首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An indigenous freshwater bacterium (Sphingomonas sp. strain B18) from Lake Plubetasee (Schleswig-Holstein, Germany) was used to isolate 44 phages from 13 very different freshwater and brackish habitats in distant geographic areas. This bacterial strain was very sensitive to a broad spectrum of phages from different aquatic environments. Phages isolated from geographically distant aquatic habitats, but also those from the same sample, were diverse with respect to morphology and restriction pattern. Some phages were widely distributed, while different types coexisted in the same sample. It was concluded that phages could be a major factor in shaping the structure of bacterial communities and maintaining a high bacterial diversity.  相似文献   

2.
A poly(aspartic acid) degrading bacterium (strain KT-1 [JCM10459]) was isolated from river water and identified as a member of the genus Sphingomonas. The isolate degraded only poly(aspartic acid)s of low molecular masses (<5 kDa), while the cell extract hydrolyzed high-molecular-mass poly(aspartic acid)s of 5 to 150 kDa to yield aspartic acid monomer.  相似文献   

3.
Aeromonas is a pathogenic organism that is often found to infect humans. Here we report the draft genome of a clinical isolate in Malaysia, Aeromonas sp. strain 159, which shows N-acylhomoserine lactone production. In the draft genome of strain 159, luxI and luxR homologue genes were found to be located at contig 47, and these genes are believed to be important for the quorum-sensing system present in this pathogen.  相似文献   

4.
Sphingomonas sp. strain ATCC 31555 can produce an anionic heteropolysaccharide, welan gum, which shows excellent stability and viscosity retention even at high temperatures. Here we present a 4.0-Mb assembly of its genome sequence. We have annotated 10 coding sequences (CDSs) responsible for the welan gum biosynthesis and 55 CDSs related to monosaccharide metabolism.  相似文献   

5.
6.
Metabolism of the phenylurea herbicide isoproturon by Sphingomonas sp. strain SRS2 was significantly enhanced when the strain was grown in coculture with a soil bacterium (designated strain SRS1). Both members of this consortium were isolated from a highly enriched isoproturon-degrading culture derived from an agricultural soil previously treated regularly with the herbicide. Based on analysis of the 16S rRNA gene, strain SRS1 was assigned to the β-subdivision of the proteobacteria and probably represents a new genus. Strain SRS1 was unable to degrade either isoproturon or its known metabolites 3-(4-isopropylphenyl)-1-methylurea, 3-(4-isopropylphenyl)-urea, or 4-isopropyl-aniline. Pure culture studies indicate that Sphingomonas sp. SRS2 is auxotrophic and requires components supplied by association with other soil bacteria. A specific mixture of amino acids appeared to meet these requirements, and it was shown that methionine was essential for Sphingomonas sp. SRS2. This suggests that strain SRS1 supplies amino acids to Sphingomonas sp. SRS2, thereby leading to rapid metabolism of 14C-labeled isoproturon to 14CO2 and corresponding growth of strain SRS2. Proliferation of strain SRS1 suggests that isoproturon metabolism by Sphingomonas sp. SRS2 provides unknown metabolites or cell debris that supports growth of strain SRS1. The role of strain SRS1 in the consortium was not ubiquitous among soil bacteria; however, the indigenous soil microflora and some strains from culture collections also stimulate isoproturon metabolism by Sphingomonas sp. strain SRS2 to a similar extent.  相似文献   

