首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2-N,N-Dimethylamino-1,3,4-thiadiazole-5-methanesulfonamide was tested for its interaction with the 12 catalytically active mammalian carbonic anhydrase (CA, EC 4.2.1.1) isozymes, CA I-XIV. The compound is a potent inhibitor of CA IV, VII, IX, XII, and XIII (K(I)s of 0.61-39 nM), a medium potency inhibitor of CA II and VA (K(I)s of 121-438 nM), and a weak inhibitor against the other isoforms (CA III, VB, VI, and XIV), making it a very interesting candidate for situations in which a strong/selective inhibition of certain isozymes is needed. The crystal structure of the hCA II adduct of this sulfonamide revealed interesting interactions between the inhibitor and the enzyme which are quite different from those observed in the adducts of CA II with the structurally related aliphatic derivatives zonisamide, 2-amino-1,3,4-thiadiazolyl-5-difluoromethanesulfonamide, and 2-dimethylamino-5-[sulfonamido-(aminomethyl)]-1,3,4-thiadiazole reported earlier.  相似文献   

2.
The inhibition of a newly cloned human carbonic anhydrase (CA, EC 4.2.1.1), isozyme XII (hCA XII), has been investigated with a series of sulfonamides, including some clinically used derivatives (acetazolamide, methazolamide, ethoxzolamide, dichlorophenamide, dorzolamide, brinzolamide, benzolamide, and sulpiride, or indisulam, a compound in clinical development as antitumor drug), as well as the sulfamate antiepileptic drug topiramate. Some simple amino-/hydrazine-/hydroxy-substituted aromatic/heterocyclic sulfonamides have also been included in the study. All types of activity have been detected, with several medium potency inhibitors (K(I)s in the range of 34-220 nM), whereas ethoxzolamide and several halogenated sulfanilamides showed stronger potency, with K(I)s in the range of 11-22 nM. The antiglaucoma sulfonamides used clinically, except dichlorophenamide, which is a moderate inhibitor (K(I) of 50 nM), as well as topiramate, indisulam, and sulpiride behave as very potent hCA XII inhibitors, with K(I)s in the range of 3.0-5.7 nM. Several subnanomolar inhibitors (K(I)s in the range of 0.30-0.85 nM) have also been detected. Compounds with excellent selectivity against hCA XII over hCA II have been found, showing selectivity ratios in the range of 177.7-566.7. Apparently, hCA XII is a target of the antiglaucoma sulfonamides, and potent hCA XII inhibitors may be developed/used for the management of hypoxic tumors, together with inhibitors of the other tumor-associated isozyme, CA IX.  相似文献   

3.
The inhibition of the last human carbonic anhydrase (CA, EC 4.2.1.1) isozyme (hCA XIV) discovered has been investigated with a series of sulfonamides, including some clinically used derivatives (acetazolamide, methazolamide, ethoxzolamide, dichlorophenamide, dorzolamide, brinzolamide, benzolamide, and zonisamide), as well as the sulfamate antiepileptic drug topiramate. The full-length hCA XIV is an enzyme showing a medium-low catalytic activity, quite similar to that of hCA XII, with the following kinetic parameters at 20 degrees C and pH 7.5, for the CO2 hydration reaction: k(cat) = 3.12 x 10(5) s(-1) and k(cat)/K(M) = 3.9 x 10(7) M(-1) s(-1). All types of activities have been detected for the investigated compounds, with several micromolar inhibitors, including zonisamide, topiramate, and simple sulfanilamide derivatives (K(I)-s in the range of 1.46-6.50 microM). In addition, topiramate and zonisamide were observed to behave as weak hCA XII inhibitors, while zonisamide was an effective hCA IX inhibitor (K(I) of 5.1 nM). Some benzene-1,3-disulfonamide derivatives or simple five-membered heteroaromatic sulfonamides showed K(I)-s in the range of 180-680 nM against hCA XIV, whereas the most effective of such inhibitors, including 3-chloro-/bromo-sulfanilamide, benzolamide-like, ethoxzolamide-like, and acetazolamide/methazolamide-like derivatives, showed inhibition constant in the range of 13-48 nM. The best hCA XIV inhibitor was aminobenzolamide (K(I) of 13 nM), but no CA XIV-selective derivatives were evidenced. There are important differences of affinity of these sulfonamides/sulfamates for the three transmembrane CA isozymes, with CA XII showing the highest affinity, followed by CA IX, whereas CA XIV usually showed the lowest affinity for these inhibitors.  相似文献   

