首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
L Thorner  N Bucay  J Choe    M Botchan 《Journal of virology》1988,62(7):2474-2482
The M gene of bovine papillomavirus type 1 has been genetically defined as encoding a trans-acting product which negatively regulates bovine papillomavirus type 1 replication and is important for establishment of stable plasmids in transformed cells. The gene for this regulatory protein has been mapped in part to the 5' portion of the largest open reading frame (E1) in the virus. We constructed a trpE-E1 fusion gene and expressed this gene in Escherichia coli. Rabbits were immunized with purified fusion protein, and antisera directed against the product were used to identify the M gene product in virus-transformed cells. In this way a polypeptide with an apparent molecular mass of 23 kilodaltons was detected. The virus-encoded product is phosphorylated and can be readily detected by immunoprecipitation assays from cells transformed by the virus. Cells that harbor viral DNA without M as integrated copies do not produce this protein, whereas cells that harbor integrated viral genomes which are defective for another E1 viral gene important for plasmid replication, R, do produce this protein. The protein has an anomalously low electrophoretic mobility. An in vitro translation product of an SP6 RNA product of a sequenced cDNA predicts a molecular mass of 16 kilodaltons for the protein, and this in vitro translation product has an electrophoretic mobility identical to that of the in vivo immunoprecipitated protein. The results of these studies confirm our previous genetic studies which indicated that part of the E1 open reading frame defined a discrete gene product distinct from other putative products which may be encoded by this open reading frame.  相似文献   

2.
3.
4.
5.
The E8 open reading frame of bovine papillomavirus type 4 encodes a small hydrophobic polypeptide which contributes to cell transformation by conferring anchorage-independent growth. Using an in vitro translation system, we show that the E8 polypeptide binds to ductin, the 16-kDa proteolipid that forms transmembrane channels in both gap junctions and vacuolar H+-ATPase. This association is not due to nonspecific hydrophobic interactions. PPA1, a Saccharomyces cerevisiae polypeptide homologous (with 25% identity) to ductin, does not complex with E8. Furthermore, E5B, structurally similar to E8 but with no transforming activity, does not form a complex with ductin. Primary bovine fibroblasts expressing E8 show a loss of gap junctional intercellular communication, and it is suggested that this results from the interaction between E8 and ductin.  相似文献   

6.
7.
8.
9.
10.
The human papillomavirus 1 (HPV-1) virion is composed of two virally encoded proteins: a 57,000-molecular-weight polypeptide (57K polypeptide), which is the product of the L1 open reading frame (ORF), and a 78K polypeptide, which is derived from the L2 ORF. The 57K (L1) product, which represents the major structural component, appears to be disulfide cross-linked in virus particles. The 78K (L2) protein is a minor component of the virion and does not appear to be disulfide linked either to the L1 gene product or to itself. Analysis of virus particles banding at different buoyant densities revealed differences in the L2 content of heavy-full and light-full virions. Antiserum prepared against a bacterially expressed fragment of the L1 ORF was found by immunofluorescence to cross-react with HPV-2 and bovine papillomavirus 1 virions in wart sections. No cross-reactivity was observed with antisera prepared against either the N- or C-terminal halves of the L2-encoded protein. Similarly, antisera prepared against purified virus particles (disrupted and nondisrupted) reacted only with an expressed fragment of the L1 ORF and not with either L2-encoded polypeptides or proteins derived from the E1, E2, E4, E6, or E7 ORFs. This indicates that the L1 protein contains the papillomavirus common antigens.  相似文献   

11.
12.
13.
The 23-kDa protein encoded by the 5' segment of the E1 open reading frame of bovine papillomavirus type 1 (BPV1) was previously ascribed a negative regulatory function for the replication of viral plasmid DNA. However, results from recent functional and biochemical studies do not readily support this genetic assignment. Therefore, we have reassessed the role of this protein in papillomavirus DNA replication by using a mutant of BPV1 which is unable to express this E1 protein. This mutant viral DNA was found to replicate extrachromosomally with stability and copy number per cell similar to those of wild-type plasmid DNA. Thus, the absence of expression of the 23-kDa E1 protein did not lead to deregulated viral plasmid replication. We conclude that the 23-kDa E1 protein is nonessential for stable plasmid replication.  相似文献   

14.
15.
Sequencing of the E5 open reading frame (ORF) of human papillomavirus type 16 revealed an additional nucleotide, a thymidine residue, at position 3903 compared with the original sequence (Seedorf et al., Virology 145:181-185, 1985). The additional T had two effects; first, in reading frame 2, in which the original E5 ORF was predicted, the additional T changed the reading frame downstream of position 3903 to create an ORF, which we designated E5, that terminated at position 4018 and potentially encoded a 52-amino-acid polypeptide. Secondly, in reading frame 3, a new ORF was created (positions 3807 to 4097), which we propose is the authentic papillomavirus type 16 E5 ORF. It contained a methionine residue and encoded an additional 82 amino acids. Both ORFs have been cloned into bacterial expression vectors (pATH), and the fusion proteins have been used to generate polyclonal antibodies in rabbits.  相似文献   

16.
17.
Six recombinants were constructed which expressed portions of the bovine papillomavirus E1 open reading frame as OmpF/E1/beta-galactosidase tribrid fusion proteins in Escherichia coli. Rabbit sera containing E1-specific antibodies were generated against five of these six fusion proteins (which together constitute 74% of the full-length E1 open reading frame). The individual fusion proteins and their cognate antisera will be useful reagents for defining the structure and function of the BPV E1 protein(s).  相似文献   

18.
L Petti  J Sample  F Wang    E Kieff 《Journal of virology》1988,62(4):1330-1338
Three distantly homologous neighboring long open reading frames in the Epstein-Barr virus (EBV) genome are preceded by short open reading frames. The leftmost short and long open reading frames encode EBNA3, a nuclear protein which is slightly smaller (145 kilodaltons [kDa]) than two other nuclear proteins (150 to 155 kDa) detected in Western blots (immunoblots) of latently infected cell protein (K. Hennessy, F. Wang, E. Woodland-Bushman, and E. Kieff, Proc. Natl. Acad. Sci. USA 83:5693-5697, 1986; I. Joab, D. T. Rowe, M. Bodescot, J.-C. Nicolas, P. J. Farrell, and M. Perricaudet, J. Virol. 61:3340-3344, 1987). We have demonstrated that the most rightward short (BERF3) and long (BERF4) open reading frames are spliced in frame at the 3' end of a 5-kilobase latently infected cell RNA and that this RNA begins within or upstream of the EBV long internal repeat. EBV-immune human antibodies specific for the long open reading frame translation product identified a 155-kDa protein on Western blots of latently infected cell protein and specifically reacted with large nonnucleolar nuclear granules in every latently infected cell. Expression of the cDNA in BALB/c 3T3 cells resulted in translation of full-size EBNA3C but had no effect on cell morphology, contact inhibition, or serum independence.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号