首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During sustained maximal voluntary contractions (MVCs), most fatigue occurs within the muscle, but some occurs because voluntary activation of the muscle declines (central fatigue), and some of this reflects suboptimal output from the motor cortex (supraspinal fatigue). This study examines whether supraspinal fatigue occurs during a sustained submaximal contraction of 5% MVC. Eight subjects sustained an isometric elbow flexion of 5% MVC for 70 min. Brief MVCs were performed every 3 min, with stimulation of the motor point, motor cortex, and brachial plexus. Perceived effort and pain, elbow flexion torque, and surface EMGs from biceps and brachioradialis were recorded. During the sustained 5% contraction, perceived effort increased from 0.5 to 3.9 (out of 10), and elbow flexor EMG increased steadily by approximately 60-80%. Torque during brief MVCs fell to 72% of control values, while both the resting twitch and EMG declined progressively. Thus the sustained weak contraction caused fatigue, some of which was due to peripheral mechanisms. Voluntary activation measured by motor point and motor cortex stimulation methods fell to 90% and 80%, respectively. Thus some of the fatigue was central. Calculations based on the fall in voluntary activation measured with cortical stimulation indicate that about two-thirds of the fatigue was due to supraspinal mechanisms. Therefore, sustained performance of a very low-force contraction produces a progressive inability to drive the motor cortex optimally during brief MVCs. The effect of central fatigue on performance of the weak contraction is less clear, but it may contribute to the increase in perceived effort.  相似文献   

2.
Force responses to transcranial magnetic stimulation of motor cortex (TMS) during exercise provide information about voluntary activation and contractile properties of the muscle. Here, TMS-generated twitches and muscle relaxation during the TMS-evoked silent period were measured in fresh, heated, and fatigued muscle. Subjects performed isometric contractions of elbow flexors in two studies. Torque and EMG were recorded from elbow flexor and extensor muscles. One study (n = 6) measured muscle contraction times and relaxation rates during brief maximal and submaximal contractions in fresh and fatigued muscle. Another study (n = 7) aimed to 1) assess the reproducibility of muscle contractile properties during brief voluntary contractions in fresh muscle, 2) validate the technique for contractile properties in passively heated muscle, and 3) apply the technique to study contractile properties during sustained maximal voluntary contractions. In both studies, muscle contractile properties during voluntary contractions were compared with the resting twitch evoked by motor nerve stimulation. Measurement of muscle contractile properties during voluntary contractions is reproducible in fresh muscle and reveals faster and slower muscle relaxation rates in heated and fatigued muscle, respectively. The technique is more sensitive to altered muscle state than the traditional motor nerve resting twitch. Use of TMS during sustained maximal contractions reveals slowing of muscle contraction and relaxation with different time courses and a decline in voluntary activation. Voluntary output from the motor cortex becomes insufficient to maintain complete activation of muscle, although slowing of muscle contraction and relaxation indicates that lower motor unit firing rates are required for fusion of force.  相似文献   

3.
This study was designed to investigate the local effect of experimental muscle pain on the MMG and the surface EMG during a range of sub-maximal isometric contractions. Muscle pain was induced by injections of hypertonic saline into the biceps brachii muscle in 12 subjects. Injections of isotonic saline served as a control. Pain intensity and location, MMG and surface EMG from the biceps brachii were assessed during static isometric (0%, 10%, 30%, 50% and, 70% of the maximal voluntary contraction) and ramp isometric (0-50% of the maximal voluntary contraction) elbow flexions. MMG and surface EMG signals were analyzed in the time and frequency domain. Experimentally induced muscle pain induced an increase in root mean square values of the MMG signal while no changes were observed in the surface EMG. Most likely this increase reflects changes in the mechanical contractile properties of the muscle and indicates compensatory mechanisms, i.e. decreased firing rate and increased twitch force to maintain a constant force output in presence of experimental muscle pain. Under well-controlled conditions, MMG recordings may be more sensitive than surface EMG recordings and clinically useful for detecting non-invasively increased muscle mechanical contributions during muscle pain conditions.  相似文献   

