首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary 1) When a thermal gradient (20–40° C) was established along a laboratory nest, Camponotus mus nurse workers showed a photoperiodic circadian rhythm of temperature preferences for brood rearing. Two different temperatures were daily selected to translocate the brood, i.e. 30.8° C selected at the middle of the photophase, and 27.5° C selected during the scotophase, 8 h later. 2) The daily temperature response of nurse workers consisted of paired high and low-temperature translocations, with a 8 hs-interval in between: high-temperature translocation was shown to be entrained by the photophase length, whereas low-temperature translocation was shown to be dependent on the precedent one. 3) Prey deprivation to the colony modified the brood transport behaviors resulting in translocations of only cocoons and large (ripe) larvae, stages in which the pupation processes are triggered. Small larvae and eggs remained located at 27.5° C. 4) Evaluation of pupa developmental time as well as percentage of pupa mortality at different temperature regimes allowed to construct an efficiency index relating pupa survival and cocoon developmental time. In the range of temperatures selected by nurses, the index reached its maximal values. 5) The ecological significance of these results is discussed.  相似文献   

2.
Summary In the ant Camponotus mus the eclosion of imagines from the cocoons was shown to be controlled by nurse workers, which broke the cocoons and assisted the callows to energe. Short-term colony prey deprivation modified the eclosion-help behavior resulting in a delay in cocoon opening times. During long-term prey deprivation, no new cocoons were spun; the starved larvae grew and pupated when prey was again available. These findings as a colony strategy adapted to the changing condition of prey availabitity in a temperate habitat are discussed.  相似文献   

3.
The nectivorous ant Camponotus mus shows a broad size variation within the worker caste. Large ants can ingest faster and larger loads than small ones. Differences in physiological abilities in fluid ingestion due to the insect size could be related to differences in decision-making according to ant size during nectar foraging. Sucrose solutions of different levels of sugar concentration (30% or 60%w/w), viscosity (high or low) or flow rate (ad libitum or 1microl/min) were offered in combination to analyse the behavioural responses to each of these properties separately. Differences were found depending on ant body size and the property compared. A regulated flow produced smaller crop loads for medium and large ants compared to the same solution given ad libitum. All foragers remained longer times feeding at the regulated flow source but larger ants often made longer interruptions. When sugar concentration was constant but viscosity was high, only large ants increased feeding time. Constant viscosity with different sugar concentration determined longer feeding time and bigger loads for the most concentrated solution for small but not for large ants. Small ants reached similar crop loads in a variety of conditions while large ants did not. These differences could be evidence of a possible specialization for nectar foraging based on ant body size.  相似文献   

4.
Summary  Trophallaxis, the mouth-to-mouth transfer of food, is a widespread behavior occurring between individuals of eusocial insect societies. Antennal movements during food transfer are, in honeybees, too rapid to be characterized using standard video recordings. Using a high-speed camera (200 frames/s), we recorded nectar unloading performed by forager honeybees (Apis mellifera carnica Spinola) within the hive once they returned from collecting sugar solution at a feeder that delivered nectar at a variable rate. Frequency patterns attained a mean value of 13 Hz. Antennation intensity showed a tendency to increase with the reward rate recently exploited by the food donor. This raises the question whether or not antennation intensity is a reliable parameter providing modulatory information related to food-source profitability.Received 12 September 2002; revised 21 March 2002; accepted 24 April 2003.  相似文献   

5.
6.
Mutability of microsatellites developed for the ant Camponotus consobrinus   总被引:1,自引:0,他引:1  
Five highly polymorphic (GA)n microsatellite loci are reported for the formicine ant Camponotus consobrinus. The occurrence of many nests with a simple family structure enabled a search for new mutations, 11 of which were found from 3055 informative typings. These mutations were not randomly distributed across loci, 10 of them occurring at the locus Ccon70. The spectrum of mutations across alleles at Ccon70 was also nonrandom, with all of them occurring in alleles in the upper half of the allele size distribution. Six of the Ccon70 mutations decreased allele size. The mutations observed fit the stepwise mutation model well, i.e. mutations could always be assigned to an allele which differed in size from them by one repeat unit. The parental origins of the Ccon70 mutations were established and appear more female biased than vertebrate mutations, significantly so compared with human haemophilia A and primate intron mutations. This result may indicate that the lack of meiosis in males (which are haploid in ants) reduces the mutation rate in that sex relative to species in which both sexes are diploid.  相似文献   

