首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Mammalian nuclear hormone receptors (NHRs), such as liver X receptor, farnesoid X receptor, and peroxisome proliferator-activated receptors (PPARs), precisely control energy metabolism. Consequently, these receptors are important targets for the treatment of metabolic diseases, including diabetes and obesity. A thorough understanding of NHR fat regulatory networks has been limited, however, by a lack of genetically tractable experimental systems. Here we show that deletion of the Caenorhabditis elegans NHR gene nhr-49 yielded worms with elevated fat content and shortened life span. Employing a quantitative RT-PCR screen, we found that nhr-49 influenced the expression of 13 genes involved in energy metabolism. Indeed, nhr-49 served as a key regulator of fat usage, modulating pathways that control the consumption of fat and maintain a normal balance of fatty acid saturation. We found that the two phenotypes of the nhr-49 knockout were linked to distinct pathways and were separable: The high-fat phenotype was due to reduced expression of enzymes in fatty acid β-oxidation, and the shortened adult life span resulted from impaired expression of a stearoyl-CoA desaturase. Despite its sequence relationship with the mammalian hepatocyte nuclear factor 4 receptor, the biological activities of nhr-49 were most similar to those of the mammalian PPARs, implying an evolutionarily conserved role for NHRs in modulating fat consumption and composition. Our findings in C. elegans provide novel insights into how NHR regulatory networks are coordinated to govern fat metabolism.  相似文献   

2.
3.
Delta-9 desaturases, also known as stearoyl-CoA desaturases, are lipogenic enzymes responsible for the generation of vital components of membranes and energy storage molecules. We have identified a novel nuclear hormone receptor, NHR-80, that regulates delta-9 desaturase gene expression in Caenorhabditis elegans. Here we describe fatty acid compositions, lifespans, and gene expression studies of strains carrying mutations in nhr-80 and in the three genes encoding delta-9 desaturases, fat-5, fat-6, and fat-7. The delta-9 desaturase single mutants display only subtle changes in fatty acid composition and no other visible phenotypes, yet the fat-5;fat-6;fat-7 triple mutant is lethal, revealing that endogenous production of monounsaturated fatty acids is essential for survival. In the absence of FAT-6 or FAT-7, the expression of the remaining desaturases increases, and this ability to compensate depends on NHR-80. We conclude that, like mammals, C. elegans requires adequate synthesis of unsaturated fatty acids and maintains complex regulation of the delta-9 desaturases to achieve optimal fatty acid composition.  相似文献   

4.
For many organisms the ability to transduce light into cellular signals is crucial for survival. Light stimulates DNA repair and metabolism changes in bacteria, avoidance responses in single-cell organisms, attraction responses in plants, and both visual and nonvisual perception in animals. Despite these widely differing responses, in all of nature there are only six known families of proteins that can transduce light. Although the roundworm Caenorhabditis elegans has none of the known light transduction systems, we show here that C. elegans strongly accelerates its locomotion in response to blue or shorter wavelengths of light, with maximal responsiveness to ultraviolet light. Our data suggest that C. elegans uses this light response to escape the lethal doses of sunlight that permeate its habitat. Short-wavelength light drives locomotion by bypassing two critical signals, cyclic adenosine monophosphate (cAMP) and diacylglycerol (DAG), that neurons use to shape and control behaviors. C. elegans mutants lacking these signals are paralyzed and unresponsive to harsh physical stimuli in ambient light, but short-wavelength light rapidly rescues their paralysis and restores normal levels of coordinated locomotion. This light response is mediated by LITE-1, a novel ultraviolet light receptor that acts in neurons and is a member of the invertebrate Gustatory receptor (Gr) family. Heterologous expression of the receptor in muscle cells is sufficient to confer light responsiveness on cells that are normally unresponsive to light. Our results reveal a novel molecular solution for ultraviolet light detection and an unusual sensory modality in C. elegans that is unlike any previously described light response in any organism.  相似文献   

