首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The function of histone modifications in initiating and regulating the chromosomal events of the meiotic prophase remains poorly understood. In Saccharomyces cerevisiae, we examined the genome‐wide localization of histone H3 lysine 4 trimethylation (H3K4me3) along meiosis and its relationship to gene expression and position of the programmed double‐strand breaks (DSBs) that initiate interhomologue recombination, essential to yield viable haploid gametes. We find that the level of H3K4me3 is constitutively higher close to DSB sites, independently of local gene expression levels. Without Set1, the H3K4 methylase, 84% of the DSB sites exhibit a severely reduced DSB frequency, the reduction being quantitatively correlated with the local level of H3K4me3 in wild‐type cells. Further, we show that this differential histone mark is already established in vegetative cells, being higher in DSB‐prone regions than in regions with no or little DSB. Taken together, our results demonstrate that H3K4me3 is a prominent and preexisting mark of active meiotic recombination initiation sites. Novel perspectives to dissect the various layers of the controls of meiotic DSB formation are discussed.  相似文献   

2.
3.
4.
5.
6.
The development of multicellular organisms is governed partly by temporally and spatially controlled gene expression. DNA methylation, covalent modifications of histones, and the use of histone variants are the major epigenetic mechanisms governing gene expression in plant development. In this review, we zoom in onto histone H3 lysine 27 trimethylation (H3K27me3), a repressive mark that plays a crucial role in the dynamic regulation of gene expression in plant development, to discuss recent advances as well as outstanding questions in the deposition, recognition, and removal of the mark and the impacts of these molecular processes on plant development.  相似文献   

7.
Trimethylation of histone H3 lysine 27 (H3K27me3) plays critical roles in regulating animal development, and in several cases, H3K27me3 is also required for the proper expression of developmentally important genes in plants. However, the extent to which H3K27me3 regulates plant genes on a genome-wide scale remains unknown. In addition, it is not clear whether the establishment and spreading of H3K27me3 occur through the same mechanisms in plants and animals. We identified regions containing H3K27me3 in the genome of the flowering plant Arabidopsis thaliana using a high-density whole-genome tiling microarray. The results suggest that H3K27me3 is a major silencing mechanism in plants that regulates an unexpectedly large number of genes in Arabidopsis (~4,400), and that the maintenance of H3K27me3 is largely independent of other epigenetic pathways, such as DNA methylation or RNA interference. Unlike in animals, where H3K27m3 occupies large genomic regions, in Arabidopsis, we found that H3K27m3 domains were largely restricted to the transcribed regions of single genes. Furthermore, unlike in animals systems, H3K27m3 domains were not preferentially associated with low–nucleosome density regions. The results suggest that different mechanisms may underlie the establishment and spreading of H3K27me3 in plants and animals.  相似文献   

8.
The yeast Set1-complex catalyzes histone H3 lysine 4 (H3K4) methylation. Using N-terminal Edman sequencing, we determined that 50% of H3K4 is methylated and consists of roughly equal amounts of mono, di and tri-methylated H3K4. We further show that loss of either Paf1 of the Paf1 elongation complex, or ubiquitination of histone H2B, has only a modest effect on bulk histone mono-methylation at H3K4. Despite the fact that Set1 recruitment decreases in paf1delta cells, loss of Paf1 results in an increase of H3K4 mono-methylation at the 5' coding region of active genes, suggesting a Paf1-independent targeting of Set1. In contrast to Paf1 inactivation, deleting RTF1 affects H3K4 mono-methylation at the 3' coding region of active genes and results in a decrease of global H3K4 mono-methylation. Our results indicate that the requirements for mono-methylation are distinct from those for H3K4 di and tri-methylation, and point to differences among members of the Paf1 complex in the regulation of H3K4 methylation.  相似文献   

9.
《Epigenetics》2013,8(9):976-981
During fertilization, two of the most differentiated cells in the mammalian organism, a sperm and oocyte, are combined to form a pluripotent embryo. Dynamic changes in chromatin structure allow the transition of the chromatin on these specialized cells into an embryonic configuration capable of generating every cell type. Initially, this reprogramming activity is supported by oocyte-derived factors accumulated during oogenesis as proteins and mRNAs; however, the underlying molecular mechanisms that govern it remain poorly characterized. Trimethylation of histone H3 at lysine 27 (H3K27me3) is a repressive epigenetic mark that changes dynamically during pre-implantation development in mice, bovine and pig embryos. Here we present data and hypotheses related to the potential mechanisms behind H3K27me3 remodeling during early development. We postulate that the repressive H3K27me3 mark is globally erased from the parental genomes in order to remove the gametic epigenetic program and to establish a pluripotent embryonic epigenome. We discuss information gathered in mice, pigs, and bovine, with the intent of providing a comparative analysis of the reprogramming of this epigenetic mark during early mammalian development.  相似文献   