4.
Firing rates of motor units and surface EMG were measured from the triceps brachii muscles of able-bodied subjects during brief submaximal and maximal isometric voluntary contractions made at 5 elbow joint angles that covered the entire physiological range of muscle lengths. Muscle activation at the longest, midlength, and shortest muscle lengths, measured by twitch occlusion, averaged 98%, 97%, and 93% respectively, with each subject able to achieve complete activation during some contractions. As expected, the strongest contractions were recorded at 90 degrees of elbow flexion. Mean motor unit firing rates and surface EMG increased with contraction intensity at each muscle length. For any given absolute contraction intensity, motor unit firing rates varied when muscle length was changed. However, mean motor unit firing rates were independent of muscle length when contractions were compared with the intensity of the maximal voluntary contraction (MVC) achieved at each joint angle.  相似文献   

5.
The purpose of this study was to investigate whether children with cerebral palsy (CP), like typically developing peers, would compensate for muscle fatigue by recruiting additional motor units during a sustained low force contraction until task failure.Twelve children with CP and 17 typically developing peers performed one submaximal isometric elbow flexion contraction until the task could no longer be sustained at on average 25% (range 10–35%) of their maximal voluntary torque. Meanwhile surface electromyography (EMG) was measured from the biceps brachii and triceps brachii, and acceleration variations of the forearm were detected by an accelerometer. Slopes of the change in EMG amplitude and median frequency and accelerometer variation during time normalised to their initial values were calculated.Strength and time to task failure were similar in both groups. Children with CP exhibited a lower increase in EMG amplitude of the biceps brachii and triceps brachii during the course of the sustained elbow flexion task, while there were no significant group differences in median frequency decrease or acceleration variation increase. This indicates that children with CP do not compensate muscle fatigue with recruitment of additional motor units during sustained low force contractions.  相似文献   

6.
The purpose of this study was to determine the effect of eccentric exercise on the ability to exert steady submaximal forces with muscles that cross the elbow joint. Eight subjects performed two tasks requiring isometric contraction of the right elbow flexors: a maximum voluntary contraction (MVC) and a constant-force task at four submaximal target forces (5, 20, 35, 50% MVC) while electromyography (EMG) was recorded from elbow flexor and extensor muscles. These tasks were performed before, after, and 24 h after a period of eccentric (fatigue and muscle damage) or concentric exercise (fatigue only). MVC force declined after eccentric exercise (45% decline) and remained depressed 24 h later (24%), whereas the reduced force after concentric exercise (22%) fully recovered the following day. EMG amplitude during the submaximal contractions increased in all elbow flexor muscles after eccentric exercise, with the greatest change in the biceps brachii at low forces (3-4 times larger at 5 and 20% MVC) and in the brachialis muscle at moderate forces (2 times larger at 35 and 50% MVC). Eccentric exercise resulted in a twofold increase in coactivation of the triceps brachii muscle during all submaximal contractions. Force fluctuations were larger after eccentric exercise, particularly at low forces (3-4 times larger at 5% MVC, 2 times larger at 50% MVC), with a twofold increase in physiological tremor at 8-12 Hz. These data indicate that eccentric exercise results in impaired motor control and altered neural drive to elbow flexor muscles, particularly at low forces, suggesting altered motor unit activation after eccentric exercise.  相似文献   

