首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Without exposure to any DNA-damaging agents, non-dividing eukaryotic cells carry endogenous DNA double-strand breaks (EDSBs), or Replication-Independent (RIND)-EDSBs. In human cells, RIND-EDSBs are enriched in the methylated heterochromatic areas of the genome and are repaired by an ATM-dependent non-homologous end-joining pathway (NHEJ). Here, we showed that Saccharomyces cerevisiae similarly possess RIND-EDSBs. Various levels of EDSBs were detected during different phases of the cell cycle, including G0. Using a collection of mutant yeast strains, we investigated various DNA metabolic and DNA repair pathways that might be involved in the maintenance of RIND-EDSB levels. We found that the RIND-EDSB levels increased significantly in yeast strains lacking proteins involved in NHEJ DNA repair and in suppression of heterochromatin formation. RIND-EDSB levels were also upregulated when genes encoding histone deacetylase, endonucleases, topoisomerase, and DNA repair regulators were deleted. In contrast, RIND-EDSB levels were downregulated in the mutants that lack chromatin-condensing proteins, such as the high-mobility group box proteins, and Sir2. Likewise, RIND-EDSB levels were also decreased in human cells lacking HMGB1. Therefore, we conclude that the genomic levels of RIND-EDSBs are evolutionally conserved, dynamically regulated, and may be influenced by genome topology, chromatin structure, and the efficiency of DNA repair systems.  相似文献   

2.
The main pathways for the repair of DNA double strand breaks (DSBs) are non-homologous end-joining (NHEJ) and homologous recombination directed repair (HDR). These operate mutually exclusive and are activated by 53BP1 and BRCA1, respectively. As HDR can only succeed in the presence of an intact copy of replicated DNA, cells employ several mechanisms to inactivate HDR in the G1 phase of cell cycle. As cells enter S-phase, these inhibitory mechanisms are released and HDR becomes active. However, during DNA replication, NHEJ and HDR pathways are both functional and non-replicated and replicated DNA regions co-exist, with the risk of aberrant HDR activity at DSBs in non-replicated DNA. It has become clear that DNA repair pathway choice depends on inhibition of DNA end-resection by 53BP1 and its downstream factors RIF1 and MAD2L2. However, it is unknown how MAD2L2 accumulates at DSBs to participate in DNA repair pathway control and how the NHEJ and HDR repair pathways are appropriately activated at DSBs with respect to the replication status of the DNA, such that NHEJ acts at DSBs in pre-replicative DNA and HDR acts on DSBs in post-replicative DNA. Here we show that MAD2L2 is recruited to DSBs in H4K20 dimethylated chromatin by forming a protein complex with 53BP1 and RIF1 and that MAD2L2, similar to 53BP1 and RIF1, suppresses DSB accumulation of BRCA1. Furthermore, we show that the replication status of the DNA locally ensures the engagement of the correct DNA repair pathway, through epigenetics. In non-replicated DNA, saturating levels of the 53BP1 binding site, di-methylated lysine 20 of histone 4 (H4K20me2), lead to robust 53BP1-RIF1-MAD2L2 recruitment at DSBs, with consequent exclusion of BRCA1. Conversely, replication-associated 2-fold dilution of H4K20me2 promotes the release of the 53BP1-RIF1-MAD2L2 complex and favours the access of BRCA1. Thus, the differential H4K20 methylation status between pre-replicative and post-replicative DNA represents an intrinsic mechanism that locally ensures appropriate recruitment of the 53BP1-RIF1-MAD2L2 complex at DNA DSBs, to engage the correct DNA repair pathway.  相似文献   