4.
2-(Hydrazinocarbonyl)-3-phenyl-1H-indole-5-sulfonamide was tested for its interaction with 12 carbonic anhydrase (CA, EC 4.2.1.1) isoforms in the search of compounds with good inhibitory activity against isozymes with medicinal chemistry applications, such as CA I, II, VA, VB, VII, IX, and XII among others. This sulfonamide is a potent inhibitor of CA I and II (K(I)s of 7.2-7.5 nM), a medium potency inhibitor of CA VII, IX, XII, and XIV, and a weak inhibitor against the other ubiquitous isoforms, making it thus a very interesting clinical candidate for situations in which a strong inhibition of CA I and II is needed. The crystal structure of the hCA II adduct of this sulfonamide revealed many favorable interactions between the inhibitor and the enzyme which explain its strong low nanomolar affinity for this isoform but may also be exploited for the design of effective inhibitors incorporating bicyclic moieties.  相似文献   

5.
An inhibition study of the human cytosolic isozymes I, and II, the mitochondrial isoform VA, and the tumor-associated, transmembrane isozyme IX of carbonic anhydrase (CA, EC 4.2.1.1) with a library of aromatic/heteroaromatic/polycyclic difluoromethanesulfonamides is reported. Most of the inhibitors were derivatives of benzenedifluoromethanesulfonamide incorporating substituted-phenyl moieties, or were methylsulfonamide and difluoromethyl-sulfonamide derivatives of the sulfamates COUMATE and EMATE, respectively. Except for the methylsulfonamide-COUMATE derivative which behaved as a potent CA II inhibitor (K(I) of 32nM), these sulfonamides were moderate inhibitors of all isozymes, with inhibition constants in the range of 96-5200nM against hCA I, of 80-670nM against hCA II, and of 195-9280nM against hCA IX, respectively. Remarkably, some derivatives, such as 3-bromophenyl-difluoromethanesulfonamide, showed a trend to selectively inhibit the mitochondrial isoform CA VA, showing selectivity ratios for inhibiting CA VA over CA II of 3.53; over CA I of 6.84 and over CA IX of 9.34, respectively, although it is a moderate inhibitor (K(I) of 160nM). Some of these derivatives may be considered as leads for the design of isozyme selective CA inhibitors targeting the mitochondrial isozyme CA VA, with potential use as anti-obesity agents.  相似文献   

6.
A small library of N-hydroxysulfamides was synthesized by an original approach in order to investigate whether this zinc-binding function is efficient for the design of inhibitors targeting the cytosolic (hCA I and II) and transmembrane, tumor-associated (hCA IX and XII) isozymes of carbonic anhydrase (CA, EC 4.2.1.1). The parent derivative, N-hydroxysulfamide was a more potent inhibitor as compared to sulfamide or sulfamic acid against all isozymes, with inhibition constants in the range of 473 nM-4.05 microM. Its substituted n-decyl-, n-dodecyl-, benzyl-, and biphenylmethyl-derivatives were less inhibitory against hCA I (K(I)s in the range of 5.8-8.2 microM) but more inhibitory against hCA II (K(I)s in the range of 50.5-473 nM). The same situation was true for the tumor-associated isozymes, with K(I)s in the range of 353-790 nM against hCA IX and 372-874 nM against hCA XII. Some sulfamides/sulfamates possessing similar substitution patterns have also been investigated for the inhibition of these isozymes, being shown that in some particular cases sulfamides are more efficient inhibitors as compared to the corresponding sulfamates. Potent CA inhibitors targeting the cytosolic or tumor-associated CA isozymes can thus be designed from various classes of sulfonamides, sulfamides, or sulfamates and their derivatives, considering the extensive interactions in which the inhibitor and the enzyme active site are engaged, based on recent X-ray crystallographic data.  相似文献   

