首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conditions for extraction and assay of ribulose-1,5-bisphophate carboxylase present in an in vivo active form (initial activity) and an inactive form able to be activated by Mg2+ and CO2 (total activity) were examined in leaves of soybean, Glycine max (L.) Merr. cv Will. Total activity was highest after extracts had preincubated in NaHCO3 (5 millimolar saturating) and Mg2+ (5 millimolar optimal) for 5 minutes at 25°C or 30 minutes at 0°C before assay. Initial activity was about 70% of total activity. Kact (Mg2+) and Kact (CO2) were approximately 0.3 millimolar and 36 micromolar, respectively. The carry-over of endogenous Mg2+ in the leaf extract was sufficient to support considerable catalytic activity. While Mg2+ was essential for both activation and catalysis, Mg2+ levels greater than 5 millimolar were increasingly inhibitory of catalysis. Similar inhibition by high Mg2+ was also observed in filtered, centrifuged, or desalted extracts and partially purified enzyme. Activities did not change upon storage of leaves for up to 4 hours in ice water or liquid nitrogen before homogenization, but were about 20% higher in the latter. Activities were also stable for up to 2 hours in leaf extracts stored at 0°C. Initial activity quickly deactivated at 25°C in the absence of high CO2. Total activity slowly declined irreversibly upon storage of leaf homogenate at 25°C.  相似文献   

2.
Most C4 species are chilling sensitive and certain enzymes like pyruvate,Pi dikinase of the C4 pathway are also cold labile. The ability of cations and compatible solutes to protect maize (Zea mays) dikinase against cold lability was examined. The enzyme in desalted extracts at pH 8 from preilluminated leaves could be protected against cold lability (at 0°C) by the divalent cations Mn2+, Mg2+, and Ca2+. There was substantial protection by sulfate based salts but little protection by chloride based salts of potassium or ammonium (concentration 250 millimolar). The degree of protection against cold lability under limiting MgCl2 (5 millimolar) was pH sensitive (maximum protection at pH 8), but independent of ionic strength (up to 250 millimolar by addition of KCl). In catalysis Mg2+ is required and Mn2+ could not substitute as a cofactor. Several compatible solutes reduced or prevented the cold inactivation of dikinase (in desalted extracts and the partially purified enzyme), including glycerol, proline, glycinebetaine and trimethylamine-N-oxide (TMAO). TMAO and Mg2+ had an additive effect in protecting dikinase against cold inactivation. TMAO could largely substitute for the divalent cation and addition of TMAO during cold treatment prevented further inactivation. Cold inactivation was partially reversed by incubation at room temperature; with addition of TMAO reversal was complete. The temperature dependence of inactivation at pH 8 and 3 millimolar MgCl2 was evaluated by incubation at 2 to 17°C for 45 minutes, followed by assay at room temperature. At preincubation temperatures below 11°C there was a progressive inactivation which could be prevented by TMAO (450 millimolar). The results are discussed relative to possible effects of the solutes on the quaternary structure of this enzyme, which is known to dissociate at low temperatures.  相似文献   