7.
Population and colony structure of the carpenter ant Camponotus floridanus   总被引:1,自引:0,他引:1  
The colony and population structure of the carpenter ant, Camponotus floridanus, were investigated by multilocus DNA fingerprinting using simple repeat motifs as probes [e.g. (GATA)4]. The mating frequency of 15 queens was determined by comparing the fingerprint patterns of the queen and 17–33 of her progeny workers. C. floridanus queens are most probably singly mated, i.e. this species is monandrous and monogynous (one queen per colony). C. floridanus occurs in all counties of mainland Florida and also inhabits most of the Key islands in the southern part of Florida. We tested whether the two mainland populations and the island populations are genetically isolated. Wright's FST and Nei's D-value of genetic distance were calculated from intercolonial bandsharing-coefficients. The population of C. floridanus is substructured (FST= 0.19 ± 0.09) and the highest degree of genetic distance was found between one of the mainland populations and the island populations (D= 0.35). Our fingerprinting technique could successfully be transferred to 12 other Camponotus species and here also revealed sufficient variability to analyse the genetic structure. In three of these species (C. ligniperdus, C. herculeanus and C. gigas) we could determine the mating frequency of the queen in one or two colonies, respectively.  相似文献   

8.
Carpenter ants (genus Camponotus) have mutualistic, endosymbiotic bacteria of the genus Blochmannia whose main contribution to their hosts is alimentary. It was also recently demonstrated that they play a role in improving immune function as well. In this study, we show that treatment with an antibiotic produces a physiological response inducing an increase in both the quantity of cuticular hydrocarbons and in the melanization of the cuticle probably due to a nutritive and immunological deficit. We suggest that this is because it enhances the protection the cuticle provides from desiccation and also from invasions by pathogens and parasites. Nevertheless, the cuticular hydrocarbon profile is not modified by the antibiotic treatment, which indicates that nestmate recognition is not modified.  相似文献   

9.
1. In social insects, the number of nests that a colony inhabits may have important consequences for colony genetic structure, the number of queens, sex allocation, foraging efficiency, and nestmate recognition. Within the ants, colonies may either occupy a single nest (monodomy) or may be organised into a complex network of nests and trails, a condition known as polydomy. 2. The current study is a large‐scale, long‐term, comprehensive field examination of various features of colony social and spatial structure in the facultatively polydomous black carpenter ant, Camponotus pennsylvanicus (DeGeer). The study examined the density, persistence, and the spatiotemporal distribution of colonies across a gradient of land disturbance associated with urban development. The temporal and spatial pattern of nest use was compared between fragmented landscapes where nesting sites were interspersed among human‐built structures (urban plots) and less disturbed landscapes with higher tree density (suburban plots). In addition, nesting site fidelity and changes in colony spatial structure were monitored over 7 years. 3. Long‐term monitoring and extensive sampling over a large spatial area allowed the first comprehensive insight into the spatiotemporal dynamics of colony and population structure in C. pennsylvanicus. A total of 1113 trees were inspected over 233 ha. Camponotus pennsylvanicus were active on 348 of the 1113 trees (31%) and these represented 182 distinct colonies. The colonisation rate remained relatively stable over 7 years suggesting that an equilibrium point had been reached. Relative to the suburban plots, tree density was 65% lower in the urban plots. The proportion of trees colonised by C. pennsylvanicus was significantly higher in the urban plots suggesting that intraspecific competition for nesting sites may be especially high in areas with lower tree density. Colony spatial structure also differed significantly between habitats and a higher incidence of monodomy was observed in the urban environment. The average number of trees per colony across all subplots was 1.95 (range 1–4) indicating that C. pennsylvanicus are weakly polydomous. 4. The composite picture that emerges for C. pennsylvanicus colonies in the urban habitat is a chain reaction of events: (i) the urban habitat has a lower tree density, (ii) lower tree density results in higher tree colonisation rate, (iii) higher tree colonisation rate results in simpler colony spatial structure (i.e. higher incidence of monodomy), and (iv) simpler colony spatial structure results in numerically smaller colonies. Long‐term monitoring of the spatiotemporal pattern of nest site use in selected colonies revealed a unique trend. While worker counts in selected colonies remained relatively stable throughout the course of the study, colony spatial structure changed considerably with 28% of colonies experiencing a change. Furthermore, the likelihood of detecting a change in colony spatial structure increased with the amount of time passing from the initial inspection. 5. In conclusion, tree density has a significant effect on a number of important colony features in C. pennsylvanicus. Besides tree density, other environmental features such as human‐built structures cause habitat fragmentation and may act as natural barriers to worker dispersal and/or foraging. Such barriers may ultimately affect the social and/or spatial structure at both the colony and the population level.  相似文献   