7.
The 2,3-dihydroxybiphenyl dioxygenase from Sphingomonas sp. strain BN6 (BphC1-BN6) differs from most other extradiol dioxygenases by its ability to oxidize 3-chlorocatechol to 3-chloro-2-hydroxymuconic semialdehyde by a distal cleavage mechanism. The turnover of different substrates and the effects of various inhibitors on BphC1-BN6 were compared with those of another 2,3-dihydroxybiphenyl dioxygenase from the same strain (BphC2-BN6) as well as with those of the archetypical catechol 2,3-dioxygenase (C23O-mt2) encoded by the TOL plasmid. Cell extracts containing C23O-mt2 or BphC2-BN6 converted the relevant substrates with an almost constant rate for at least 10 min, whereas BphC1-BN6 was inactivated significantly within the first minutes during the turnover of all substrates tested. Furthermore, BphC1-BN6 was much more sensitive than the other two enzymes to inactivation by the Fe(II) ion-chelating compound o-phenanthroline. The reason for inactivation of BphC1-BN6 appeared to be the loss of the weakly bound ferrous ion, which is the cofactor in the catalytic center. A mutant enzyme of BphC1-BN6 constructed by site-directed mutagenesis showed a higher stability to inactivation by o-phenanthroline and an increased catalytic efficiency for the conversion of 2,3-dihydroxybiphenyl and 3-methylcatechol but was still inactivated during substrate oxidation.  相似文献   

8.
Factors affecting the fecundity of Physa sp. were studied in the laboratory. Aging of the culture medium resulted in a significant decline in oviposition of this snail species. Changes in ionic levels of the rearing water did not seem to affect egg laying under the experimental conditions. Conspecific snail-conditioned water and faecal homogenates to some extent effectively inhibited oviposition, but spinach infusion had no such effect. The results are consistent with the suggestion that some sort of oviposition inhibitor(s) is released by the snails in the culture water. The inhibitor compound(s) is denatured on boiling or after incubation with a protease.  相似文献   

9.
10.
11.
12.
Environmental biodegradation of several chlorinated pesticides is limited by their low solubility and sorption to soil surfaces. To mitigate this problem we quantified the effect of three biosurfactant viz., rhamnolipid, sophorolipid and trehalose-containing lipid on the dissolution, bioavailability, and biodegradation of HCH-isomers in liquid culture and in contaminated soil. The effect of biosurfactants was evaluated through the critical micelle concentration (CMC) value as determined for each isomer. The surfactant increased the solubilization of HCH isomers by 3-9 folds with rhamnolipid and sophorolipid being more effective and showing maximum solubilization of HCH isomers at 40 μg/mL, compared to trehalose-containing lipid showing peak solubilization at 60 μg/mL. The degradation of HCH isomers by Sphingomonas sp. NM05 in surfactant-amended liquid mineral salts medium showed 30% enhancement in 2 days as compared to degradation in 10 days in the absence of surfactant. HCH-spiked soil slurry incubated with surfactant also showed around 30-50% enhanced degradation of HCH which was comparable to the corresponding batch culture experiments. Among the three surfactants, sophorolipid offered highest solubilization and enhanced degradation of HCH isomers both in liquid medium and soil culture. The results of this study suggest the effectiveness of surfactants in improving HCH degradation by increased bioaccessibility.  相似文献   