3.
α-Amylase produced by Bacillus licheniformis CUMC305 was purified 212-fold with a 42% yield through a series of four steps. The purified enzyme was homogeneous as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and discontinuous gel electrophoresis. The purified enzyme showed maximal activity at 90°C and pH 9.0, and 91% of this activity remained at 100°C. The enzyme retained 91, 79, and 71% maximal activity after 3 h of treatment at 60°C, 3 h at 70°C, and 90 min at 80°C, respectively, in the absence of substrate. On the contrary, in the presence of substrate (soluble starch), the α-amylase enzyme was fully stable after a 4-h incubation at 100°C. The enzyme showed 100% stability in the pH range 7 to 9; 95% stability at pH 10; and 84, 74, 68, and 50% stability at pH values of 6, 5, 4, and 3, respectively, after 18 h of treatment. The activation energy for this enzyme was calculated as 5.1 × 105 J/mol. The molecular weight was estimated to be 28,000 by sodium dodecyl sulfate-gel electrophoresis. The relative rates of hydrolysis of soluble starch, amylose, amylopectin, and glycogen were 1.27, 1.8, 1.94, and 2.28 mg/ml, respectively. Vmax values for hydrolysis of these substrates were calculated as 0.738, 1.08, 0.8, and 0.5 mg of maltose/ml per min, respectively. Of the cations, Na+, Ca2+, and Mg2+, showed stimulatory effect, whereas Hg2+, Cu2+, Ni2+, Zn2+, Ag+, Fe2+, Co2+, Cd2+, Al3+, and Mn2+ were inhibitory. Of the anions, azide, F, SO32−, SO43−, S2O32−, MoO42−, and Wo42− showed an excitant effect. p-Chloromercuribenzoic acid and sodium iodoacetate were inhibitory, whereas cysteine, reduced glutathione, thiourea, β-mercaptoethanol, and sodium glycerophosphate afforded protection to enzyme activity. α-Amylase was fairly resistant to EDTA treatment at 30°C, but heating at 90°C in presence of EDTA resulted in the complete loss of enzyme activity, which could be recovered partially by the addition of Cu2+ and Fe2+ but not by the addition of Ca2+ or any other divalent ions.  相似文献   

4.
The activity of cytidine 5′-diphosphate (CDP) choline: 1,2-diacylglycerol cholinephosphotransferase (EC 2.7.8.2) in developing soybean (Glycine max L. var Williams 82) seeds was 3 to 5 times higher in cotyledons grown at 20°C than in those grown at 35°C. Some characteristics of the enzyme from cotyledons cultured at 20 and 35°C were compared. In preparations from both growth temperatures, the enzyme showed a pH optimum of 7, Km of 7.0 micromolar for CDP-choline, and an optimum assay temperature of 45°C. Both enzyme preparations were stimulated by increasing concentrations of Mg2+ or Mn2+, up to 10 millimolar and 50 micromolar, respectively, though Mn2+ produced lower activities than Mg2+. Enzymes from both 20 and 35°C show the same specificity for exogenous diacylglycerol. No metabolic effectors were detected by addition of heat treated extracts to the assay mixture. The above findings suggest that the higher enzyme activity at 20°C can be attributed to a higher level of the enzyme rather than to the involvement of isozymes or metabolic effectors. Enzyme activity decreased rapidly during culture at 35°C, indicating a rapid turnover of the enzyme. The level of temperature modulation was found to be a function of seed developmental stage.  相似文献   

5.
As the second essential enzyme of the folate biosynthetic pathway, the potential antimicrobial target, HPPK (6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase), catalyzes the Mg2+-dependant transfer of pyrophosphate from the cofactor (ATP) to the substrate, 6-hydroxymethyl-7,8-dihydropterin. Recently, we showed that 8-mercaptoguanine (8-MG) bound at the substrate site (KD ∼13 µM), inhibited the S. aureus enzyme (SaHPPK) (IC50 ∼ 41 µM), and determined the structure of the SaHPPK/8-MG complex. Here we present the synthesis of a series of guanine derivatives, together with their HPPK binding affinities, as determined by SPR and ITC analysis. The binding mode of the most potent was investigated using 2D NMR spectroscopy and X-ray crystallography. The results indicate, firstly, that the SH group of 8-MG makes a significant contribution to the free energy of binding. Secondly, direct N 9 substitution, or tautomerization arising from N 7 substitution in some cases, leads to a dramatic reduction in affinity due to loss of a critical N 9-H···Val46 hydrogen bond, combined with the limited space available around the N 9 position. The water-filled pocket under the N 7 position is significantly more tolerant of substitution, with a hydroxyl ethyl 8-MG derivative attached to N 7 (compound 21a) exhibiting an affinity for the apo enzyme comparable to the parent compound (KD ∼ 12 µM). In contrast to 8-MG, however, 21a displays competitive binding with the ATP cofactor, as judged by NMR and SPR analysis. The 1.85 Å X-ray structure of the SaHPPK/21a complex confirms that extension from the N 7 position towards the Mg2+-binding site, which affords the only tractable route out from the pterin-binding pocket. Promising strategies for the creation of more potent binders might therefore include the introduction of groups capable of interacting with the Mg2+ centres or Mg2+ -binding residues, as well as the development of bitopic inhibitors featuring 8-MG linked to a moiety targeting the ATP cofactor binding site.  相似文献   