5.
Changes in both behavior and gene expression occur in Caenorhabditis elegans following exposure to sex hormones such as estrogen and progesterone, and to bisphenol A (BPA), an estrogenic endocrine-disrupting compound. However, only one steroid hormone receptor has been identified. Of the 284 known nuclear hormone receptors (NHRs) in C. elegans, we selected nhr-14, nhr-69, and nhr-121 for analysis as potential estrogenic hormone receptors, because they share sequence similarity with the human estrogen receptor. First, the genes were cloned and expressed in Escherichia coli, and then the affinity of each protein for estrogen was determined using a surface plasmon resonance (SPR) biosensor. All three NHRs bound estrogen in a dose-dependent fashion. To evaluate the specificity of the binding, we performed a solution competition assay using an SPR biosensor. According to our results, only NHR-14 was able to interact with estrogen. Therefore, we next examined whether nhr-14 regulates estrogen signaling in vivo. To investigate whether these interactions actually control the response of C. elegans to hormones, we investigated the expression of vitellogenin, an estrogen responsive gene, in an nhr-14 mutant. Semi-quantitative RT-PCR showed that vitellogenin expression was significantly reduced in the mutant. This suggests that NHR-14 is a C. elegans estrogenic hormone receptor and that it controls gene expression in response to estrogen.  相似文献   

6.
The soil nematodes Caenorhabditis briggsae and Caenorhabditis elegans diverged from a common ancestor roughly 100 million years ago and yet are almost indistinguishable by eye. They have the same chromosome number and genome sizes, and they occupy the same ecological niche. To explore the basis for this striking conservation of structure and function, we have sequenced the C. briggsae genome to a high-quality draft stage and compared it to the finished C. elegans sequence. We predict approximately 19,500 protein-coding genes in the C. briggsae genome, roughly the same as in C. elegans. Of these, 12,200 have clear C. elegans orthologs, a further 6,500 have one or more clearly detectable C. elegans homologs, and approximately 800 C. briggsae genes have no detectable matches in C. elegans. Almost all of the noncoding RNAs (ncRNAs) known are shared between the two species. The two genomes exhibit extensive colinearity, and the rate of divergence appears to be higher in the chromosomal arms than in the centers. Operons, a distinctive feature of C. elegans, are highly conserved in C. briggsae, with the arrangement of genes being preserved in 96% of cases. The difference in size between the C. briggsae (estimated at approximately 104 Mbp) and C. elegans (100.3 Mbp) genomes is almost entirely due to repetitive sequence, which accounts for 22.4% of the C. briggsae genome in contrast to 16.5% of the C. elegans genome. Few, if any, repeat families are shared, suggesting that most were acquired after the two species diverged or are undergoing rapid evolution. Coclustering the C. elegans and C. briggsae proteins reveals 2,169 protein families of two or more members. Most of these are shared between the two species, but some appear to be expanding or contracting, and there seem to be as many as several hundred novel C. briggsae gene families. The C. briggsae draft sequence will greatly improve the annotation of the C. elegans genome. Based on similarity to C. briggsae, we found strong evidence for 1,300 new C. elegans genes. In addition, comparisons of the two genomes will help to understand the evolutionary forces that mold nematode genomes.  相似文献   

7.
The engulfment of apoptotic cells is required for normal metazoan development and tissue remodeling. In Caenorhabditis elegans, two parallel and partially redundant conserved pathways act in cell-corpse engulfment. One pathway includes the adaptor protein CED-2 CrkII and the small GTPase CED-10 Rac, and acts to rearrange the cytoskeleton of the engulfing cell. The other pathway includes the receptor tyrosine kinase CED-1 and might recruit membranes to extend the surface of the engulfing cell. Although many components required for engulfment have been identified, little is known about inhibition of engulfment. The tyrosine kinase Abl regulates the actin cytoskeleton in mammals and Drosophila in multiple ways. For example, Abl inhibits cell migration via phosphorylation of CrkII. We tested whether ABL-1, the C. elegans ortholog of Abl, inhibits the CED-2 CrkII-dependent engulfment of apoptotic cells. Our genetic studies indicate that ABL-1 inhibits apoptotic cell engulfment, but not through CED-2 CrkII, and instead acts in parallel to the two known engulfment pathways. The CED-10 Rac pathway is also required for proper migration of the distal tip cells (DTCs) during the development of the C. elegans gonad. The loss of ABL-1 function partially restores normal DTC migration in the CED-10 Rac pathway mutants. We found that ABI-1 the C. elegans homolog of mammalian Abi (Abl interactor) proteins, is required for engulfment of apoptotic cells and proper DTC migration. Like Abl, Abi proteins are cytoskeletal regulators. ABI-1 acts in parallel to the two known engulfment pathways, likely downstream of ABL-1. ABL-1 and ABI-1 interact physically in vitro. We propose that ABL-1 opposes the engulfment of apoptotic cells by inhibiting ABI-1 via a pathway that is distinct from the two known engulfment pathways.  相似文献   