13.
Sphingomonas sp. strain RB2256 is a representative of the dominant class of ultramicrobacteria that are present in marine oligotrophic waters. In this study we examined the rRNA copy number and ribosome content of RB2256 to identify factors that may be associated with the relatively low rate of growth exhibited by the organism. It was found that RB2256 contains a single copy of the rRNA operon, in contrast to Vibrio spp., which contain more than eight copies. The maximum number of ribosomes per cell was observed during mid-log phase; however, this maximum content was low compared to those of faster-growing, heterotrophic bacteria (approximately 8% of the maximum ribosome content of Escherichia coli with a growth rate of 1.5 h−1). The low number of ribosomes per cell appears to correlate with the low rate of growth (0.16 to 0.18 h−1) and the presence of a single copy of the rRNA operon. However, on the basis of cell volume, RB2256 appears to have a higher concentration of ribosomes than E. coli (approximately double that of E. coli with a growth rate of 1.5 h−1). Ribosome numbers reached maximum levels during mid-log-phase growth but decreased rapidly to 10% of maximum during late log phase through 7 days of starvation. The cells in late log phase and at the onset of starvation displayed an immediate response to a sudden addition of excess glucose (3 mM). This result demonstrates that a ribosome content 10% of maximum is sufficient to allow cells to immediately respond to nutrient upshift and achieve maximum rates of growth. These data indicate that the bulk of the ribosome pool is not required for protein synthesis and that ribosomes are not the limiting factor contributing to a low rate of growth. Our findings show that the regulation of ribosome content, the number of ribosomes per cell, and growth rate responses in RB2256 are fundamentally different from those characteristics in fast-growing heterotrophs like E. coli and that they may be characteristics typical of oligotrophic ultramicrobacteria.Sphingomonas sp. strain RB2256 was isolated from Resurrection Bay, Alaska (5, 31). When it was originally isolated, it was able to grow only in seawater medium that contained less than 1 mg of dissolved organic carbon (DOC) per liter (31). The growing cells were ultramicro (<0.1 μm3) in size and grew relatively slowly (μ = <0.2 h−1). In contrast, significantly lower numbers (<1%) of larger, faster-growing cells were able to be immediately cultured in rich media and on plates. In this regard, RB2256 behaved like an obligate oligotroph by growing like a K strategist (grows slowly by using low concentrations of nutrients), while the faster-growing cells behaved like eutrophs by growing like r strategists (which grow in bursts and produce resting-stage cells) (reviewed in reference 35). Upon storage at 5°C, RB2256 cells developed the ability to form colonies on plates and grew in rich media, a procedure that was reproducible for related species from the North Sea (31, 32). The term “facultatively oligotrophic” has been used to describe the ability of an obligate oligotroph to grow on rich media (34). By the definitions of Hirsch et al. (16), RB2256 also fulfills the criteria for being a “model oligotroph” by possessing high-affinity uptake systems, the ability to simultaneously take up mixed substrates (33), and a mechanism for avoiding predation, i.e., its ultramicro size (9, 13, 35).Although the defining characteristics of an oligotroph are the subject of debate (23, 34), we operationally define RB2256 as an oligotrophic ultramicrobacterium due to the growth properties it exhibited when it was isolated (e.g., it was unable to grow in rich media) and the physiological (e.g., the ability to grow in media containing <1 mg of DOC/liter) and morphological (e.g., the retention of a constant ultramicro size of <1 μm3 irrespective of whether it is growing or starving) characteristics that it possesses (9). These characteristics differ in many ways from those of eutrophic marine bacteria, typified by Vibrio spp. For example, Vibrio angustum S14 undergoes reductive cell division when it is grown in progressively nutrient-limited media or starved (27) and is markedly less stress resistant than RB2256 (18, 25, 28).RB2256 cells have the ability to immediately reach maximum rates of growth without a lag after the addition of excess glucose to glucose-limited chemostat cultures or in acetate or alanine batch cultures (9). The immediate response of RB2256 cells to nutrient upshift suggests that the ribosome content is not limiting, that the ribosome content is not down-regulated during slow growth, and/or that the remaining ribosomal pool is sufficient for immediately achieving maximum rates of growth.A distinguishing feature of RB2256 is its constant rate of growth (0.13 to 0.16 h−1), regardless of the glucose concentration (800 to 0.8 mg of DOC/liter) in the medium (9). Bacteria such as V. angustum S14 with high rates of growth (2.2 doublings/h) (27) are known to contain 8 to 11 copies of the rRNA operon (39) and >35,000 ribosomes/cell (10). In contrast, the bioluminescent symbiont from the Caribbean flashlight fish, Kryptophanaron alfredi, has a low rate of growth (one doubling every 8 to 23 h) and a single copy of the rRNA operon (39). The relatively low rate of growth of RB2256 may also be correlated with its rRNA operon copy number and ribosome content.In order to discern the relationship between growth rate characteristics of RB2256 and ribosome levels, in this study we examined the rRNA operon copy numbers and ribosome contents of cells growing throughout the growth phase and of cells during periods of starvation of up to 7 days. The results of these experiments provide important insights into the unique physiology of this oligotrophic ultramicrobacterium.  相似文献   