6.
The H+-ATPase of tonoplast vesicles isolated from red beet (Beta vulgaris L.) storage tissue was studied with respect to the kinetic effects of Cl and NO3. N-Ethylmaleimide (NEM) was employed as a probe to investigate substrate binding and gross conformational changes of the enzyme. Chloride decreased the Km of the enzyme for ATP but caused relatively little alteration of the Vmax. Nitrate increased Km only. Michaelis-Menten kinetics applied throughout with respect to ATP concentration. Nitrate yielded similar kinetics of inhibition in both the presence and absence of Cl. Other monovalent anions that specifically increased the Km of the ATPase for ATP were, in order of increasing Ki, SCN, ClO4, and ClO3. Sulfate, although inhibitory, manifested noncompetitive kinetics with respect to ATP concentration. ADP, like NO3, was a competitive inhibitor of the ATPase but ADP and NO3 did not interact cooperatively nor did either interfere with the inhibitory action of the other. It is concluded that NO3 does not show competitive kinetics because of its stereochemical similarity to the terminal phosphoryl group of ATP. NEM was an irreversible inhibitor of the tonoplast ATPase. Both Mg·ADP and Mg·ATP protected the enzyme from inactivation by NEM but Mg·ADP was the more potent of the two. Chloride and NO3 exerted little or no effect on the protective actions of Mg·ADP and Mg·ATP suggesting that neither Cl nor NO3 are involved in substrate binding.  相似文献   

7.
Carbendazim (methyl 1H-benzimidazol-2-yl carbamate) is one of the most widely used fungicides in agriculture worldwide, but has been reported to have adverse effects on animal health and ecosystem function. A highly efficient carbendazim-degrading bacterium (strain dj1-11) was isolated from carbendazim-contaminated soil samples via enrichment culture. Strain dj1-11 was identified as Rhodococcus erythropolis based on morphological, physiological and biochemical characters, including sequence analysis of the 16S rRNA gene. In vitro degradation of carbendazim (1000 mg·L−1) by dj1-11 in minimal salts medium (MSM) was highly efficient, and with an average degradation rate of 333.33 mg·L−1·d−1 at 28°C. The optimal temperature range for carbendazim degradation by dj1-11 in MSM was 25–30°C. Whilst strain dj1-11 was capable of metabolizing cabendazim as the sole source of carbon and nitrogen, degradation was significantly (P<0.05) increased by addition of 12.5 mM NH4NO3. Changes in MSM pH (4–9), substitution of NH4NO3 with organic substrates as N and C sources or replacing Mg2+ with Mn2+, Zn2+ or Fe2+ did not significantly affect carbendazim degradation by dj1-11. During the degradation process, liquid chromatography-mass spectrometry (LC-MS) detected the metabolites 2-aminobenzimidazole and 2-hydroxybenzimidazole. A putative carbendazim-hydrolyzing esterase gene was cloned from chromosomal DNA of djl-11 and showed 99% sequence homology to the mheI carbendazim-hydrolyzing esterase gene from Nocardioides sp. SG-4G.  相似文献   