7.
The antiepileptic drug zonisamide was considered to act as a weak inhibitor of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1) (with a K(I) of 4.3 microM against the cytosolic isozyme II). Here we prove that this is not true. Indeed, testing zonisamide in the classical assay conditions of the CO2 hydrase activity of hCA II, with incubation times of enzyme and inhibitor solution of 15 min, a K(I) of 10.3 microM has been obtained. However, when the incubation between enzyme and inhibitor was prolonged to 1 h, the obtained K(I) was of 35.2 nM, of the same order of magnitude as that of the clinically used sulfonamides/sulfamates acetazolamide, methazolamide, ethoxzolamide and topiramate (K(I)s in the range of 5.4-15.4 nM). The inhibition of the human mitochondrial isozyme hCA V with these compounds has been also tested by means of a dansylamide competition binding assay, which showed zonisamide and topiramate to be effective inhibitors, with K(I)s in the range of 20.6-25.4 nM. The X-ray crystal structure of the adduct of hCA II with zonisamide has also been solved at a resolution of 1.70 A, showing that the sulfonamide moiety participates in the classical interactions with the Zn(II) ion and the residues Thr199 and Glu106, whereas the benzisoxazole ring is oriented toward the hydrophobic half of the active site, establishing a large number of strong van der Waals interactions (<4.5 A) with residues Gln92, Val121, Phe131, Leu198, Thr200, Pro202.  相似文献   

8.
E7070 [N-(3-chloro-7-indolyl)-1,4-benzenedisulfonamide] is an anticancer drug candidate under clinical development for the treatment of several types of cancers. We prove here that this compound also acts as a potent carbonic anhydrase (CA) inhibitor. Similarly to the clinically used drugs acetazolamide, methazolamide and topiramate, E7070 showed inhibition constants in the range of 15-31nM against isozymes I, II and IX, being slightly less effective as a CA IV inhibitor (K(i) of 65nM). The X-ray crystal structure of the adduct of hCA II with E7070 revealed unprecedented interactions between the inhibitor and the active site, with three different conformations of the chloroindole fragment of the inhibitor interacting with different amino acid residues/water molecules of the enzyme. A superimposition of these conformations with those of other sulfonamide/sulfamate CA inhibitors indicated that similar regions of the hCA II active site could be involved in the interaction with inhibitors.  相似文献   

9.
A series of 2-substituted-1,3,4-thiadiazole-5-sulfamides was prepared and assayed as inhibitors of several carbonic anhydrase (CA, EC 4.2.1.1) isoforms, the cytosolic CA I and II, the membrane-associated CA IV and the mitochondrial CA VA and VB. The new compounds showed weak inhibitory activity against hCA I (K(I)s of 102 nM-7.42 microM), hCA II (K(I)s of 0.54-7.42 microM) and hCA IV (K(I)s of 4.32-10.05 microM) but were low nanomolar inhibitors of hCA VA and hCA VB, with inhibition constants in the range of 4.2-32 nM and 1.3-74 nM, respectively. Furthermore, the selectivity ratios for inhibiting the mitochondrial enzymes over CA II were in the range of 67.5-415, making these sulfamides the first selective CA VA/VB inhibitors.  相似文献   

10.
A series of S-substituted 4-chloro-2-mercapto-5-methyl-benzenesulfonamides has been investigated as inhibitors of four isoforms of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1), that is, the cytosolic, ubiquitous isozymes CA I and II, as well as the transmembrane, tumor-associated isozymes CA IX and XII. The new derivatives were inefficient inhibitors of isoform I (K(I)s in the range of 2.7-18.7 microM) but generally had low nanomolar affinity for the inhibition of the other three isoforms (K(I)s in the range of 2.4-214 nM against hCA II; 1.4-47.5 nM against hCA IX, and 1.7-569 nM against hCA XII, respectively). Some selectivity for the inhibition of the tumor-associated versus the cyctosolic isoform II with some of these compounds has also been evidenced. As CA IX is an important marker of tumor hypoxia and its predictive, prognostic, and druggability potentials for designing antitumor therapies were recently validated, detection of selective, potent CA IX inhibitors may be relevant in the fight against cancers overexpressing CA isozymes.  相似文献   