7.
The purpose of this study was to use paired-pulse transcranial magnetic stimulation (TMS) to examine the effect of eccentric exercise on short-interval intracortical inhibition (SICI) after damage to elbow flexor muscles. Nine young (22.5 ± 0.6 yr; mean ± SD) male subjects performed maximal eccentric exercise of the elbow flexor muscles until maximal voluntary contraction (MVC) force was reduced by ~40%. TMS was performed before, 2 h after, and 2 days after exercise under Rest and Active (5% MVC) conditions with motor-evoked potentials (MEPs) recorded from the biceps brachii (BB) muscle. Peripheral electrical stimulation of the brachial plexus was used to assess maximal M-waves, and paired-pulse TMS with a 3-ms interstimulus interval was used to assess changes in SICI at each time point. The eccentric exercise resulted in a 34% decline in strength (P < 0.001), a 41% decline in resting M-wave (P = 0.01), changes in resting elbow joint angle (10°, P < 0.001), and a shift in the optimal elbow joint angle for force production (18°, P < 0.05) 2 h after exercise. This was accompanied by impaired muscle strength (27%, P < 0.001) and increased muscle soreness (P < 0.001) 2 days after exercise, which is indicative of muscle damage. When the test MEP amplitudes were matched between sessions, we found that SICI was reduced by 27% in resting and 23% in active BB muscle 2 h after exercise. SICI recovered 2 days after exercise when muscle pain and soreness were present, suggesting that delayed onset muscle soreness from eccentric exercise does not influence SICI. The change in SICI observed 2 h after exercise suggests that eccentric muscle damage has widespread effects throughout the motor system that likely includes changes in motor cortex.  相似文献   

8.
This paper presents a novel method to quantify spatial changes in muscle activation pattern by multi-channel surface electromyography (MCSEMG) in order to investigate motor unit recruitment variation. The method is based on non-uniform distributions of motor units that cause spatial inhomogeneous muscle activation. To evaluate the method, 15 subjects performed three isometric elbow flexion contractions consisting of slow sinusoidal changes in force ranging from 0% to 80% of the maximal voluntary contraction. MCSEMG electrodes were placed in a 10 x 13 grid over the biceps brachii muscle. From all channels, root mean square (RMS) values of bipolar leadings were computed over 0.5 s epochs over the whole recording. Thereafter, correlation coefficients were calculated between the RMS values at one epoch, with the RMS values at another epoch. Results showed consistent spatial changes in the distribution of RMS at different contraction levels up to 80% of maximal voluntary contraction and when comparing increasing and decreasing contractions at the same force level. These findings are reproducible within and between subjects, and in agreement with physiological phenomena and therefore indicate that the spatial inhomogeneities of motor unit properties in the biceps brachii muscle can be used to study changes in motor unit recruitment.  相似文献   

9.
The purpose of this study was to determine whether 7 weeks of standardized (same number and duration of repetitions, sets and rest strictly identical) electromyostimulation training of the elbow flexor muscles would induce strength gains equivalent to those of voluntary isometric training in isometric, eccentric and concentric contractions. Twenty-five males were randomly assigned to an electromyostimulated group (EMS, n = 9), a voluntary isometric group (VOL, n = 8), or a control group (CON, n = 8). Maximal voluntary isometric, eccentric and concentric strength, electromyographic (EMG) activity of the biceps and triceps brachii muscles, elbow flexor muscle activation (twitch interpolation technique) and contractile properties were assessed before and after the training period. The main findings were that the isometric torque gains of EMS were greater than those of VOL after the training period (P < 0.01) and that the eccentric and concentric torque gains were equivalent. In both groups, we observed that the mechanical twitch (Pt) was increased (P < 0.05) and that torque improvements were not mediated by neural adaptations. Considering the respective intensities of the training programs (i.e., submaximal contractions for EMS versus maximal for VOL), it can be concluded that electromyostimulation training would be more efficient than voluntary isometric training to improve both isometric and dynamic strength.  相似文献   

10.
These experiments are concerned with the ability of human subjects to match isometric torque in their elbow flexor muscles when biceps of one arm is made sore. Pain was induced by injection of hypertonic saline. Subjects were asked to generate a level of torque, 30% of maximum, with one arm, the reference arm. To achieve the required torque, subjects were given visual feedback. Subjects were then asked to match this torque with their other arm, the indicator arm. In control measurements, subjects were consistent in their matching ability and often were quite accurate. However, when biceps of one arm was made sore, subjects consistently and significantly underestimated the level of torque being generated by the sore arm. Painful heat applied to the skin over biceps produced a similar pattern of errors. Heating skin remote from elbow flexors had no significant effect. One interpretation of these findings is that the nociceptive input from the sore region of skin or muscle leads to reduced excitability of the motor cortex. That, in turn, disturbs the relationship between the centrally generated effort and motor output, leading to matching errors.  相似文献   