8.
A 2-gram fresh weight inoculum of bromegrass (Bromus inermis Leyss. culture BG970) cell suspension culture treated with 7.5 × 10−5 molar abscisic acid (ABA) for 7 days at 25°C survived slow cooling to −60°C. Over 80% of the cells in ABA treated cultures survived immersion in liquid N2 after slow cooling to −40 or −60°C. In contrast, a 6-gram fresh weight inoculum only attained a hardiness level of −28°C after 5 days of ABA treatment. Ethanol (2 × 10−2 molar) added to the culture medium at the time of ABA addition, inhibited the freezing tolerance of bromegrass cells by 25°C. A 6-gram inoculum of both control and ABA treated bromegrass cells altered the pH of the medium more than a 2-gram inoculum. ABA inhibited the increase in fresh weight of bromegrass by 20% after 4 days. Both control and ABA (10−4 molar) treated alfalfa cells (Medicago sativa L.) grown at 25°C hardened from an initial LT50 of −5°C to an LT50 of −23°C by the third to fifth day after subculture. Thereafter, the cells dehardened but the ABA treated cells did not deharden to the same level as the control cells. ABA inhibited the increase in fresh weight of alfalfa by 50% after 5 days.  相似文献   

9.
The noncharacterized protein CLOSCI_02528 from Clostridium scindens ATCC 35704 was characterized as D-psicose 3-epimerase. The enzyme showed maximum activity at pH 7.5 and 60°C. The half-life of the enzyme at 50°C was 108 min, suggesting the enzyme was relatively thermostable. It was strictly metal-dependent and required Mn2+ as optimum cofactor for activity. In addition, Mn2+ improved the structural stability during both heat- and urea-induced unfolding. Using circular dichroism measurements, the apparent melting temperature (T m) and the urea midtransition concentration (C m) of metal-free enzyme were 64.4°C and 2.68 M. By comparison, the Mn2+-bound enzyme showed higher T m and C m with 67.3°C and 5.09 M. The Michaelis-Menten constant (K m), turnover number (k cat), and catalytic efficiency (k cat/K m) values for substrate D-psicose were estimated to be 28.3 mM, 1826.8 s−1, and 64.5 mM−1 s−1, respectively. The enzyme could effectively produce D-psicose from D-fructose with the turnover ratio of 28%.  相似文献   

10.
The ability of three strains of Lactobacillus acidophilus to survive and retain β-galactosidase activity during storage in liquid nitrogen at −196°C and during subsequent storage in milk at 5°C was tested. The level of β-galactosidase activity varied among the three strains (0.048 to 0.177 U/107 organisms). Freezing and storage at −196°C had much less adverse influence on viability and activity of the enzyme than did storage in milk at 5°C. The strains varied in the extent of the losses of viability and β-galactosidase activity during both types of storage. There was not a significant interaction between storage at −196°C and subsequent storage at 5°C. The strains that exhibited the greatest losses of β-galactosidase activity during storage in milk at 5°C also exhibited the greatest losses in viability at 5°C. However, the losses in viability were of much greater magnitude than were the losses of enzymatic activity. This indicates that some cells of L. acidophilus which failed to form colonies on the enumeration medium still possessed β-galactosidase activity. Cultures of L. acidophilus to be used as dietary adjuncts to improve lactose utilization in humans should be carefully selected to ensure that adequate β-galactosidase activity is provided.  相似文献   

11.
1. An enzyme acting on aminoacyl-β-naphthylamides has been isolated from the soluble fraction of bovine brain and purified 205-fold by means of ammonium sulphate fractionation, hydroxyapatite adsorption and DEAE-Sephadex column chromatography. 2. Arylamidase requires thiol groups for retention of its activity, is heat-labile and is susceptible to freezing. p-Chloromercuribenzoate and N-ethylmaleimide inactivate the enzyme rapidly. 3. Metal ions are not required for its activity, but stimulation by Mn2+ and Mg2+ and inactivation by Co2+ and Zn2+ are observed. 4. Optimum pH7·5 in phosphate buffer was exhibited for all substrates tested except l-leucyl-β-naphthylamide, for which optimum pH is 6·5. 5. Km values for a number of substrates have been obtained and substrate inhibition at high concentrations was demonstrated. 6. The molecular weight is approx. 70000 as determined by Sephadex-gel filtration.  相似文献   

