantly reversed by the upregulation of XRCC5. Collectively, our data suggested that miR-623 suppressed the progression of HCC by regulating the PI3K/Akt, Wnt/β-catenin, and ERK/JNK pathways by targeting XRCC5 in HCC in vitro, indicating that miR-623 may be a target for the therapy of HCC.  相似文献   

14.
15.
The poor prognosis of hepatocellular carcinoma (HCC) is mainly due to the development of invasion and metastasis. Recent data strongly suggests the important role of miRNAs in cancer progression, including invasion and metastasis. Here, we found miR-217 expression was much lower in highly invasive MHCC-97H HCC cells and metastatic HCC tissues. Restored miR-217 expression with miR-217 mimics inhibited invasion of MHCC-97H cells. Inversely, miR-217 inhibition enhanced the invasive ability of Huh7 and MHCC-97L cells. Mechanically, bioinformatics analysis combined with experimental analysis demonstrated E2F3 was a novel direct target of miR-217. Moreover, E2F3 protein level was positively associated with HCC metastasis and functional analysis confirmed the positive role of E2F3 in HCC cell invasion. Our findings suggest miR-217 function as a potential tumor suppressor in HCC progression and miR-217-E2F3 axis may be a novel candidate for developing rational therapeutic strategies.  相似文献   

16.
Dysregulation of microRNAs (miRNAs) is actively involved in the pathogenesis and tumorigenicity of hepatocellular carcinoma (HCC). miR-489 was found to play either oncogenic or tumor suppressive roles in human cancers. Recent study reported that the levels of miR-489 in late recurrent HCC patients were evidently higher than that in early recurrent cases, suggesting that miR-489 may function as a tumor suppressive miRNA in HCC. Yet, the clinical value and biological function of miR-489 remain rarely known in HCC. Here, we presented that miR-489 level in HCC tissues was notably reduced compared to matched non-cancerous specimens. Its decreased level was evidently correlated with adverse clinical parameters and poor prognosis of HCC patients. Accordingly, the levels of miR-489 were obviously down-regulated in HCC cells. Ectopic expression of miR-489 in HCCLM3 and MHCC97H cells prominently inhibits the migration and invasion of tumor cells and reduced lung metastases in vivo, while miR-489 knockdown increased these behaviors of HepG2 and MHCC97L cells. Mechanically, miR-489 negatively regulated matrix metalloproteinase-7 (MMP7) abundance in HCC cells. Herein, MMP7 was found to be a downstream molecule of miR-489 in HCC. An inversely correlation between miR-489 and MMP7 was confirmed in HCC specimens. MMP7 knockdown prohibited cell migration and invasion while MMP7 overexpression showed opposite effects on HCC cells. Furthermore, restoration of MMP7 expression could abrogate the anti-metastatic effects of miR-489 on HCCLM3 cells with enhanced cell migration and invasion. Altogether, miR-489 potentially acts as a prognostic predictor and a drug-target for HCC patients.  相似文献   

17.
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Systemic chemotherapy plays an important role in the treatment of patients with advanced liver cancer. However, chemoresistance to cisplatin is a major limitation of cisplatin-based chemotherapy in the clinic, and the underlying mechanism of such resistance is not fully understood. In the study, we found that miR-199a-5p levels were significantly reduced in HCC patients treated with cisplatin-based chemotherapy. Cisplatin treatment also resulted in decreased miR-199a-5p levels in human HCC cell lines. Forced expression of miR-199a-5p promoted cisplatin-induced inhibition of cell proliferation. Cisplatin treatment activated autophagy in Huh7 and HepG2 cells, which increased cell proliferation. We further demonstrated that downregulated miR-199a-5p enhanced autophagy activation by targeting autophagy-associated gene 7 (ATG7). More important, autophagy inhibition abrogated miR-199a-5p downregulation-induced cell proliferation. These data demonstrated that miR-199a-5p/autophagy signaling represents a novel pathway regulating chemoresistance, thus offering a new target for chemotherapy of HCC.  相似文献   