11.
Young women are less fatigable than young men for maximal and submaximal contractions, but the contribution of supraspinal fatigue to the sex difference is not known. This study used cortical stimulation to compare the magnitude of supraspinal fatigue during sustained isometric maximal voluntary contractions (MVCs) performed with the elbow flexor muscles of young men and women. Eight women (25.6 +/- 3.6 yr, mean +/- SD) and 9 men (25.4 +/- 3.8 yr) performed six sustained MVCs (22-s duration each, separated by 10 s). Before the fatiguing contractions, the men were stronger than the women (75.9 +/- 9.2 vs. 42.7 +/- 8.0 N.m; P < 0.05) in control MVCs. Voluntary activation measured with cortical stimulation before fatigue was similar for the men and women during the final control MVC (95.7 +/- 3.0 vs. 93.3 +/- 3.6%; P > 0.05) and at the start of the fatiguing task (P > 0.05). By the end of the six sustained fatiguing MVCs, the men exhibited greater absolute and relative reductions in torque (65 +/- 3% of initial MVC) than the women (52 +/- 9%; P < 0.05). The increments in torque (superimposed twitch) generated by motor cortex stimulation during each 22-s maximal effort increased with fatigue (P < 0.05). Superimposed twitches were similar for men and women throughout the fatiguing task (5.5 +/- 4.1 vs. 7.3 +/- 4.7%; P > 0.05), as well as in the last sustained contraction (7.8 +/- 5.9 vs. 10.5 +/- 5.5%) and in brief recovery MVCs. Voluntary activation determined using an estimated control twitch was similar for the men and women at the start of the sustained maximal contractions (91.4 +/- 7.4 vs. 90.4 +/- 6.8%, n = 13) and end of the sixth contraction (77.2 +/- 13.3% vs. 73.1 +/- 19.6%, n = 10). The increase in the area of the motor-evoked potential and duration of the silent period did not differ for men and women during the fatiguing task. However, estimated resting twitch amplitude and the peak rates of muscle relaxation showed greater relative reductions at the end of the fatiguing task for the men than the women. These results indicate that the sex difference in fatigue of the elbow flexor muscles is not explained by a difference in supraspinal fatigue in men and women but is largely due to a sex difference of mechanisms located within the elbow flexor muscles.  相似文献   

12.
The aims of this study were to investigate if low-frequency fatigue (LFF) dependent on the duration of repeated muscle contractions and to compare LFF in voluntary and electrically induced exercise. Male subjects performed three 9-min periods of repeated isometric knee extensions at 40% maximal voluntary contraction with contraction plus relaxation periods of 30 plus 60 s, 15 plus 30 s and 5 plus 10 s in protocols 1, 2 and 3, respectively. The same exercise protocols were repeated using feedback-controlled electrical stimulation at 40% maximal tetanic torque. Before and 15 min after each exercise period, knee extension torque at 1, 7, 10, 15, 20, 50 and 100 Hz was assessed. During voluntary exercise, electromyogram root mean square (EMGrms) of the vastus lateralis muscle was evaluated. The 20-Hz torque:100-Hz torque (20:100 Hz torque) ratio was reduced more after electrically induced than after voluntary exercise (P < 0.05). During electrically induced exercise, the decrease in 20:100 Hz torque ratio was gradually (P < 0.05) reduced as the individual contractions shortened. During voluntary exercise, the decrease in 20:100 Hz torque ratio and the increase in EMGrms were greater in protocol 1 (P < 0.01) than in protocols 2 and 3, which did not differ from each other. In conclusion, our results showed that LFF is dependent on the duration of individual muscle contractions during repetitive isometric exercise and that the electrically induced exercise produced a more pronounced LFF compared to voluntary exercise of submaximal intensity. It is suggested that compensatory recruitment of faster-contracting motor units is an additional factor affecting the severity of LFF during voluntary exercise. Accepted: 5 November 1997  相似文献   