8.
Somatic and germline sex determination pathways have diverged significantly in animals, making comparisons between taxa difficult. To overcome this difficulty, we compared the genes in the germline sex determination pathways of Caenorhabditis elegans and C. briggsae, two Caenorhabditis species with similar reproductive systems and sequenced genomes. We demonstrate that C. briggsae has orthologs of all known C. elegans sex determination genes with one exception: fog-2. Hermaphroditic nematodes are essentially females that produce sperm early in life, which they use for self fertilization. In C. elegans, this brief period of spermatogenesis requires FOG-2 and the RNA-binding protein GLD-1, which together repress translation of the tra-2 mRNA. FOG-2 is part of a large C. elegans FOG-2-related protein family defined by the presence of an F-box and Duf38/FOG-2 homogy domain. A fog-2-related gene family is also present in C. briggsae, however, the branch containing fog-2 appears to have arisen relatively recently in C. elegans, post-speciation. The C-terminus of FOG-2 is rapidly evolving, is required for GLD-1 interaction, and is likely critical for the role of FOG-2 in sex determination. In addition, C. briggsae gld-1 appears to play the opposite role in sex determination (promoting the female fate) while maintaining conserved roles in meiotic progression during oogenesis. Our data indicate that the regulation of the hermaphrodite germline sex determination pathway at the level of FOG-2/GLD-1/tra-2 mRNA is fundamentally different between C. elegans and C. briggsae, providing functional evidence in support of the independent evolution of self-fertile hermaphroditism. We speculate on the convergent evolution of hermaphroditism in Caenorhabditis based on the plasticity of the C. elegans germline sex determination cascade, in which multiple mutant paths yield self fertility.  相似文献   

9.
Nuclear receptors of the Hepatocyte Nuclear Factor-4 (HNF4) subtype have been linked to a host of developmental and metabolic functions in animals ranging from worms to humans; however, the full spectrum of physiological activities carried out by this nuclear receptor subfamily is far from established. We have found that the Caenorhabditis elegans nuclear receptor NHR-31, a homolog of mammalian HNF4 receptors, is required for controlling the growth and function of the nematode excretory cell, a multi-branched tubular cell that acts as the C. elegans renal system. Larval specific RNAi knockdown of nhr-31 led to significant structural abnormalities along the length of the excretory cell canal, including numerous regions of uncontrolled growth at sites near to and distant from the cell nucleus. nhr-31 RNAi animals were sensitive to acute challenge with ionic stress, implying that the osmoregulatory function of the excretory cell was also compromised. Gene expression profiling revealed a surprisingly specific role for nhr-31 in the control of multiple genes that encode subunits of the vacuolar ATPase (vATPase). RNAi of these vATPase genes resulted in excretory cell defects similar to those observed in nhr-31 RNAi animals, demonstrating that the influence of nhr-31 on excretory cell growth is mediated, at least in part, through coordinate regulation of the vATPase. Sequence analysis revealed a stunning enrichment of HNF4α type binding sites in the promoters of both C. elegans and mouse vATPase genes, arguing that coordinate regulation of the vATPase by HNF4 receptors is likely to be conserved in mammals. Our study establishes a new pathway for regulation of excretory cell growth and reveals a novel role for HNF4-type nuclear receptors in the development and function of a renal system.  相似文献   

10.
Nuclear receptors of the Hepatocyte Nuclear Factor-4 (HNF4) subtype have been linked to a host of developmental and metabolic functions in animals ranging from worms to humans; however, the full spectrum of physiological activities carried out by this nuclear receptor subfamily is far from established. We have found that the Caenorhabditis elegans nuclear receptor NHR-31, a homolog of mammalian HNF4 receptors, is required for controlling the growth and function of the nematode excretory cell, a multi-branched tubular cell that acts as the C. elegans renal system. Larval specific RNAi knockdown of nhr-31 led to significant structural abnormalities along the length of the excretory cell canal, including numerous regions of uncontrolled growth at sites near to and distant from the cell nucleus. nhr-31 RNAi animals were sensitive to acute challenge with ionic stress, implying that the osmoregulatory function of the excretory cell was also compromised. Gene expression profiling revealed a surprisingly specific role for nhr-31 in the control of multiple genes that encode subunits of the vacuolar ATPase (vATPase). RNAi of these vATPase genes resulted in excretory cell defects similar to those observed in nhr-31 RNAi animals, demonstrating that the influence of nhr-31 on excretory cell growth is mediated, at least in part, through coordinate regulation of the vATPase. Sequence analysis revealed a stunning enrichment of HNF4α type binding sites in the promoters of both C. elegans and mouse vATPase genes, arguing that coordinate regulation of the vATPase by HNF4 receptors is likely to be conserved in mammals. Our study establishes a new pathway for regulation of excretory cell growth and reveals a novel role for HNF4-type nuclear receptors in the development and function of a renal system.  相似文献   