3.
CRISPR technologies greatly foster genome editing in mammalian cells through site-directed DNA double strand breaks (DSBs). However, precise editing outcomes, as mediated by homologous recombination (HR) repair, are typically infrequent and outnumbered by undesired genome alterations. By using knockdown and overexpression studies in Chinese hamster ovary (CHO) cells as well as characterizing repaired DNA junctions, we found that efficient HR-mediated genome editing depends on alternative end-joining (alt-EJ) DNA repair activities, a family of incompletely characterized DNA repair pathways traditionally considered to oppose HR. This dependency was influenced by the CRISPR nuclease type and the DSB-to-mutation distance, but not by the DNA sequence surrounding the DSBs or reporter cell line. We also identified elevated Mre11 and Pari, and low Rad51 expression levels as the most rate-limiting factors for HR in CHO cells. Counteracting these three bottlenecks improved precise genome editing by up to 75%. Altogether, our study provides novel insights into the complex interplay of alt-EJ and HR repair pathways, highlighting their relevance for developing improved genome editing strategies.  相似文献   

4.
Bree RT  Neary C  Samali A  Lowndes NF 《DNA Repair》2004,3(8-9):989-995
Eukaryotic cells have evolved highly sophisticated cellular responses to DNA double strand breaks (DSBs) that increase the likelihood of survival. However, cells can also respond to DSBs by undergoing programmed cell death. The mechanisms underlying the cellular decision on whether to repair and survive or to die are not well understood but may be related to the efficiency of repair or the extent of the damage. Presumably, a few easily reparable DSBs will not result in cell death in most cell types. However, abundant complex DSBs will present a severe challenge to the repair machineries with repeated attempts at repair likely to result in genome instability. For multicellular eukaryotes at least, struggling to complete repair is folly, whereas removal of severely damaged cells is a more sensible strategy. Here we discuss recent evidence linking DSBs to a highly regulated form of cell death termed, apoptosis. In particular, we focus on the roles of the tumour suppressor, p53 and a recently discovered role for an isotype of the linker histone H1. We present a hypothesis that the elevated levels of ssDNA produced during ongoing attempts at DSB repair may be involved in the switch from repair to apoptosis.  相似文献   

5.
Deficient mismatch repair (MMR) is identified as a mutation of one of four major MMR genes and(or) microsatellite instability. These genomic changes are used as markers of MMR status of the heredity nonpolyposis colorectal cancer (HNPCC) spectrum tumors--familial and sporadic tumors of colon and extracolonic cancers fulfilling Amsterdam clinical criteria II. MMR-deficiency results in mutator phenotype and resistance to geno- and cytotoxicity of alkylating agents. The main cytotoxic damage to DNA in response to chemical methylation is O6-methylguanine (O6-mG). The secondary DNA strand breaks, which are formed during the MMR functioning, are proposed to be required for methylation induced cytotoxicity. We have assumed that the secondary double stand breaks (DSB) upon DNA methylation are able to represent functional efficiency of MMR in cells. The purpose of the paper was to test this assumption on human tumor cells differing in MMR-status and pulse-treated with methylnitrosourea (MNU). We used 3 cell lines: HeLa (MMR-competent endometrial tumor cells), HCT116 (MMR-deficient colorectal carcinoma cells), and Colo320 (sigmoid intestine tumor cells with uncharacterized MMR status). DSBs were evaluated with neutral comet assay. Cytotoxicity/viability was evaluated with MTT-asay and apoptotic index (frequency of morphologically determined apoptotic cells). We show that 1) cytotoxic effect of MNU (250 microM) on HeLa cells was exhibited 3 days after pulse-treatment of cells with MNU; 2) DSBs occurred 48 h after the drug treatment but prior to the onset of apoptosis of HeLa cells; 3) MMR-deficient HCT116 cells were resistant to the drug: no decreased viability, DSBs and apoptosis were observed during 3 days after cell treatment. Both cell lines exhibited high sensitivity to etoposide, classical inductor of unrepairable DSBs and p53. Etoposide has been found to induce DSBs in 6-12 h, which was followed by apoptosis (in 24 h). Colo320 cells exhibited intermediate position between HeLa and HCT116 cell lines in regard to sensitivity to MNU according to MTT-assay and the number of secondary DSBs formed in MNU-treated cells. Nevertheless, in contrast to HeLa cells, these breaks did not induce apoptosis in Colo320 cells. Our data confirm the assumption about case/effect relationship between secondary DNA double strand breaks, induced by monofunctional methylating agent MNU, and functioning of MMR in human tumor cells.  相似文献   