13.
This study investigated the effect of changing internal mechanical variables and task demands on muscle activity and torque production during high effort isometric contractions of the elbow flexors. The effect of adding a 50% maximal voluntary contraction (MVC) of supination to an MVC of elbow flexion was studied over a range of angles from 30° to 110° of elbow flexion. Surface EMGs were recorded from the biceps brachii (BIC), brachioradialis (BRAD) and triceps brachii (TRI) of 10 healthy subjects. BIC was the only muscle to show a consistent trend of increasing root mean square (rms) EMG with increasing elbow flexion angle. BIC activity also remained constant or increased with the addition of the supination task at all angles. In contrast, BRAD showed decreased activity when supination was added at several angular positions. Maximal flexion torque was reduced when the second task of submaximal supination was added. This torque reduction was statistically significant at all angles except 70° and appeared related to the decreased contribution from BRAD. In a small subset of subjects, however, BRAD activity did not decrease when the second degrees of freedom (df) task was added. These subjects exhibited higher flexion torques averaged over task than the majority, at all angles except 30°. These data support the view that internal mechanical considerations influence the manner in which the central nervous system (CNS) distributes activity to muscular synergists in response to altered task demands. Further, subject-specific patterns exist which must be recognized if these findings are to be incorporated in training or rehabilitation programmes.  相似文献   

14.
Our purpose was to characterize the relationship between EMG mean power frequency (MPF) or median frequency (MF) and rate of torque development in voluntary ballistic and electrically elicited isometric contractions. Twenty-three healthy adults participated in two sets of experiments performed on elbow flexor muscles. For Experiment 1, subjects were asked to generate voluntary ballistic contractions by reaching four different target torque levels (20, 40, 60 and 100% of the maximal voluntary contraction (MVC)) as fast as they could. For Experiment 2, electrical (M-waves) and mechanical (twitches) responses to electrical stimulation of the nerves supplying the biceps brachii and brachioradialis muscles were recorded with the subjects at rest and with a background isometric contraction of 15% MVC. MPF, MF and rate of torque development (% MVC/s) were calculated for both voluntary and elicited contractions. Significant positive correlations were observed between MPF and rate of torque development for the voluntary contractions, whereas significant negative correlations were observed between the two variables for elicited contractions. This suggests that factors other than muscle fiber composition influence the frequency content of EMG signals and/or the rate of torque development, and that the effect of these factors will vary between voluntary and elicited contractions.  相似文献   

15.
The purpose of this study was to investigate the influence of eccentric contractions (ECC) on the biceps (BB) and triceps brachii (TB) muscles during maximal voluntary contraction (MVC) of elbow flexors using electrical (EMG) and mechanomyographical activities (MMG). Each of 18 male students performed 25 submaximal contractions (50% MVC) of the elbow flexors. Root mean square amplitude (RMS) and median frequency (MDF) were calculated for the EMG and MMG signals recorded during MVC. All measurements were taken before, immediately after, 24, 48, 72, and 120 h post-ECC from the BB and TB muscles. MVC was reduced by 34% immediately after exercise and did not return to the resting value within 120 h (P0.05). The EMG MDF decreased significantly (P< or =0.05) in both muscles after ECC. The MMG RMS at 24h, 48, 72 and 120 h post-ECC was significantly lower compared to that recorded immediately after ECC in both muscles (P< or =0.05). The present research showed that (i) there were similar changes in electrical and mechanical activities during MVC after submaximal ECC in agonist and antagonist muscles suggesting a common drive controlling the agonist and antagonist motoneuron pool, (ii) the ECC induced different changes in EMG than in MMG immediately after ECC and during 120 h of recovery that suggested an increased tremor and contractile impairments, i.e., reduced rate of calcium release from the sarcoplasmic reticulum (acute effect), and changes in motor control mechanisms of agonist and antagonist muscles, and increased muscle stiffness (chronic effect).  相似文献   