10.
Abstract. Along a stable temperature gradient and under a LD 12:12 h cycle, nurse workers of the ant Camponotus mus Roger 1863 (Hymenoptera: Formicidae) select for the brood two different temperatures daily: 30.8°C at the middle of the light period (circadian phase = 90°), and 27.5°C 8 h later, during the dark period (circadian phase = 210°), this rhythm being of endogenous nature.When a 24 h temperature cycle was superimposed along the thermal gradient, so that the immobile brood experienced a temperature transition as they receive when translocated by nurses (8 h at 30.8°C and 16 h at 27.5°C), no brood translocations occurred.The thermal cycle masked the rhythm of brood translocation when temperature fitted the daily pattern expected by nurses.When the same temperature cycle was presented with a phase-advance, nurses did not tolerate the early thermal increase and removed the brood as temperature rose.However, when workers experienced this new phase relationship between light and temperature cycles for more than 10 days, brood translocations were suppressed.Records under constant conditions of light and temperature indicated that the overt rhythm was locked-on to the expected early increase in temperature, so that the temperature cycle dominated over the LD cycle in resetting brood-carrying activity.  相似文献   

11.
Summary This study provides quantitative field data on the natural history and foraging behaviour of the Neotropical bromeliad-nesting ant Gnamptogenys moelleri (Ponerinae) in a sandy plain forest in Southeast Brazil. The ant nested on different bromeliad species and the nests were more frequently found in bigger bromeliads. The species used a wide array of invertebrates in its diet, hunting for live prey and scavenging the majority of the items from dead animals. The food items varied greatly in size (1 to 26 mm). Hunting was always performed by solitary workers. Retrieving was performed by solitary workers (small items), or by a group of 3 to 12 workers recruited to the food source (large items). Almost all G. moelleri foraging activity was restricted to the nest bromeliad. In the warm period more ants left the nest to forage, and foraging trips achieved greater distances compared to the cool season. Trap data revealed that overall availability of arthropod prey is higher in the summer than in the winter. The opportunism in nest site use and in foraging behaviour, the small foraging area, as well as the seasonal differences in foraging activity are discussed and compared with other tropical ants.Received 30 May 2003; revised 22 September 2003; accepted 3 October 2003.  相似文献   

12.
Colonies of the fire ant, Solenopsis invicta, can survive flood conditions by forming a raft of ants that floats on the water’s surface until the flood recedes or higher ground is found. Having been forced from the protection of their subterranean nests, rafting colonies are totally exposed and are without retreat. I tested the hypothesis that rafting S. invicta colonies would compensate for their elevated vulnerability by increasing their defensiveness. I measured defensiveness using the amount of venom workers delivered per sting (venom dose), since the repellent effects (i.e., pain and tissue damage) of fire-ant venom are dose-dependent. In the laboratory I assayed colony defensiveness before and after flooding colonies from their nests with water. Colonies were consistently and significantly more defensive while rafting (i.e., each colony’s workers delivered higher venom doses when their colony was rafting than they did when it was assayed pre-flood). The larger venom doses of rafting colonies may reduce their chances of being damaged by encounters with other animals by reducing the duration of such encounters through increased repellency. Encounters with S. invicta during flood conditions have the potential to be unusually dangerous; large concentrations of workers are exposed and available for defense, and they deliver significantly larger venom doses when they sting. Received 29 March 2005; revised 20 June 2005; accepted 24 June 2005.  相似文献   