14.
Sphingomonas sp. KT-1 hydrolyzes poly(aspartic acid) (PAA) containing alpha- and beta-amide units and has at least two different types of PAA hydrolases. The PAA hydrolase-1 hydrolyzes selectively beta-beta amide units in PAA. Molecular cloning of PAA hydrolase-1 from Sphingomonas sp. KT-1 has been carried out to characterize its gene products. Genetic analysis shows that the deduced amino acid sequence of PAA hydrolase-1 has a similarity with those of the catalytic domain of poly(3-hydroxybutyric acid) (PHB) depolymerases from Alcaligenes faecalis AE122 and Pseudomonas lemoignei. Site-specific mutation analysis indicates that (176)Ser is a part of a strictly conserved pentapeptide sequence (Gly-Xaa-Ser-Xaa-Gly), which is the lipase box, and plays as an active residue.  相似文献   

15.
Bacterial cell walls have great potential to influence the speciation and mobility of actinides and lanthanides in the environment. In this study we explored the unknown interaction between Cm(III)/Eu(III) and cell-suspensions of Sporomusa sp. MT-2.99, a novel isolate recovered from Opalinus Clay (Mont Terri, Switzerland). The Cm(III)/Eu(III) binding by the cell surface functional groups was studied by potentiometry combined with time-resolved laser-induced fluorescence spectroscopy (TRLFS). This article provides stability constants of Cm(III)/Eu(III) complexed by cell surface functional groups. We could show that as a function of pH Cm(III)/Eu(III) binding occurred to hydrogen phosphoryl, carboxyl and deprotonated phosphoryl sites. Both metals showed a similar interaction process consisting of surface complexation (major) with high thermodynamic stability and an irreversible binding within the cell envelope (minor).  相似文献   

16.
To investigate why Rhizobium sp. (Cicer) strain CC 1192 cells accumulate poly-R-3-hydroxybutyrate in the free-living state but not as bacteroids in nodules on chickpea (Cicer arietinum L.) plants, we have examined the kinetic properties of acetyl coenzyme A (acetyl-CoA) acetyltransferase (also known as acetoacetyl-CoA thiolase and 3-ketothiolase [EC 2.3.1.9]) from both types of cells. The enzyme had a native molecular mass of 180 (plusmn) 4 kDa, and the subunit molecular mass was 44 (plusmn) 1 kDa. The seven amino acids from the N terminus were Lys-Ala-Ser-Ile-Val-Ile-Ala. Thiolysis and condensation activity of the enzyme from free-living CC 1192 cells were optimal at pHs 7.8 and 8.1, respectively. The relationship between substrate concentrations and initial velocity for the thiolysis reaction were hyperbolic and gave K(infm) values for acetoacetyl-CoA and CoA of 42 and 56 (mu)M, respectively. The maximum velocity in the condensation direction was approximately 10% of that of the thiolysis reaction. With highly purified preparations of the enzyme, a value of approximately 1 mM was determined for the apparent K(infm) for acetyl-CoA. However, with partially purified enzyme preparations or when N-ethylmaleimide was included in reaction mixtures the apparent K(infm) for acetyl-CoA was close to 0.3 mM. In the condensation direction, CoA was a potent linear competitive inhibitor with an inhibition constant of 11 (mu)M. The much higher affinity of the enzyme for the product CoA than the substrate acetyl-CoA could have significance in view of metabolic differences between bacteroid and free-living cells of CC 1192. We propose that in free-living CC 1192 cells, the acetyl-CoA/CoA ratio reaches a value that allows condensation activity of acetyl-CoA acetyltransferase, but that in CC 1192 bacteroids, the ratio is poised so that the formation of acetoacetyl-CoA is not favored.  相似文献   