16.
The aim of this study was to investigate the association between the rate of torque development and maximal motor unit discharge frequency in young and elderly adults as they performed rapid submaximal contractions with the ankle dorsiflexors. Recordings were obtained of the torque exerted by the dorsiflexors during the isometric contractions and the surface and intramuscular electromyograms (EMGs) from the tibialis anterior. The maximal rate of torque development and integrated EMG (percentage of total EMG burst) at peak rate of torque development during fast contractions were lower in elderly than young adults by 48% (P < 0.05) and 16.5% (P < 0.05), respectively. The young adults, but not the elderly adults, exhibited a positive association (r2 = 0.33; P < 0.01) between the integrated EMG computed up to the peak rate of torque development and the maximal rate of torque development achieved during the fast contractions. These age-related changes during fast voluntary contractions were accompanied by a decline (P < 0.001) in motor unit discharge frequency (19, 28, and 34% for first 3 interspike intervals, respectively) and in the percentage of units (45%; P < 0.05) that exhibited double discharges (doublets) at brief intervals (<5 ms). Because aging decreased the maximal rate of torque development of fast voluntary contractions to a greater extent ( approximately 10%) than that of an electrically evoked twitch, collectively the results indicate that the age-related decline in maximal motor unit discharge frequency likely limit, in addition to the slowing of muscle contractile properties, the performance of fast voluntary contractions.  相似文献   

17.
The aim of this human study was to investigate the effect of experimentally induced muscle pain on the modifications of motor unit discharge rate during sustained, constant-force contractions. Intramuscular and multichannel surface electromyographic (EMG) signals were collected from the right and left tibialis anterior muscle of 11 volunteers. The subjects performed two 4-min-long isometric contractions at 25% of the maximal dorsiflexion torque, separated by a 20-min rest. Before the beginning of the second contraction, hypertonic (painful; right leg) or isotonic (nonpainful; left leg) saline was injected into the tibialis anterior. Pain intensity scores did not change significantly in the first 150 s of the painful contraction. Exerted torque and its coefficient of variation were the same for the painful and nonpainful contractions. Motor unit discharge rate was higher in the beginning of the nonpainful contraction than the painful contraction on the right side [means +/- SE, 11.3 +/- 0.2 vs. 10.6 +/- 0.2 pulses/s (pps); P < 0.01] whereas it was the same for the two contractions on the left side (11.6 +/- 0.2 vs. 11.5 +/- 0.2 pps). The decrease in discharge rate in 4 min was smaller for the painful (0.4 +/- 0.1 pps) than for the control contractions (1.3 +/- 0.1 pps). Initial value and decrease in motor unit conduction velocity were not different in the four contractions (right leg, 4.0 +/- 0.1 m/s with decrease of 0.6 +/- 0.1 m/s in 4 min; left leg, 4.1 +/- 0.1 m/s with 0.7 +/- 0.1 m/s decrease). In conclusion, stimulation of nociceptive afferents by injection of hypertonic saline did not alter motor unit conduction velocity but reduced the initial motor unit discharge rates and the difference between initial and final discharge rates during sustained contraction.  相似文献   