6.
Re-initiation of DNA replication at origins within a given cell cycle would result in DNA rereplication, which can lead to genome instability and tumorigenesis. DNA rereplication can be induced by loss of licensing control at cellular replication origins, or by viral protein-driven multiple rounds of replication initiation at viral origins. DNA double-strand breaks (DSBs) are generated during rereplication, but the mechanisms of how these DSBs are repaired to maintain genome stability and cell viability are poorly understood in mammalian cells. We generated novel EGFP-based DSB repair substrates, which specifically monitor the repair of rereplication-associated DSBs. We demonstrated that homologous recombination (HR) is an important mechanism to repair rereplication-associated DSBs, and sister chromatids are used as templates for such HR-mediated DSB repair. Micro-homology-mediated non-homologous end joining (MMEJ) can also be used but to a lesser extent compared to HR, whereas Ku-dependent classical non-homologous end joining (C-NHEJ) has a minimal role to repair rereplication-associated DSBs. In addition, loss of HR activity leads to severe cell death when rereplication is induced. Therefore, our studies identify HR, the most conservative repair pathway, as the primary mechanism to repair DSBs upon rereplication.  相似文献   

7.
A double-strand break (DSB) in the mammalian genome has been shown to be a very potent signal for the cell to activate repair processes. Two different types of repair have been identified in mammalian cells. Broken ends can be rejoined with or without loss or addition of DNA or, alternatively, a homologous template can be used to repair the break. For most genomic sequences the latter event would involve allelic sequences present on the sister chromatid or homologous chromosome. However, since more than 30% of our genome consists of repetitive sequences, these would have the option of using nonallelic sequences for homologous repair. This could have an impact on the evolution of these sequences and of the genome itself. We have designed an assay to look at the repair of DSBs in LINE-1 (L1) elements which number 10(5) copies distributed throughout the genome of all mammals. We introduced into the genome of mouse epithelial cells an L1 element with an I-SceI endonuclease site. We induced DSBs at the I-SceI site and determined their mechanism of repair. We found that in over 95% of cases, the DSBs were repaired by an end-joining process. However, in almost 1% of cases, we found strong evidence for repair involving gene conversion with various endogenous L1 elements, with some being used preferentially. In particular, the T(F) family and the L1Md-A2 subfamily, which are the most active in retrotransposition, appeared to be contributing the most in this process. The degree of homology did not seem to be a determining factor in the selection of the endogenous elements used for repair but may be based instead on accessibility. Considering their abundance and dispersion, gene conversion between repetitive elements may be occurring frequently enough to be playing a role in their evolution.  相似文献   

8.
DNA double-strand breaks (DSBs) are the most hazardous lesions arising in the genome of eukaryotic organisms, and yet occur normally during DNA replication, meiosis, and immune system development. The efficient repair of DSBs is crucial in maintaining genomic integrity, cellular viability, and the prevention of tumorigenesis. As a consequence, eukaryotic cells have evolved efficient mechanisms that sense and respond to DSBs and ultimately repair the break. The swiftness of the DNA DSB response has paved to the identification of sensors and transducers which allowed to generate a hierarchical signaling paradigm depicting the transduction of the damage signal to numerous downstream effectors (Fig. 1). The function of such effectors involve posttranslational modifications through phosphorylation, acetylation, and methylation of the substrates. This review will address the control of DSBs in damaged eukaryotic cells, the physiological processes that require the introduction of a DSB into the genome, and the maintenance of DSBs in non-damaged cells.  相似文献   

9.
Although the majority of mammalian cells in situ are terminally differentiated, most DNA repair studies have used proliferating cells. In an attempt to understand better the relationship between differentiation and DNA repair, we have used the murine 3T3-T proadipocyte cell line. In this model system, proliferating (stem) cells undergo growth arrest (GD cells) and subsequently terminally differentiate into adipocytes when exposed to media containing platelet-depleted human plasma. Pulsed-field gel electrophoresis was used to evaluate the induction and repair of DNA double-strand breaks (DSBs) after ionizing radiation. The levels of radiation-induced DSBs in GD and terminally differentiated cells were similar, but in both cases greater than those found in stem cells at each radiation dose tested (0 to 40 Gy); these differences appear to be due to growth arrest in G1 phase. DNA DSBs were repaired with biphasic kinetics for each cell type. For terminally differentiated cells 25% of DNA DSBs remained unrejoined compared with < 10% for GD and stem cells after a repair time of 4 h. These data indicate that terminal differentiation of 3T3-T cells is associated with a reduction in the repair of ionizing radiation-induced DNA DSBs.  相似文献   