11.
The claim that genetic properties of neurons significantly influence their synaptic network structure is a common notion in neuroscience. The nematode Caenorhabditis elegans provides an exciting opportunity to approach this question in a large-scale quantitative manner. Its synaptic connectivity network has been identified, and, combined with cellular studies, we currently have characteristic connectivity and gene expression signatures for most of its neurons. By using two complementary analysis assays we show that the expression signature of a neuron carries significant information about its synaptic connectivity signature, and identify a list of putative genes predicting neural connectivity. The current study rigorously quantifies the relation between gene expression and synaptic connectivity signatures in the C. elegans nervous system and identifies subsets of neurons where this relation is highly marked. The results presented and the genes identified provide a promising starting point for further, more detailed computational and experimental investigations.  相似文献   

12.
Proton Nuclear Magnetic Resonance spectroscopy and Gas Chromatography Mass Spectrometry based metabolomics has been used in conjunction with multivariate statistics to examine the metabolic changes in Caenorhabditis elegans following the deletion of nuclear hormone receptor-49 (nhr-49). Deletion of the receptor produced profound changes in fatty acid metabolism, in particular an increase in the ratio of unsaturated to saturated fatty acids, a decrease in the concentration of glucose and increases in lactate and alanine. Given the proposed functional similarity between nhr-49 and the mammalian peroxisome proliferator-activated receptors (PPARs) these changes were compared with the metabolome of the PPAR-alpha null mouse. The metabolomic approach demonstrated a number of similarities including the regulation of lipid synthesis, beta-oxidation of fatty acids and changes in glycolysis/gluconeogenesis.  相似文献   

13.
Detailed studies of individual genes have shown that gene expression divergence often results from adaptive evolution of regulatory sequence. Genome-wide analyses, however, have yet to unite patterns of gene expression with polymorphism and divergence to infer population genetic mechanisms underlying expression evolution. Here, we combined genomic expression data—analyzed in a phylogenetic context—with whole genome light-shotgun sequence data from six Drosophila simulans lines and reference sequences from D. melanogaster and D. yakuba. These data allowed us to use molecular population genetics to test for neutral versus adaptive gene expression divergence on a genomic scale. We identified recent and recurrent adaptive evolution along the D. simulans lineage by contrasting sequence polymorphism within D. simulans to divergence from D. melanogaster and D. yakuba. Genes that evolved higher levels of expression in D. simulans have experienced adaptive evolution of the associated 3′ flanking and amino acid sequence. Concomitantly, these genes are also decelerating in their rates of protein evolution, which is in agreement with the finding that highly expressed genes evolve slowly. Interestingly, adaptive evolution in 5′ cis-regulatory regions did not correspond strongly with expression evolution. Our results provide a genomic view of the intimate link between selection acting on a phenotype and associated genic evolution.  相似文献   

14.
Parma DH  Heath GT  Che CC  Annest JL 《Genetics》1977,87(4):593-619
Genetic analyses of 49 duplications of the rII region of bacteriophage T4D suggests that there is a non-random relationship between the end points of duplicated segments, that relaxed packaging restrictions have little if any effect on the distribution of duplications, that segregation is 3–4 times more frequent than normal recombination for the same interval, and that non-tandem duplications are rare. Extrapolation of the r1231 x rJ101 cross data suggests that the minimum frequency of duplications/genome is 1.7 x 10-6, but possibly 3.4 x 10-4.  相似文献   