18.
Neuromuscular electrical stimulation can generate contractions through peripheral and central mechanisms. Direct activation of motor axons (peripheral mechanism) recruits motor units in an unnatural order, with fatigable muscle fibers often activated early in contractions. The activation of sensory axons can produce contractions through a central mechanism, providing excitatory synaptic input to spinal neurons that recruit motor units in the natural order. Presently, we quantified the effect of stimulation frequency (10-100 Hz), duration (0.25-2 s of high-frequency bursts, or 20 s of constant-frequency stimulation), and intensity [1-5% maximal voluntary contraction (MVC) torque generated by a brief 100-Hz train] on the torque generated centrally. Electrical stimulation (1-ms pulses) was delivered over the triceps surae in eight subjects, and plantar flexion torque was recorded. Stimulation frequency, duration, and intensity all influenced the magnitude of the central contribution to torque. Central torque did not develop at frequencies < or = 20 Hz, and it was maximal at frequencies > or = 80 Hz. Increasing the duration of high-frequency stimulation increased the central contribution to torque, as central torque developed over 11 s. Central torque was greatest at a relatively low contraction intensity. The largest amount of central torque was produced by a 20-s, 100-Hz train (10.7 +/- 5.5 %MVC) and by repeated 2-s bursts of 80- or 100-Hz stimulation (9.2 +/- 4.8 and 10.2 +/- 8.1% MVC, respectively). Therefore, central torque was maximized by applying high-frequency, long-duration stimulation while avoiding antidromic block by stimulating at a relatively low intensity. If, as hypothesized, the central mechanism primarily activates fatigue-resistant muscle fibers, generating muscle contractions through this pathway may improve rehabilitation applications.  相似文献   

19.
The purpose of this study was to examine the effect of exercise-induced damage of the elbow flexor muscles on steady motor performance during isometric, shortening, and lengthening contractions. Ten healthy individuals (age 22+/-4 yr) performed four tasks with the elbow flexor muscles: a maximum voluntary contraction, a one repetition maximum (1 RM), an isometric task at three joint angles (short, intermediate, and long muscle lengths), and a constant-load task during slow (approximately 7 degrees/s) shortening and lengthening contractions. Task performance was quantified as the fluctuations in wrist acceleration (steadiness), and electromyography was obtained from the biceps and triceps brachii muscles at loads of 10, 20, and 40% of 1 RM. Tasks were performed before, immediately after, and 24 h after eccentric exercise that resulted in indicators of muscle damage. Maximum voluntary contraction force and 1-RM load declined by approximately 45% immediately after exercise and remained lower at 24 h ( approximately 30% decrease). Eccentric exercise resulted in reduced steadiness and increased biceps and triceps brachii electromyography for all tasks. For the isometric task, steadiness was impaired at the short compared with the long muscle length immediately after exercise (P<0.01). Furthermore, despite no differences before exercise, there was reduced steadiness for the shortening compared with the lengthening contractions after exercise (P=0.01), and steadiness remained impaired for shortening contractions 24 h later (P=0.01). These findings suggest that there are profound effects for the performance of these types of fine motor tasks when recovering from a bout of eccentric exercise.  相似文献   

20.
We investigated the firing rate of motor units in the vastus lateralis muscle in five healthy young men (mean = 21.4 yr, SD = 0.9) during a sequence of isometric constant-torque contractions repeated to exhaustion. The contractions were sustained at 20% of the maximal voluntary level, measured at the beginning of the test sequence. Electromyographic (EMG) signals were recorded via quadrifilar fine-wire electrodes and subsequently decomposed into their constituent motor unit action potentials to obtain the motor unit firing times. In addition, we measured the whole muscle mechanical properties during the fatigue task using electrical stimulation. The firing rate of motor units first decreased within the first 10-20% of the endurance time of the contractions and then increased. The firing rate increase was accompanied by recruitment of additional motor units as the force output remained constant. The elicited twitch and tetanic torque responses first increased and then decreased. The two processes modulated in a complementary fashion at the same time. Our data suggest that, when the vastus lateralis muscle is activated to maintain a constant torque output, its motoneuron pool receives a net excitatory drive that first decreases to compensate for the short-lived potentiation of the muscle force twitch and then increases to compensate for the diminution of the force twitch. The underlying inverse relationship between the firing rate and the recruitment threshold that has been reported for nonfatigued contractions is maintained. We, therefore, conclude that the central nervous system control of vastus lateralis motor units remains invariant during fatigue in submaximal isometric isotonic contractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号