10.
The DNA damage response (DDR) involves both the control of DNA damage repair and signaling to cell cycle checkpoints. Therefore, unraveling the underlying mechanisms of the DDR is important for understanding tumor suppression and cellular resistance to clastogenic cancer therapeutics. Because the DDR is likely to be influenced by chromatin regulation at the sites of DNA damage, we investigated the role of heterochromatin protein 1 (HP1) during the DDR process. We monitored double-strand breaks (DSBs) using the γH2AX foci marker and found that depleting cells of HP1 caused genotoxic stress, a delay in the repair of DSBs and elevated levels of apoptosis after irradiation. Furthermore, we found that these defects in repair were associated with impaired BRCA1 function. Depleting HP1 reduced recruitment of BRCA1 to DSBs and caused defects in two BRCA1-mediated DDR events: (i) the homologous recombination repair pathway and (ii) the arrest of cell cycle at the G2/M checkpoint. In contrast, depleting HP1 from cells did not affect the non-homologous end-joining (NHEJ) pathway: instead it elevated the recruitment of the 53BP1 NHEJ factor to DSBs. Notably, all three subtypes of HP1 seemed to be almost equally important for these DDR functions. We suggest that the dynamic interaction of HP1 with chromatin and other DDR factors could determine DNA repair choice and cell fate after DNA damage. We also suggest that compromising HP1 expression could promote tumorigenesis by impairing the function of the BRCA1 tumor suppressor.  相似文献   

11.
We have optimized a pulsed-field gel electrophoresis assay that measures induction and repair of double-strand breaks (DSBs) in specific regions of the genome (L?brich et al., Proc. Natl. Acad. Sci. USA 92, 12050-12054, 1995). The increased sensitivity resulting from these improvements makes it possible to analyze the size distribution of broken DNA molecules immediately after the introduction of DSBs and after repair incubation. This analysis shows that the distribution of broken DNA pieces after exposure to sparsely ionizing radiation is consistent with the distribution expected from randomly induced DSBs. It is apparent from the distribution of rejoined DNA pieces after repair incubation that DNA ends continue to rejoin between 3 and 24 h postirradiation and that some of these rejoining events are in fact misrejoining events, since novel restriction fragments both larger and smaller than the original fragment are generated after repair. This improved assay was also used to study the kinetics of DSB rejoining and the extent of misrejoining in identical DNA sequences in human GM38 cells and human-hamster hybrid A(L) cells containing a single human chromosome 11. Despite the numerous differences between these cells, which include species and tissue of origin, levels of TP53, expression of telomerase, and the presence or absence of a homologous chromosome for the restriction fragments examined, the kinetics of rejoining of radiation-induced DSBs and the extent of misrejoining were similar in the two cell lines when studied in the G(1) phase of the cell cycle. Furthermore, DSBs were removed from the single-copy human chromosome in the hamster A(L) cells with similar kinetics and misrejoining frequency as at a locus on this hybrid's CHO chromosomes.  相似文献   

12.
13.
Efficient and faithful repair of DNA double-strand breaks (DSBs) is critical for genome stability. To understand whether cells carrying a functional repair apparatus are able to efficiently heal two distant chromosome ends and whether this DNA lesion might result in genome rearrangements, we induced DSBs in genetically modified mouse embryonic stem cells carrying two I-SceI sites in cis separated by a distance of 9 kbp. We show that in this context non-homologous end-joining (NHEJ) can repair using standard DNA pairing of the broken ends, but it also joins 3' non-complementary overhangs that require unusual joining intermediates. The repair efficiency of this lesion appears to be dramatically low and the extent of genome alterations was high in striking contrast with the spectra of repair events reported for two collinear DSBs in other experimental systems. The dramatic decline in accuracy suggests that significant constraints operate in the repair process of these distant DSBs, which may also control the low efficiency of this process. These findings provide important insights into the mechanism of repair by NHEJ and how this process may protect the genome from large rearrangements.  相似文献   