13.
The small ant Camponotus anderseni lives exclusively in twigs of the mangrove tree Sonneratia alba, and during inundation, the entrance hole is blocked with a soldier’s head which effectively prevents flooding. The nests can be very crowded, with the ants and coccids filling up to 50% of the volume, and due to their metabolic activity, the conditions in the nests during inundation become hypercapnic and hypoxic. Each nest has only one entrance, and the opening is quite small (1.56 ± 0.03 mm). The mean diameter of the galleries is 2.31 ± 0.23 mm, independent of the thickness of the twig and length of the nest. During normal conditions with open nests, the oxygen depletion is substantial in the part of the nest most distant from the opening, and in a 120 mm long nest the oxygen concentration can be as low as 15.7%. During simulated inundation, in which the nest entrances were blocked, the oxygen concentration dropped to very low levels (<0.5%) after one hour. After opening the nest entrance, the oxygen concentration increased again, but for a 100 mm long nest it took nearly 20 minutes before the concentration was back to the normal depressed level. Mathematical modelling of the steady-state oxygen concentrations in the innermost part of the nests shows a lower O2 concentration than calculated. The time for equilibration of oxygen after inundation is longer than expected for small nests, presumably because the passive diffusion is obstructed by the nest contents. The “dilemma” faced by C. anderseni is to avoid drowning without suffering anoxia or hypercapnia, and they show a remarkable ability to adapt to the extreme conditions in the mangrove and exploit a niche where the density of other ants is insignificant. Received 13 December 2007; revised 30 July 2008; accepted 6 September 2008.  相似文献   

14.
Along a thermal gradient and under a LD 1212 h cycle, nurse workers of the ant Camponotus mus select for the brood two different temperatures daily: 30.8°C at the middle of the light period (circadian phase = 90°), and 27.5°C 8 h later, during the dark period (CP = 210°). Brood-carrying activity proved to be self-sustained, running its two daily bursts free with a similar period of 23.5 h, under both LL and DD. The LD alternation acted as a strong Zeitgeber. A phase-delay of the LD 1212 h cycle reset the overt rhythm at once, being both daily events locked-on to the delayed light: dark transition. However, changes in expression, non-occurrence, or even splitting of the two daily brood-carrying events during resetting depended on the phase of the delayed DL transition. By comparing the occurrence of activity with predictions based on a threshold curve of thermal sensitivity, results indicated that an immediate resetting of the involved pacemaker actually takes place. Nurse workers do not directly control the total time spent by the brood at the selected temperature. Instead, the endogenously-driven thermal sensitivity triggers their thermal-searching behavior at two critical times of the day, when environmental temperature is expected to reach its maximum and minimum.  相似文献   

15.
Abstract. Ant colonies experience continuous shifts in worker populations, which may affect odour composition in the nest. A major question regarding the dynamics of gestalt formation is that of the speed at which the scent of a new individual will be incorporated into the gestalt. It is predicted from the gestalt model of colony odour that workers have to exchange recognition cues continuously to maintain themselves within the gestalt and become well integrated within their colony. Using radioactive tracers the rates of transfer were measured between a labelled donor ant and one or 10 recipient ants, as a close approximation to the within-nest situation. The labelled hydrocarbons were first transferred to a small number of individuals and progressively to all the individuals of the group so that the distribution of hydrocarbon transfer rate approached a normal distribution. Furthermore, in Camponotus fellah Dalla Torre, which performs trophallaxis, homogeneity was reached more rapidly than in Aphaenogaster senilis Mayr, which does not show this behaviour. In the latter species, the gestalt seems to be maintained mainly by allogrooming. These experiments were accompanied by behavioural observations to ascertain the respective importance of trophallaxis and allogrooming in the behavioural time-budget of the ants. In A. senilis , allogrooming was more frequent than in ants that trophallax, which corroborates the role of allogrooming in the establishment of the gestalt in this species.  相似文献   

16.
This study reports new information on interactions between two sympatric ant species, the plant-ant Azteca alfari (Dolichoderinae) living in association with the myrmecophyte Cecropia obtusa (Cecropiaceae) and Camponotus blandus (Formicinae), a ground-nesting, arboreal-foraging species. Workers of A. alfari forage only on the foliage and the upper parts of the trunk of their host Cecropia, while C. blandus nests in the ground but frequently forages and patrols pioneer tree foliage, including Cecropia. The activity pattern of A. alfari and the number of C. blandus on Cecropia obtusa was monitored hourly during a two-day period in a disturbed area in French Guiana. The maximum activity of C. blandus occurred between 8:30 and 12:30, at which time A. alfari had retreated within the domatia and were least present on the trunks. Even though aggressive confrontations were observed, C. blandus workers often initiate confrontations but do not prey on A. alfari nor exploit food bodies produced by Cecropia, the principal food source of A. alfari. Hence hostility appears to be the result of territoriality. Differences in their foraging rhythms are proposed as promoting resource and territory partitioning in this ant assemblage. To cite this article: M. McClure et al., C. R. Biologies 331 (2008).  相似文献   