18.
The loss of microRNA-122 (miR-122) expression is strongly associated with increased invasion and metastasis, and poor prognosis of hepatocellular carcinoma (HCC), however, the underlying mechanisms remain poorly understood. In the present study, we observed that miR-122 over-expression in HCC cell lines Sk-hep-1 and Bel-7402 triggered the mesenchymal-epithelial transition (MET), as demonstrated by epithelial-like morphological changes, up-regulated epithelial proteins (E-cadherin, ZO-1, α-catenin, occludin, BVES, and MST4), and down-regulated mesenchymal proteins (vimentin and fibronectin). The over-expression of miRNA-122 also caused cytoskeleton disruption, RhoA/Rock pathway inactivation, enhanced cell adhesion, and suppression of migration and invasion of Sk-hep-1 and Bel-7402 cells, whereas, these effects could be reversed through miR-122 inhibition. Additional studies demonstrated that the inhibition of wild-type RhoA function induced MET and inhibited cell migration and invasion, while RhoA over-expression reversed miR-122-induced MET and inhibition of migration and invasion of HCC cells, suggesting that miR-122 induced MET and suppressed the migration and invasion of HCC cells by targeting RhoA. Moreover, our results demonstrated that HNF4α up-regulated its target gene miR-122 that subsequently induced MET and inhibited cell migration and invasion, whereas miR-122 inhibition reversed these HNF4α-induced phenotypes. These results revealed functional and mechanistic links among the tumor suppressors HNF4α, miR-122, and RhoA in EMT and invasive and metastatic phenotypes of HCC. Taken together, our study provides the first evidence that the HNF4α/miR-122/RhoA axis negatively regulates EMT and the migration and invasion of HCC cells.  相似文献   

19.
X Kong  G Li  Y Yuan  Y He  X Wu  W Zhang  Z Wu  T Chen  W Wu  PE Lobie  T Zhu 《PloS one》2012,7(8):e41523
Focal adhesion kinase (FAK) is an important mediator of extracellular matrix integrin signaling, cell motility, cell proliferation and cell survival. Increased FAK expression is observed in a variety of solid human tumors and increased FAK expression and activity frequently correlate with metastatic disease and poor prognosis. Herein we identify miR-7 as a direct regulator of FAK expression. miR-7 expression is decreased in malignant versus normal breast tissue and its expression correlates inversely with metastasis in human breast cancer patients. Forced expression of miR-7 produced increased E-CADHERIN and decreased FIBRONECTIN and VIMENTIN expression in breast cancer cells. The levels of miR-7 expression was positively correlated with E-CADHERIN mRNA and negatively correlated with VIMENTIN mRNA levels in breast cancer samples. Forced expression of miR-7 in aggressive breast cancer cell lines suppressed tumor cell monolayer proliferation, anchorage independent growth, three-dimensional growth in Matrigel, migration and invasion. Conversely, inhibition of miR-7 in the HBL-100 mammary epithelial cell line promoted cell proliferation and anchorage independent growth. Rescue of FAK expression reversed miR-7 suppression of migration and invasion. miR-7 also inhibited primary breast tumor development, local invasion and metastatic colonization of breast cancer xenografts. Thus, miR-7 expression is decreased in metastatic breast cancer, correlates with the level of epithelial differentiation of the tumor and inhibits metastatic progression.  相似文献   

20.
Prostate cancer consists of secretory cells and a population of immature cells. The function of immature cells and their mutual relation with secretory cells are still poorly understood. Immature cells either have a hierarchical relation to secretory cells (stem cell model) or represent an inducible population emerging upon appropriate stimulation of differentiated cells. Hepatocyte Growth Factor (HGF) receptor c-MET is specifically expressed in immature prostate cells. Our objective is to determine the role of immature cells in prostate cancer by analysis of the HGF/c-MET pathway.Gene-expression profiling of DU145 prostate cancer cells stimulated with HGF revealed induction of a molecular signature associated with stem cells, characterized by up-regulation of CD49b, CD49f, CD44 and SOX9, and down-regulation of CD24 ('stem-like signature'). We confirmed the acquisition of a stem-like phenotype by quantitative PCR, FACS analysis and Western blotting. Further, HGF led to activation of the stem cell related Notch pathway by up-regulation of its ligands Jagged-1 and Delta-like 4. Small molecules SU11274 and PHA665752 targeting c-MET activity were both able to block the molecular and biologic effects of HGF. Knock-down of c-MET by shRNA infection resulted in significant reduction and delay of orthotopic tumour-formation in male NMRI mice. Immunohistochemical analysis in prostatectomies revealed significant enrichment of c-MET positive cells at the invasive front, and demonstrated co-expression of c-MET with stem-like markers CD49b and CD49f.In conclusion, activation of c-MET in prostate cancer cells induced a stem-like phenotype, indicating a dynamic relation between differentiated and stem-like cells in this malignancy. Its mediation of efficient tumour-formation in vivo and predominant receptor expression at the invasive front implicate that c-MET regulates tumour infiltration in surrounding tissues putatively by acquisition of a stem-like phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号