12.
Wang ZY  Portis AR 《Plant physiology》1992,99(4):1348-1353
Ribulose bisphosphate (RuBP), a substrate of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), is an inhibitor of Rubisco activation by carbamylation if bound to the inactive, noncarbamylated form of the enzyme. The effect of Rubisco activase on the dissociation kinetics of RuBP bound to this form of the enzyme was examined and characterized with the use of 3H-labeled RuBP and proteins purified from spinach (Spinacia oleracea L.) In the absence of Rubisco activase and in the presence of a large excess of unlabeled RuBP, the dissociation rate of bound [1-3H]RuBP was much faster after a short (30 second) incubation than after an extended incubation (1 hour). After 1 hour of incubation, the dissociation rate constant (Koff) of the bound RuBP was 4.8 × 10−4 per second, equal to a half-time of about 35 minutes, whereas the rate after only 30 seconds was too fast to be accurately measured. This time-dependent change in the dissociation rate was reflected in the subsequent activation kinetics of Rubisco in the presence of RuBP, CO2, and Mg2+, and in both the absence or presence of Rubisco activase. However, the activation of Rubisco also proceeded relatively rapidly without Rubisco activase if the RuBP level decreased below the estimated catalytic site concentration. High pH (pH 8.5) and the presence of Mg2+ in the medium also enhanced the dissociation of the bound RuBP from Rubisco in the presence of RuBP. In the presence of Rubisco activase, Mg2+, ATP (but not the nonhydrolyzable analog, adenosine-5′-O-[3-thiotriphosphate]), excess RuBP, and an ATP-regenerating system, the dissociation of [1-3H]RuBP from Rubisco was increased in proportion to the amount of Rubisco activase added. This result indicates that Rubisco activase-mediated hydrolysis of ATP is required for promotion of the enhanced dissociation of the bound RuBP from Rubisco. Furthermore, product analysis by ion-exchange chromatography demonstrated that the release of the bound RuBP, in an unchanged form, was considerably faster than the observed increase in Rubisco activity. Thus, RuBP dissociation was experimentally separated from activation and precedes the subsequent formation of active, carbamylated Rubisco during activation of Rubisco by Rubisco activase.  相似文献   

13.
An alkaliphilic, thermophilic Bacillus sp. (NCIM 59) produced extracellular xylose isomerase at pH 10 and 50°C by using xylose or wheat bran as the carbon source. The distribution of xylose isomerase as a function of growth in comparison with distributions of extra- and intracellular marker enzymes such as xylanase and β-galactosidase revealed that xylose isomerase was truly secreted as an extracellular enzyme and was not released because of sporulation or lysis. The enzyme was purified to homogeneity by ammonium sulfate precipitation followed by gel filtration, preparative polyacrylamide gel electrophoresis, and ion-exchange chromatography. The molecular weight of xylose isomerase was estimated to be 160,000 by gel filtration and 50,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicating the presence of three subunits. The enzyme is most active at pH 8.0 and with incubation at 85°C for 20 min. Divalent metal ions Mg2+, Co2+, and Mn2+ were required for maximum activity of the enzyme. The Km values for D-xylose and D-glucose at 80°C and pH 7.5 were 6.66 and 142 mM, respectively, while Kcat values were 2.3 × 102 s-1 and 0.5 × 102 s-1, respectively.  相似文献   