11.
The synthesis of a new class of sulfonamide carbonic anhydrase (CA, EC 4.2.1.1) inhibitors (CAIs), also possessing carboxylate/hydroxamate moieties in their molecule, is reported. These compounds may act on dual antitumor targets, the tumor-associated CA isozymes (CA IX) and some matrix metalloproteinases (MMPs). The compounds were prepared by an original method starting from iminodiacetic acid, and assayed as inhibitors of three isozymes, hCA I, II (cytosolic), and IX (transmembrane). The new derivatives showed weak inhibitory activity against isozyme I (K(I)s in the range of 95-8300 nM), were excellent to moderate CA II inhibitors (K(I)s in the range of 8.4-65 nM), and very good and selective CA IX inhibitors (K(I)s in the range of 3.8-26 nM). The primary sulfonamide moiety is a better zinc-binding group in the design of CAIs as compared to the carboxylate/hydroxamate one, but the presence of hydroxamate functionalities in the molecule of CAIs leads to selectivity for the tumor-associated isozyme IX over the ubiquitous, cytosolic isoform II.  相似文献   

12.
A library of sulfonamides/sulfamates has been investigated for the inhibition of the carboxyterminal truncated form of the alpha-carbonic anhydrase (CA, EC 4.2.1.1) isolated from the gastric pathogen Helicobacter pylori (hpCA). This enzyme, incorporating 202 amino acid residues, showed a catalytic activity similar to that of the full length hpCA, with k(cat) of 2.35 x 10(5)s(-1) and k(cat)/K(M) of 1.56 x 10(7)M(-1)s(-1) at 25 degrees C and pH of 8.9, for the CO(2) hydration reaction. All types of activity for inhibition of the bacterial enzyme have been detected. Dorzolamide and simple 4-substituted benzenesulfonamides were weak hpCA inhibitors (inhibition constants, K(I)s, in the range of 830-4310 nM). Sulfanilamide, orthanilamide, some of their derivatives, and indisulam showed better activity (K(I)s in the range of 310-562 nM), whereas most of the clinically used CA inhibitors, such as methazolamide, ethoxzolamide, dichlorophenamide, brinzolamide, topiramate, zonisamide, etc., acted as medium potency hpCA inhibitors (K(I)s in the range of 124-287 nM). Some potent hpCA inhibitors were detected too (K(I)s in the range of 20-96 nM) such as acetazolamide, 4-amino-6-chloro-1,3-benzenedisulfonamide, 4-sulfanilyl-aminoethyl-benzenesulfonamide, and 4-(2-amino-pyrimidin-4-yl)-benzenesulfonamide. Most of the investigated derivatives acted as better inhibitors of the human isoform hCA II than as hpCA inhibitors. Since hpCA is essential for the survival of the pathogen in acid, its inhibition by compounds such as those investigated here might be used as a new pharmacologic tool in the management of drug resistant H. pylori.  相似文献   

13.
A series of benzenesulfonamide derivatives incorporating triazine moieties in their molecules was obtained by reaction of cyanuric chloride with sulfanilamide, homosulfanilamide, or 4-aminoethylbenzenesulfonamide. The dichlorotriazinyl-benzenesulfonamides intermediates were subsequently derivatized by reaction with various nucleophiles, such as water, methylamine, or aliphatic alcohols (methanol and ethanol). The library of sulfonamides incorporating triazinyl moieties was tested for the inhibition of three physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isozymes, the cytosolic hCA I and II, and the transmembrane, tumor-associated hCA IX. The new compounds reported here inhibited hCA I with K(I)s in the range of 75-136nM, hCA II with K(I)s in the range of 13-278nM, and hCA IX with K(I)s in the range of 0.12-549nM. The first hCA IX-selective inhibitors were thus detected, as the chlorotriazinyl-sulfanilamide and the bis-ethoxytriazinyl derivatives of sulfanilamide/homosulfanilamide showed selectivity ratios for CA IX over CA II inhibition in the range of 166-706. Furthermore, some of these compounds have subnanomolar affinity for hCA IX, with K(I)s in the range 0.12-0.34nM. These derivatives are interesting candidates for the development of novel unconventional anticancer strategies targeting the hypoxic areas of tumors. Clear renal cell carcinoma, which is the most lethal urologic malignancy and is both characterized by very high CA IX expression and chemotherapy unresponsiveness, could be the leading candidate of such novel therapies.  相似文献   