14.
Non-homologous DNA end joining   总被引:9,自引:0,他引:9  
DNA double-strand breaks (DSBs) are a serious threat for the cell and when not repaired or misrepaired can result in mutations or chromosome rearrangements and eventually in cell death. Therefore, cells have evolved a number of pathways to deal with DSB including homologous recombination (HR), single-strand annealing (SSA) and non-homologous end joining (NHEJ). In mammals DSBs are primarily repaired by NHEJ and HR, while HR repair dominates in yeast, but this depends also on the phase of the cell cycle. NHEJ functions in all kinds of cells, from bacteria to man, and depends on the structure of DSB termini. In this process two DNA ends are joined directly, usually with no sequence homology, although in the case of same polarity of the single stranded overhangs in DSBs, regions of microhomology are utilized. The usage of microhomology is common in DNA end-joining of physiological DSBs, such as at the coding ends in V(D)J (variable(diversity) joining) recombination. The main components of the NHEJ system in eukaryotes are the catalytic subunit of DNA protein kinase (DNA-PK(cs)), which is recruited by DNA Ku protein, a heterodimer of Ku70 and Ku80, as well as XRCC4 protein and DNA ligase IV. A complex of Rad50/Mre11/Xrs2, a family of Sir proteins and probably other yet unidentified proteins can be also involved in this process. NHEJ and HR may play overlapping roles in the repair of DSBs produced in the S phase of the cell cycle or at replication forks. Aside from DNA repair, NHEJ may play a role in many different processes, including the maintenance of telomeres and integration of HIV-1 genome into a host genome, as well as the insertion of pseudogenes and repetitive sequences into the genome of mammalian cells. Inhibition of NHEJ can be exploited in cancer therapy in radio-sensitizing cancer cells. Identification of all key players and fundamental mechanisms underlying NHEJ still requires further research.  相似文献   

15.
DNA double-strand breaks (DSBs) are a serious threat to genome stability and cell viability. Although biological effects of low levels of radiation are not clear, the risks of low-dose radiation are of societal importance. Here, we directly monitored induction and repair of single DSBs and quantitatively analyzed the dynamics of interaction of DNA repair proteins at individual DSB sites in living cells using 53BP1 fused to yellow fluorescent protein (YFP-53BP1) as a surrogate marker. The number of DSBs formed was linear with dose from 5 mGy to 1 Gy. The DSBs induced by very low radiation doses (5 mGy) were repaired with efficiency similar to repair of DSBs induced at higher doses. The YFP-53BP1 foci are dynamic structures: 53BP1 rapidly and reversibly interacted at these DSB sites. The time frame of recruitment and affinity of 53BP1 for DSB sites were indistinguishable between low and high doses, providing mechanistic evidence for the similar DSB repair after low- and high-dose radiation. These findings have important implications for estimating the risk associated with low-dose radiation exposure on human health.  相似文献   

16.
Measuring the degree of methylation of the B1 element in mouse may represent the global DNA methylation status because about 30,000 copies of the B1 element are randomly dispersed in the total mouse genome. Six CpG dinucleotides are located within each 163 bp size of B1 element, and each CpG dinucleotide was partially methylated. We quantitated the DNA methylation of the B1 repetitive elements by performing PCR for the methylation specific PCR (MSP) and also by the pyrosequencing. Each CpG dinucleotide was methylated at an average of 9% in the mouse genome by the pyrosequencing and MSP. Especially, we checked whether CpG methylation of the B1 element could respond to a treatment of the DNA methylation inhibitor, 5-azacytidine (5-AzaC). Consequently, the calibration graph resulting from measuring the relative CpG methylation percentage of the B1 element is linearly decreased with the increasing amount of 5-AzaC (up to 50 ng/ml concentration) in the NIH3T3 cells with a standard deviation of only 1.73% between three independent assays. Our methods can be applied to the routine analysis of the global DNA methylation changes in mouse in vivo and in vitro in pharmaceuticals and basic epigenetic research with efforts being less labor-intensive.  相似文献   