17.
The relevant phenotypic traits and phylogenetic relationships between Burkholderia (Pseudomonas) sp. strain LB400 and B. cepacia ATCC 25416T were compared to determine the degree to which these two strains might be related. Strain LB400 degrades chlorinated biphenyls and has been a model system for potential use in the bioremediation of polychlorinated biphenyls, while some strains of B. cepacia are plant and human pathogens. The fatty acid methyl ester profile, sole carbon source utilization, and biochemical tests confirmed that strain LB400 was a member of the genus Burkholderia. The 16S rRNA gene sequence showed that this strain was not as closely related to B. cepacia as previously suspected or to other known pathogens of this genus, but is closely related to B. phenazinium, B. caribensis, B. graminis, and three unnamed Burkholderia spp. not known to be pathogenic. Received: 16 August 2000 / Accepted: 27 September 2000  相似文献   

18.
通过多年野外实地考察和资料统计分析,对蓼族植物在中国的地理分布进行了深入研究。结果表明,该类群在中国的分布具有一定规律。在水平分布上,物种数目由东北到西南呈逐渐增加的趋势,有6个高密度的分布区,集中沿横断山脉—秦巴山脉分布。除首乌属全国广泛分布外,其他各属或组均有其主要的分布区域。在垂直分布上,整个蓼族植物几乎都分布在海拔5 000 m以下。在海拔1 000~3 000 m,蓼族植物广泛分布,冰岛蓼属、拳参组、头状蓼组一年生型和神血宁组植物主要分布在海拔3 000 m以上,萹蓄组、春蓼组、刺蓼组、首乌属、虎杖属、金线草属和荞麦属主要分布在海拔1 000 m以下。  相似文献   

19.
The geochemical cycling of cobalt (Co) has often been considered to be controlled by the scavenging and oxidation of Co(II) on the surface of manganese [Mn(III,IV)] oxides or manganates. Because Mn(II) oxidation in the environment is often catalyzed by bacteria, we have investigated the ability of Mn(II)-oxidizing bacteria to bind and oxidize Co(II) in the absence of Mn(II) to determine whether some Mn(II)-oxidizing bacteria also oxidize Co(II) independently of Mn oxidation. We used the marine Bacillus sp. strain SG-1, which produces mature spores that oxidize Mn(II), apparently due to a protein in their spore coats (R.A. Rosson and K. H. Nealson, J. Bacteriol. 151:1027-1034, 1982; J. P. M. de Vrind et al., Appl. Environ. Microbiol. 52:1096-1100, 1986). A method to measure Co(II) oxidation using radioactive 57Co as a tracer and treatments with nonradioactive (cold) Co(II) and ascorbate to discriminate bound Co from oxidized Co was developed. SG-1 spores were found to oxidize Co(II) over a wide range of pH, temperature, and Co(II) concentration. Leucoberbelin blue, a reagent that reacts with Mn(III,IV) oxides forming a blue color, was found to also react with Co(III) oxides and was used to verify the presence of oxidized Co in the absence of added Mn(II). Co(II) oxidation occurred optimally around pH 8 and between 55 and 65°C. SG-1 spores oxidized Co(II) at all Co(II) concentrations tested from the trace levels found in seawater to 100 mM. Co(II) oxidation was found to follow Michaelis-Menten kinetics. An Eadie-Hofstee plot of the data suggests that SG-1 spores have two oxidation systems, a high-affinity-low-rate system (Km, 3.3 × 10-8 M; Vmax, 1.7 × 10-15 M · spore-1 · h-1) and a low-affinity-high-rate system (Km, 5.2 × 10-6 M; Vmax, 8.9 × 10-15 M · spore-1 · h-1). SG-1 spores did not oxidize Co(II) in the absence of oxygen, also indicating that oxidation was not due to abiological Co(II) oxidation on the surface of preformed Mn(III,IV) oxides. These results suggest that some microorganisms may directly oxidize Co(II) and such biological activities may exert some control on the behavior of Co in nature. SG-1 spores may also have useful applications in metal removal, recovery, and immobilization processes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号