14.
Evidence is presented that the myosin subfragment-1–ADP complex, generated by the addition of Mg2+ and ADP to subfragment 1, is an intermediate within the myosin Mg2+-dependent adenosine triphosphatase (ATPase) turnover cycle. The existence of this species as a steady-state intermediate at pH8 and 5°C is demonstrated by fluorescence measurements, but its concentration becomes too low to measure at 21°C. This arises because there is a marked temperature-dependence on the rate of the process controlling ADP dissociation from subfragment 1 (rate=1.4s−1 at 21°C, 0.07s−1 at 5°C). In the ATPase pathway this reaction is in series with a relatively temperature-insensitive process, namely an isomerization of the subfragment-1–product complex (rate=0.055s−1 at 21°C, 0.036s−1 at 5°C). By means of studies on the Pi inhibition of nucleotide-association rates, a myosin subfragment-1–Pi complex was characterized with a dissociation equilibrium constant of 1.5mm. Pi appears to bind more weakly to the myosin subfragment-1–ADP complex. The studies indicate that Pi dissociates from subfragment 1 at a rate greater than 40s−1, and substantiates the existence of a myosin-product isomerization before product release in the elementary processes of the Mg2+-dependent ATPase. In this ATPase mechanism Mg2+ associates as a complex with ATP and is released as a complex with ADP. In 0.1m-KCl at pH8 1.0mol of H+ is released/mol of subfragment 1 concomitant with the myosin-product isomerization or Pi dissociation, and 0.23 mol of H+ is released/mol of subfragment when ATP binds to the protein, but 0.23 mol of H+ is taken up again from the medium when ADP dissociates. Within experimental sensitivity no H+ is released into the medium in the step involving ATP cleavage.  相似文献   

15.
The β-lactamase from Klebsiella pneumoniae E70 behaved in a similar fashion to the TEM-2 plasmid mediated enzyme on reaction with clavulanic acid. Both enzymes produced two types of enzyme–clavulanate complex, a transiently stable species (t½=4min at pH7.3 and 37°C) and irreversibly inhibited enzyme. In the initial rapid reaction (2.5min) the enzymes partitioned between the transient and irreversible complexes in the ratios 3:1 for TEM-2 β-lactamase and 1:1 for Klebsiella β-lactamase. Biphasic inactivation was observed for both enzymes and the slower second phase was rate limited by the decay of the transiently stable complex. This decay released free enzyme for further reaction with fresh clavulanic acid, the products again partitioning between transiently stable and irreversibly inhibited enzyme. This cycle continued until all the enzyme had been irreversibly inhibited. A 115 molar excess of inhibitor was required to achieve complete inactivation of TEM-2 β-lactamase. Hydrolysis of clavulanic acid with product release appeared to occur with the inhibition reaction, which explained this degree of clavulanic acid turnover. The stoichiometry of the interaction with Klebsiella β-lactamase was not examined. The penicillinase from Proteus mirabilis C889 was rapidly inhibited by low concentrations of clavulanic acid. The major product was a moderately stable complex (t½=40min at pH7.3 and 37°C); the proportion of the enzyme that was irreversibly inactivated was small. The cephalosporinase from Enterobacter cloacae P99 had low affinity for the inhibitor and only reacted with high concentrations of clavulanic acid (k=4.0m−1·s−1) to produce a relatively stable complex (t½=180min at pH7.3 and 37°C). No irreversible inactivation of this enzyme was detected. The rates of decay of the clavulanate–enzyme complexes produced in reactions with Proteus and Enterobacter enzymes were markedly increased at acid pH.  相似文献   

16.
A manganese-containing superoxide dismutase (EC 1.15.1.1) was fully characterized from leaves of the higher plant Pisum sativum L., var. Lincoln. The amino acid composition determined for the enzyme was compared with that of a wide spectrum of superoxide dismutases and found to have a highest degree of homology with the mitochondrial manganese superoxide dismutases from rat liver and yeast. The enzyme showed an apparent pH optimum of 8.6 and at 25°C had a maximum stability at alkaline pH values. By kinetic competition experiments, the rate constant for the disproportionation of superoxide radicals by pea leaf manganese superoxide dismutase was found to be 1.61 × 109 molar−1·second−1 at pH 7.8 and 25°C. The enzyme was not sensitive to NaCN or to H2O2, but was inhibited by N3. The sulfhydryl reagent p-hydroxymercuribenzoate at 1 mm concentration produced a nearly complete inhibition of the manganese superoxide dismutase activity. The metal chelators o-phenanthroline, EDTA, and diethyldithiocarbamate all inhibited activity slightly in decreasing order of intensity. A comparative study between this higher plant manganese superoxide dismutase and other dismutases from different origins is presented.  相似文献   