14.
The inhibition of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) with three phenols was investigated. Phenol was an effective CA I-IV, IX, XII and XIV inhibitor (K(I)s of 2.7-11.5 microM) and a less effective one against the other isoforms, CA VA, VB, VI, VII, and XIII (K(I)s of 208-710 micraoM). 3,5-Difluorophenol was an effective inhibitor of CA III, IV, IX, and XIV (K(I)s of 0.71-10.7 microM) being a weaker one for CA I, II, VA, VB, VI, VII, XII, and XIII (K(I)s of 33.9-163 microM). Clioquinol (5-chloro-7-iodo-8-quinolinol) was the best phenol inhibitor against all isozymes, with inhibition constants in the range of 3.3-16.0 microM. These data prove that the phenol OH moiety can be considered as a new 'zinc-water binding group' for the design of CA inhibitors possessing a different inhibition mechanism as compared to the classical sulfonamide inhibitors that bind the metal ion within the active site cavity.  相似文献   

15.
N-1-(4-Sulfamoylphenyl)-N-4-pentafluorophenyl-thiosemicarbazide was prepared by the reaction of 4-isothiocyanato-benzenesulfonamide with pentafluorophenyl hydrazine, and proved to be an effective inhibitor of several isozymes of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1), such as CA I, II, and IX. Against the physiologically relevant isozymes hCA II and hCA IX, the compound showed inhibition constants in the range of 15-19 nM, whereas it was less effective as a hCA I inhibitor (K(I) of 78 nM). The high-resolution X-ray crystal structure of its adduct with hCA II showed the inhibitor to bind within the hydrophobic half of the enzyme active site, making extensive and strong van der Waals contacts with amino acid residues Gln92, Val121, Phe131, Leu198, Thr200, Pro202, in addition to the coordination of the sulfonamide nitrogen to the Zn(II) ion of the active site, and participation of the SO(2)NH(2) group to a network of hydrogen bonds involving residues Thr199 and Glu106. These results are helpful for the design of better CA II or CA IX inhibitors based on the thioureido-benzenesulfonamide motif, with potential applications as anti-glaucoma or anti-cancer drugs.  相似文献   

16.
The X-ray crystal structure for the adduct of human carbonic anhydrase (hCA) II with sulpiride, a sulfonamide derivative clinically used as antipsychotic drug, has been resolved at a resolution of 1.6 A. This compound is an effective inhibitor of the physiologically most relevant isozyme hCA II (K(i) of 40 nM), being only a moderate or moderate-weak inhibitor of the cytosolic isozyme hCA I (K(i) of 1200 nM) and the membrane-bound isozyme hCA IV (K(i) of 620 nM). Sulpiride shows CA inhibitory properties of the same magnitude as dichlorophenamide, a clinically used antiglaucoma sulfonamide, or valdecoxib, a COX-2 selective inhibitor recently shown to inhibit CA. The binding of sulpiride to the hCA II active site is similar to that of other sulfonamide inhibitors, considering the interactions of the sulfonamide zinc anchoring group, but differs considerably when the organic scaffold of the molecule is analyzed. Indeed, one unprecedented hydrogen bond involving the imino moiety of the carboxamido group of sulpiride and a water molecule was observed, together with a unique stacking interaction of the N-methyl-pyrrolidine ring of the inhibitor and the aromatic ring of Phe 131 of the enzyme active site, which has been observed only recently in another CA-sulfonamide complex.  相似文献   

17.
A series of 2-mercapto-substituted-benzenesulfonamides has been prepared by a unique two-step procedure starting from the corresponding 2-chloro-substituted benzenesulfonamides. Compounds bearing an unsubstituted mercapto group and the corresponding S-benzoyl derivatives were investigated as inhibitors of four isoforms of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1), i.e., the cytosolic, ubiquitous isozymes CA I and II, as well as the transmembrane, tumor associated isozymes CA IX and XII. These derivatives were medium potency hCA I inhibitors (K(I)s in the range of 1.5-5.7 microM), two derivatives were strong hCA II inhibitors (K(I)s in the range of 15-16 nM), whereas the others showed weak activity. These compounds inhibited hCA IX with inhibition constants in the range 160-1950 nM and hCA XII with inhibition constants in the range 1.2-413 nM. Some of these derivatives showed a certain degree of selectivity for inhibition of the tumor-associated over the cytosolic isoforms, being thus interesting leads for the development of potentially novel applications in the management of hypoxic tumors which overexpress CA IX and XII.  相似文献   