15.
Prior studies have shown that disruption of mitochondrial electron transport chain (ETC) function in the nematode Caenorhabditis elegans can result in life extension. Counter to these findings, many mutations that disrupt ETC function in humans are known to be pathologically life-shortening. In this study, we have undertaken the first formal investigation of the role of partial mitochondrial ETC inhibition and its contribution to the life-extension phenotype of C. elegans. We have developed a novel RNA interference (RNAi) dilution strategy to incrementally reduce the expression level of five genes encoding mitochondrial proteins in C. elegans: atp-3, nuo-2, isp-1, cco-1, and frataxin (frh-1). We observed that each RNAi treatment led to marked alterations in multiple ETC components. Using this dilution technique, we observed a consistent, three-phase lifespan response to increasingly greater inhibition by RNAi: at low levels of inhibition, there was no response, then as inhibition increased, lifespan responded by monotonically lengthening. Finally, at the highest levels of RNAi inhibition, lifespan began to shorten. Indirect measurements of whole-animal oxidative stress showed no correlation with life extension. Instead, larval development, fertility, and adult size all became coordinately affected at the same point at which lifespan began to increase. We show that a specific signal, initiated during the L3/L4 larval stage of development, is sufficient for initiating mitochondrial dysfunction–dependent life extension in C. elegans. This stage of development is characterized by the last somatic cell divisions normally undertaken by C. elegans and also by massive mitochondrial DNA expansion. The coordinate effects of mitochondrial dysfunction on several cell cycle–dependent phenotypes, coupled with recent findings directly linking cell cycle progression with mitochondrial activity in C. elegans, lead us to propose that cell cycle checkpoint control plays a key role in specifying longevity of mitochondrial mutants.  相似文献   

16.
Despite its morphological similarity to the other species in the Drosophila melanogaster species complex, D. sechellia has evolved distinct physiological and behavioral adaptations to its host plant Morinda citrifolia, commonly known as Tahitian Noni. The odor of the ripe fruit of M. citrifolia originates from hexanoic and octanoic acid. D. sechellia is attracted to these two fatty acids, whereas the other species in the complex are repelled. Here, using interspecies hybrids between D. melanogaster deficiency mutants and D. sechellia, we showed that the Odorant-binding protein 57e (Obp57e) gene is involved in the behavioral difference between the species. D. melanogaster knock-out flies for Obp57e and Obp57d showed altered behavioral responses to hexanoic acid and octanoic acid. Furthermore, the introduction of Obp57d and Obp57e from D. simulans and D. sechellia shifted the oviposition site preference of D. melanogaster Obp57d/eKO flies to that of the original species, confirming the contribution of these genes to D. sechellia's specialization to M. citrifolia. Our finding of the genes involved in host-plant determination may lead to further understanding of mechanisms underlying taste perception, evolution of plant–herbivore interactions, and speciation.  相似文献   

17.
To determine whether the distinctive features of Caenorhabditis elegans chromosomal organization are shared with the C. briggsae genome, we constructed a single nucleotide polymorphism–based genetic map to order and orient the whole genome shotgun assembly along the six C. briggsae chromosomes. Although these species are of the same genus, their most recent common ancestor existed 80–110 million years ago, and thus they are more evolutionarily distant than, for example, human and mouse. We found that, like C. elegans chromosomes, C. briggsae chromosomes exhibit high levels of recombination on the arms along with higher repeat density, a higher fraction of intronic sequence, and a lower fraction of exonic sequence compared with chromosome centers. Despite extensive intrachromosomal rearrangements, 1:1 orthologs tend to remain in the same region of the chromosome, and colinear blocks of orthologs tend to be longer in chromosome centers compared with arms. More strikingly, the two species show an almost complete conservation of synteny, with 1:1 orthologs present on a single chromosome in one species also found on a single chromosome in the other. The conservation of both chromosomal organization and synteny between these two distantly related species suggests roles for chromosome organization in the fitness of an organism that are only poorly understood presently.  相似文献   