17.
The dominant paradigm to explain asymmetries in the spatialdistribution of foraging animals is that they track the spatialheterogeneity of their environment. However, in social insects,endogenous spatial asymmetries can emerge within a uniformenvironment as an outcome from the self-organizing processof trail recruitment. We studied how self-organized asymmetries contribute to the exploitation of different food sources (carbohydrateor proteins) in colonies of the aphid-tending ant Lasius nigervarying in their nutritional needs (presence or absence ofbrood). Colonies with brood fed on sucrose sources exhibita higher mobilization of foragers than the other experimentalgroups. Foraging patterns differ greatly according to food type: colonies strongly focus their activity on only one dropletof sucrose, whereas they show a rather homogeneous distributionof foragers between proteinaceous sources. In addition, thepresence of brood in the colony enhances the asymmetry of collectiveforaging for both types of food. These spatial differencesin self-organized foraging patterns allow efficient exploitationof natural resources and play a role in the competitive strategy of this widespread palearctic ant.  相似文献   

18.
Summary: Feeding behavior and worker polymorphism were studied in the ant Camponotus mus. Individual workers were conditioned to visit an arena in which an ad libitum food source of 60% (w/w) sucrose solution was offered. Individual feeding time, crop load, and intake rate were recorded. Worker head width and pronotum width were measured. Behavioral and morphometric variables were analyzed in relation to ant weight. C. mus workers of the laboratory nest have an elemental polymorphism with monophasic allometric growth. Worker size affected feeding dynamics. Load weight and intake rate were positively correlated with ant weight, whereas feeding time was independent of ant weight. Size related differences in intake rate could not be attributed to differences in pumping frequency, and could be attributed to differences in the volume ingested per pumping cycle.  相似文献   

19.
The effects of colony starvation on the dynamics of nectar collection were studied in individual workers of the ant Camponotus mus. A laboratory colony was first deprived of carbohydrates for 15days, and thereafter fed daily ad libitum with diluted honey until satiation. During these two successive experimental phases, the probability of feeding, crop filling and fluid-intake rates were recorded daily for individual foragers collecting a 10% (w/w) sucrose solution. The feeding responses of individuals varied with the nutritional state of the colony. When the colony was deprived of sugar, acceptance of the sucrose solution was higher than under satiation. Feeding time increased with increasing starvation. During deprivation workers fed nearly continuously on the solution, whereas a number of feeding interruptions occurred under satiation. Crop filling also increased with increasing starvation, and showed a marked decrease when the colony was satiated. Fluid-intake rate during the deprivation phase was roughly twice that during the satiation phase. This matched well with the difference in sucking frequency recorded during ingestion in satiated and starved workers, which was also higher during starvation. Results indicate that the responsiveness of foragers, determined by the nutritional state of the colony, influenced both foraging decisions and the dynamics of fluid intake.  相似文献   

20.
In social insects, group behaviour can increase disease resistance among nest-mates and generate social prophylaxis. Stomodeal trophallaxis, or mutual feeding through regurgitation, may boost colony-level immunocompetence. We provide evidence for increased trophallactic behaviour among immunized workers of the carpenter ant Camponotus pennsylvanicus, which, together with increased antimicrobial activity of the regurgitate droplet, help explain the improved survival of droplet recipient ants relative to controls following an immune challenge. We have identified a protein related to cathepsin D, a lysosomal protease, as a potential contributor to the antimicrobial activity. The combined behavioural and immunological responses to infection in these ants probably represent an effective mechanism underlying the social facilitation of disease resistance, which could potentially produce socially mediated colony-wide prophylaxis. The externalization and sharing of an individual''s immune responses via trophallaxis could be an important component of social immunity, allowing insect colonies to thrive under high pathogenic pressures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号