18.
A series of aromatic/heterocyclic sulfonamides incorporating 2,3:4,5-bis-O-(isopropylidene)-beta-d-fructopyranosyl-thioureido moieties has been synthesized and assayed for the inhibition of seven human isoforms of the zinc enzyme carbonic anhydrase (hCA, EC 4.2.1.1). The new derivatives behaved as weak hCA I inhibitors (K(I)s of 9.4 -13.3microM), were efficient hCA II inhibitors (K(I)s of 6-750nM), and slightly inhibited isoforms hCA IV and hCA VA. Only the sulfanilamide derivative showed efficient and selective inhibition of hCA IV (K(I) of 10nM). These derivatives also showed excellent hCA VII inhibitory activity (K(I)s of 10-79nM), being less efficient as inhibitors of the transmembrane isoforms hCA IX (K(I)s of 10-4500nM) and hCA XIV (K(I)s of 21-3500nM). Two of the new compounds showed anticonvulsant action in a maximal electroshock seizure test in mice, with the fluorosulfanilamide derivative being a more efficient anticonvulsant than the antiepileptic drug topiramate.  相似文献   

19.
A series of aromatic sulfonamides incorporating indane moieties were prepared starting from commercially available 1- and 2-indanamine, and their activity as inhibitors of two carbonic anhydrase (CA, EC 4.2.1.1) isozymes, hCA I and II was studied. The new sulfonamides incorporating acetamido, 4-chloro-benzoyl, valproyl, tetra-, and pentafluorobenzoyl moieties acted as very potent inhibitors of the slow red blood cell isozyme hCA I (K(i)s in the range of 1.6-8.5 nM), which usually has a lower affinity for such inhibitors, as compared to isozyme II. Some derivatives also showed excellent hCA II inhibitory properties (K(i)s in the range of 2.3-12 nM), but the anticonvulsant activity of these sulfonamides was rather low as compared to that of other sulfonamide/sulfamate CA inhibitors, such as methazolamide. Furthermore, the 2-amino/acetamido-indane-5-sulfonic acids prepared during this work also showed interesting CA inhibitory properties, with inhibition constants in the range of 43-89 nM against the two isozymes, being among the most potent sulfonic acid CA inhibitors reported so far.  相似文献   

20.
The inhibition of a newly cloned human carbonic anhydrase (CA, EC 4.2.1.1), isozyme VII (hCA VII), has been investigated with a series of aromatic and heterocyclic sulfonamides, including some of the clinically used derivatives (acetazolamide, methazolamide, ethoxzolamide, dichlorophenamide, dorzolamide, brinzolamide and benzolamide), as well as the sulfamate antiepileptic drug topiramate. Inhibition data for the the other physiologically relevant cytosolic isoforms hCA I, hCA II and mCA XIII are also provided for comparison. hCA VII shows a high catalytic activity for the CO(2) hydration reaction, with a k(cat) of 9.5 x 10(5)s(-1) and k(cat)/K(m) of 8.3 x 10(7)M(-1)s(-1) at pH7.5 and 20 degrees C. A very interesting inhibition profile against hCA VII with this series of 32 sulfonamides/sulfamates was observed. hCA VII shows high affinity for all the investigated compounds, with inhibition constants in the range of 0.45-210 nM. Topiramate, ethoxzolamide and benzolamide showed subnanomolar hCA VII inhibitory activity, whereas acetazolamide, methazolamide, dorzolamide and brinzolamide showed K(I)-s in the range of 2.1-3.5 nM. Dichlorophenamide was slightly less active (K(I) of 26.5 nM). A number of heterocyclic or bicyclic aromatic sulfonamides also showed excellent hCA VII inhibitory properties (K(I)-s in the range of 4.3-7.0 nM) whereas many monosubstituted or disubstituted benzenesulfonamides were less active (K(I)-s in the range of 45-89 nM). The least active hCA VII inhibitors were some substituted benzene-1,3-disulfonamides as well as some halogenated sulfanilamides (K(I)-s in the range of 100-210 nM). The inhibition profile of hCA VII is rather different of that of the other cytosolic isozymes, providing thus a possibility for the design of more selective, hCA VII-specific inhibitors. In addition, these data furnish further evidence that hCA VII is the isozyme responsible for the anticonvulsant/antiepileptic activity of sulfonamides and sulfamates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号