17.
Some aspects of the metabolism of urethane and N-hydroxyurethane in rodents   总被引:1,自引:1,他引:0  
1. Urethane and N-hydroxyurethane are interconvertible in C and C57 mice. 2. In newborn C57/DBA hybrid mice, prior treatment with 3-methylcholanthrene or urethane stimulated the N-hydroxylation of urethane; SKF 525A inhibited the N-hydroxylation at 24hr. but stimulated it at 48hr. after administration. 3. Liver homogenates of CBA and C3H mice, and of Chester Beatty and hooded rats, but not whole-body homogenates of 1-day-old C57/DBA mice or lung homogenate of 3-week-old Chester Beatty rats, metabolized urethane into N-hydroxyurethane in small but definite amounts. 4. Nitrite was detected in the bodies of newborn C57/DBA hybrid mice treated with lethal doses of urethane or N-hydroxyurethane; nitrite formation from N-hydroxyurethane was stimulated by pretreatment of the animals with 3-methylcholanthrene. 5. The rate of catabolism of N-hydroxyurethane by C57/DBA mice was faster in 8-day-old than in 1-day-old animals of the same sex, and faster in females than in males of the same age. 6. Liver slices of several species of rats and mice catabolized N-hydroxyurethane at rates that varied with the age and sex of animals of the same species; liver homogenates or microsomes were less effective than slices from the same liver. 7. The enzyme activity was destroyed by boiling or freezing the liver; it was inhibited by increasing substrate concentration and by urethane, n-butyl carbamate, cyanide, p-benzoquinone or 2,4-dinitrophenol, but not by p-chloromercuribenzoate or menadione. 8. The catabolism of N-hydroxyurethane by liver slices from adult H-strain rats was not oxygen-dependent. 9. Lung homogenates of 4-week-old female Chester Beatty rats catabolized N-hydroxyurethane at 40% of the rate of liver slices from the same source. 10. O-Acetyl- and O-ethoxycarbonyl-N-hydroxyurethane were rapidly deacylated by liver homogenates from adult hooded rats and adult C57 mice, and by human erythrocytes. 11. N-Hydroxyurethane reacted rapidly with pyridoxal phosphate at pH7·4 and 37°. 12. The rate of decomposition of N-hydroxyurethane in 0·1 n-sodium hydroxide was increased by Ni2+, Cu2+, Mn2+ and [Fe(CN)6]3− and decreased by Cr2+, Zn2+, Co2+, Mg2+ and Fe2+. 13. Attempts to synthesize sulphonates of N-hydroxyurethane gave ethyl hydrogen sulphate, probably via rearrangement of the unstable O-sulphonate.  相似文献   

18.
Khan AA  Zeng GW 《Plant physiology》1985,77(4):817-823
`Grand Rapids' lettuce Lactuca sativa L. seeds germinate readily at 15°C but poorly at 25°C in darkness. When held in dark at 25°C for an extended period, the ungerminated seeds become dormant as shown by their inability to germinate or transfer to 15°C in darkness. Induction of dormancy at 25°C was prevented by exposure to CN, azide, salicylhydroxamic acid (SHAM), dinitrophenol, and pure N2 as determined by subsequent germination at 15°C on removal of inhibitors. The effectiveness of inhibitors to break dormancy declined as dormancy intensified. At relatively low levels, CN, SHAM, and azide promoted dark germination at 25°C while at high levels they were inhibitory. Uptake of O2 by seeds held at 25°C for 4 days in 1.0 millimolar KCN was inhibited by 67% but was promoted 61% when KCN was removed. Correspondingly greater inhibition (79%) and promotion (148%) occurred when 1.0 millimolar SHAM was added to KCN solution. When applied alone, SHAM had little effect on O2 uptake. These data indicate that Cyt pathway of respiration plays a dominant role in the control of both dormancy induction and germination of lettuce seeds, and `alternative pathway' is effectively engaged in presence of CN. The channeling of respiratory energy use for processes governing germination or dormancy is subject to control by physical and chemical factors.