17.
18.
Genotoxic stress during DNA replication constitutes a serious threat to genome integrity and causes human diseases. Defects at different steps of DNA metabolism are known to induce replication stress, but the contribution of other aspects of cellular metabolism is less understood. We show that aminopeptidase P (APP1), a metalloprotease involved in the catabolism of peptides containing proline residues near their N-terminus, prevents replication-associated genome instability. Functional analysis of C. elegans mutants lacking APP-1 demonstrates that germ cells display replication defects including reduced proliferation, cell cycle arrest, and accumulation of mitotic DSBs. Despite these defects, app-1 mutants are competent in repairing DSBs induced by gamma irradiation, as well as SPO-11-dependent DSBs that initiate meiotic recombination. Moreover, in the absence of SPO-11, spontaneous DSBs arising in app-1 mutants are repaired as inter-homologue crossover events during meiosis, confirming that APP-1 is not required for homologous recombination. Thus, APP-1 prevents replication stress without having an apparent role in DSB repair. Depletion of APP1 (XPNPEP1) also causes DSB accumulation in mitotically-proliferating human cells, suggesting that APP1’s role in genome stability is evolutionarily conserved. Our findings uncover an unexpected role for APP1 in genome stability, suggesting functional connections between aminopeptidase-mediated protein catabolism and DNA replication.  相似文献   

19.
《Trends in genetics : TIG》2023,39(7):560-574
DNA double-strand breaks (DSBs) are one of the most genotoxic DNA lesions, driving a range of pathological defects from cancers to immunodeficiencies. To combat genomic instability caused by DSBs, evolution has outfitted cells with an intricate protein network dedicated to the rapid and accurate repair of these lesions. Pioneering studies have identified and characterized many crucial repair factors in this network, while the advent of genome manipulation tools like clustered regularly interspersed short palindromic repeats (CRISPR)–CRISPR-associated protein 9 (Cas9) has reinvigorated interest in DSB repair mechanisms. This review surveys the latest methodological advances and biological insights gained by utilizing Cas9 as a precise ‘damage inducer’ for the study of DSB repair. We highlight rapidly inducible Cas9 systems that enable synchronized and efficient break induction. When combined with sequencing and genome-specific imaging approaches, inducible Cas9 systems greatly expand our capability to spatiotemporally characterize cellular responses to DSB at specific genomic coordinates, providing mechanistic insights that were previously unobtainable.  相似文献   

20.
We describe the steady-state levels and molecular and cellular repair of DNA double-strand breaks (DSBs) in tetraiodothyroacetic acid (tetrac)-treated human U87MG glioblastoma cells after x-irradiation in vitro. This study was conducted to provide a basis for our previous observation of radiosensitization and inhibition of cellular recovery after irradiation of tetrac-exposed GL261 murine brain tumor cells. We used the neutral comet assay to assess DSBs, and found that the steady-state DSB levels as indicated by the mean tail moment after a 1 h application of 2 nM tetrac at 37oC was increased from a value of 6.1 in control cells to 12.4 in tetrac treated cells at 0 radiation dose. However, at all radiation doses, the induction curves of DSBs were parallel, suggesting that no interaction of tetrac with the initial physical-chemical actions of ionizing radiation occurred. Flow cytometric measurements indicated that this increase was not due to alterations in the relative percentages of U87MG cells throughout the cell cycle. In split-dose DNA repair studies we found that tetrac decreased the repair rate of U87 cells by a factor of 72.5%. This suggests that the radiosensitization from graded single doses of x-rays occurs as a consequence of tetrac inhibition of the post-irradiation repair process. These results link the previously noted changes in cellular endpoints to a molecular endpoint. That is, tetrac produces increased numbers of DSBs in the unirradiated steady-state coupled with a decreased repair rate of DSBs in fractionated radiation experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号