18.
Reinforcement refers to the evolution of increased mating discrimination against heterospecific individuals in zones of geographic overlap and can be considered a final stage in the speciation process. One the factors that may affect reinforcement is the degree to which hybrid matings result in the permanent loss of genes from a species' gene pool. Matings between females of Drosophila subquinaria and males of D. recens result in high levels of offspring mortality, due to interspecific cytoplasmic incompatibility caused by Wolbachia infection of D. recens. Such hybrid inviability is not manifested in matings between D. recens females and D. subquinaria males. Here we ask whether the asymmetrical hybrid inviability is associated with a corresponding asymmetry in the level of reinforcement. The geographic ranges of D. recens and D. subquinaria were found to overlap across a broad belt of boreal forest in central Canada. Females of D. subquinaria from the zone of sympatry exhibit much stronger levels of discrimination against males of D. recens than do females from allopatric populations. In contrast, such reproductive character displacement is not evident in D. recens, consistent with the expected effects of unidirectional cytoplasmic incompatibility. Furthermore, there is substantial behavioral isolation within D. subquinaria, because females from populations sympatric with D. recens discriminate against allopatric conspecific males, whereas females from populations allopatric with D. recens show no discrimination against any conspecific males. Patterns of general genetic differentiation among populations are not consistent with patterns of behavioral discrimination, which suggests that the behavioral isolation within D. subquinaria results from selection against mating with Wolbachia-infected D. recens. Interspecific cytoplasmic incompatibility may contribute not only to post-mating isolation, an effect already widely recognized, but also to reinforcement, particularly in the uninfected species. The resulting reproductive character displacement not only increases behavioral isolation from the Wolbachia-infected species, but may also lead to behavioral isolation between populations of the uninfected species. Given the widespread occurrence of Wolbachia among insects, it thus appears that there are multiple ways by which these endosymbionts may directly and indirectly contribute to reproductive isolation and speciation.  相似文献   

19.
A central question in evolutionary biology concerns the developmental processes by which new phenotypes arise. An exceptional example of evolutionary innovation is the single-celled seed trichome in Gossypium (“cotton fiber”). We have used fiber development in Gossypium as a system to understand how morphology can rapidly evolve. Fiber has undergone considerable morphological changes between the short, tightly adherent fibers of G. longicalyx and the derived long, spinnable fibers of its closest relative, G. herbaceum, which facilitated cotton domestication. We conducted comparative gene expression profiling across a developmental time-course of fibers from G. longicalyx and G. herbaceum using microarrays with ~22,000 genes. Expression changes between stages were temporally protracted in G. herbaceum relative to G. longicalyx, reflecting a prolongation of the ancestral developmental program. Gene expression and GO analyses showed that many genes involved with stress responses were upregulated early in G. longicalyx fiber development. Several candidate genes upregulated in G. herbaceum have been implicated in regulating redox levels and cell elongation processes. Three genes previously shown to modulate hydrogen peroxide levels were consistently expressed in domesticated and wild cotton species with long fibers, but expression was not detected by quantitative real time-PCR in wild species with short fibers. Hydrogen peroxide is important for cell elongation, but at high concentrations it becomes toxic, activating stress processes that may lead to early onset of secondary cell wall synthesis and the end of cell elongation. These observations suggest that the evolution of long spinnable fibers in cotton was accompanied by novel expression of genes assisting in the regulation of reactive oxygen species levels. Our data suggest a model for the evolutionary origin of a novel morphology through differential gene regulation causing prolongation of an ancestral developmental program.  相似文献   

20.
The human enteropathogen, Yersinia enterocolitica, is a significant link in the range of Yersinia pathologies extending from mild gastroenteritis to bubonic plague. Comparison at the genomic level is a key step in our understanding of the genetic basis for this pathogenicity spectrum. Here we report the genome of Y. enterocolitica strain 8081 (serotype 0:8; biotype 1B) and extensive microarray data relating to the genetic diversity of the Y. enterocolitica species. Our analysis reveals that the genome of Y. enterocolitica strain 8081 is a patchwork of horizontally acquired genetic loci, including a plasticity zone of 199 kb containing an extraordinarily high density of virulence genes. Microarray analysis has provided insights into species-specific Y. enterocolitica gene functions and the intraspecies differences between the high, low, and nonpathogenic Y. enterocolitica biotypes. Through comparative genome sequence analysis we provide new information on the evolution of the Yersinia. We identify numerous loci that represent ancestral clusters of genes potentially important in enteric survival and pathogenesis, which have been lost or are in the process of being lost, in the other sequenced Yersinia lineages. Our analysis also highlights large metabolic operons in Y. enterocolitica that are absent in the related enteropathogen, Yersinia pseudotuberculosis, indicating major differences in niche and nutrients used within the mammalian gut. These include clusters directing, the production of hydrogenases, tetrathionate respiration, cobalamin synthesis, and propanediol utilisation. Along with ancestral gene clusters, the genome of Y. enterocolitica has revealed species-specific and enteropathogen-specific loci. This has provided important insights into the pathology of this bacterium and, more broadly, into the evolution of the genus. Moreover, wider investigations looking at the patterns of gene loss and gain in the Yersinia have highlighted common themes in the genome evolution of other human enteropathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号