A scheme is proposed that illustrates compensatory use of energy for processes controlling dormancy induction and germination. A block of germination, e.g. by low water potential polyethylene glycol solution or a supraoptimal temperature spares energy to be utilized for dormancy induction while a block of dormancy induction by low levels of CN (similar to GA and light effects) drives germination. Blocking both processes by inhibitors (e.g. CN, CN + SHAM) presumably leads to accumulation of `reducing power' with consequent improvement in O2 uptake and oxidation rates of processes controlling germination or dormancy induction upon removal of the inhibitors.

  相似文献   

19.
We examined nitrate-dependent Fe2+ oxidation mediated by anaerobic ammonium oxidation (anammox) bacteria. Enrichment cultures of “Candidatus Brocadia sinica” anaerobically oxidized Fe2+ and reduced NO3 to nitrogen gas at rates of 3.7 ± 0.2 and 1.3 ± 0.1 (mean ± standard deviation [SD]) nmol mg protein−1 min−1, respectively (37°C and pH 7.3). This nitrate reduction rate is an order of magnitude lower than the anammox activity of “Ca. Brocadia sinica” (10 to 75 nmol NH4+ mg protein−1 min−1). A 15N tracer experiment demonstrated that coupling of nitrate-dependent Fe2+ oxidation and the anammox reaction was responsible for producing nitrogen gas from NO3 by “Ca. Brocadia sinica.” The activities of nitrate-dependent Fe2+ oxidation were dependent on temperature and pH, and the highest activities were seen at temperatures of 30 to 45°C and pHs ranging from 5.9 to 9.8. The mean half-saturation constant for NO3 ± SD of “Ca. Brocadia sinica” was determined to be 51 ± 21 μM. Nitrate-dependent Fe2+ oxidation was further demonstrated by another anammox bacterium, “Candidatus Scalindua sp.,” whose rates of Fe2+ oxidation and NO3 reduction were 4.7 ± 0.59 and 1.45 ± 0.05 nmol mg protein−1 min−1, respectively (20°C and pH 7.3). Co-occurrence of nitrate-dependent Fe2+ oxidation and the anammox reaction decreased the molar ratios of consumed NO2 to consumed NH4+ (ΔNO2/ΔNH4+) and produced NO3 to consumed NH4+ (ΔNO3/ΔNH4+). These reactions are preferable to the application of anammox processes for wastewater treatment.  相似文献   

20.
A β-class carbonic anhydrase (CA, EC 4.2.1.1) was cloned from the genome of the Monogenean platyhelminth Gyrodactylus salaris, a parasite of Atlantic salmon. The new enzyme, GsaCAβ has a significant catalytic activity for the physiological reaction, CO2 + H2O ⇋ HCO3 + H+ with a kcat of 1.1 × 105 s−1 and a kcat/Km of 7.58 × 106 M−1 × s−1. This activity was inhibited by acetazolamide (KI of 0.46 µM), a sulphonamide in clinical use, as well as by selected inorganic anions and small molecules. Most tested anions inhibited GsaCAβ at millimolar concentrations, but sulfamide (KI of 81 µM), N,N-diethyldithiocarbamate (KI of 67 µM) and sulphamic acid (KI of 6.2 µM) showed a rather efficient inhibitory action. There are currently very few non-toxic agents effective in combating this parasite. GsaCAβ is subsequently proposed as a new drug target for which effective inhibitors can be designed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号