10.
The CHD3 remodeler PICKLE promotes trimethylation of histone H3 lysine 27   总被引:1,自引:0,他引:1  
CHD3 proteins are ATP-dependent chromatin remodelers that contribute to repression of developmentally regulated genes in both animal and plant systems. In animals, this repression has been linked to a multiple subunit complex, Mi-2/NuRD, whose constituents include a CHD3 protein, a histone deacetylase, and a methyl-CpG-binding domain protein. In Arabidopsis, PICKLE (PKL) codes for a CHD3 protein that acts during germination to repress expression of seed-associated genes. Repression of seed-associated traits is promoted in pkl seedlings by the plant growth regulator gibberellin (GA). We undertook a microarray analysis to determine how PKL and GA act to promote the transition from seed to seedling. We found that PKL and GA act in separate pathways to repress expression of seed-specific genes. Comparison of genomic datasets revealed that PKL-dependent genes are enriched for trimethylation of histone H3 lysine 27 (H3K27me3), a repressive epigenetic mark. Chromatin immunoprecipitation studies demonstrate that PKL promotes H3K27me3 in both germinating seedlings and in adult plants but do not identify a connection between PKL-dependent expression and acetylation levels. Taken together, our analyses illuminate a new pathway by which CHD3 remodelers contribute to repression in eukaryotes.  相似文献   

11.
During fertilization, two of the most differentiated cells in the mammalian organism, a sperm and oocyte, are combined to form a pluripotent embryo. Dynamic changes in chromatin structure allow the transition of the chromatin on these specialized cells into an embryonic configuration capable of generating every cell type. Initially, this reprogramming activity is supported by oocyte-derived factors accumulated during oogenesis as proteins and mRNAs; however, the underlying molecular mechanisms that govern it remain poorly characterized. Trimethylation of histone H3 at lysine 27 (H3K27me3) is a repressive epigenetic mark that changes dynamically during pre-implantation development in mice, bovine and pig embryos. Here we present data and hypotheses related to the potential mechanisms behind H3K27me3 remodeling during early development. We postulate that the repressive H3K27me3 mark is globally erased from the parental genomes in order to remove the gametic epigenetic program and to establish a pluripotent embryonic epigenome. We discuss information gathered in mice, pigs, and bovine, with the intent of providing a comparative analysis of the reprogramming of this epigenetic mark during early mammalian development.  相似文献   

12.
13.
The preferential in vitro interaction of the PHD finger of RAG2, a subunit of the V(D)J recombinase, with histone H3 tails simultaneously trimethylated at lysine 4 and symmetrically dimethylated at arginine 2 (H3R2me2sK4me3) predicted the existence of the previously unknown histone modification H3R2me2s. Here, we report the in vivo identification of H3R2me2s . Consistent with the binding specificity of the RAG2 PHD finger, high levels of H3R2me2sK4me3 are found at antigen receptor gene segments ready for rearrangement. However, this double modification is much more general; it is conserved throughout eukaryotic evolution. In mouse, H3R2me2s is tightly correlated with H3K4me3 at active promoters throughout the genome. Mutational analysis in S. cerevisiae reveals that deposition of H3R2me2s requires the same Set1 complex that deposits H3K4me3. Our work suggests that H3R2me2sK4me3, not simply H3K4me3 alone, is the mark of active promoters and that factors that recognize H3K4me3 will have their binding modulated by their preference for H3R2me2s.  相似文献   

14.
《Epigenetics》2013,8(8):767-775
Chromatin is broadly compartmentalized in two defined states: euchromatin and heterochromatin. Generally, euchromatin is trimethylated on histone H3 lysine 4 (H3K4me3) while heterochromatin contains the H3K9me3 marks. The H3K9me3 modification is added by lysine methyltransferases (KMTs) such as SETDB1. Herein, we show that SETDB1 interacts with its substrate H3, but only in the absence of the euchromatic mark H3K4me3. In addition, we show that SETDB1 fails to methylate substrates containing the H3K4me3 mark. Likewise, the functionally related H3K9 KMTs G9A, GLP, and SUV39H1 also fail to bind and to methylate H3K4me3 substrates. Accordingly, we provide in vivo evidence that H3K9me2-enriched histones are devoid of H3K4me2/3 and that histones depleted of H3K4me2/3 have elevated H3K9me2/3. The correlation between the loss of interaction of these KMTs with H3K4me3 and concomitant methylation impairment leads to the postulate that, at least these four KMTs, require stable interaction with their respective substrates for optimal activity. Thus, novel substrates could be discovered via the identification of KMT interacting proteins. Indeed, we find that SETDB1 binds to and methylates a novel substrate, the inhibitor of growth protein ING2, while SUV39H1 binds to and methylates the heterochromatin protein HP1α. Thus, our observations suggest a mechanism of post-translational regulation of lysine methylation and propose a potential mechanism for the segregation of the biologically opposing marks, H3K4me3 and H3K9me3. Furthermore, the correlation between H3-KMTs interaction and substrate methylation highlights that the identification of novel KMT substrates may be facilitated by the identification of interaction partners.  相似文献   

15.
16.
《Molecular cell》2023,83(16):2872-2883.e7
  1. Download : Download high-res image (214KB)
  2. Download : Download full-size image
  相似文献   

17.
The plant Polycomb-group (Pc-G) protein CURLY LEAF (CLF) is required to repress targets such as AGAMOUS (AG) and SHOOTMERISTEMLESS (STM). Using chromatin immunoprecipitation, we identify AG and STM as direct targets for CLF and show that they carry a characteristic epigenetic signature of dispersed histone H3 lysine 27 trimethylation (H3K27me3) and localised H3K27me2 methylation. H3K27 methylation is present throughout leaf development and consistent with this, CLF is required persistently to silence AG. However, CLF is not itself an epigenetic mark as it is lost during mitosis. We suggest a model in which Pc-G proteins are recruited to localised regions of targets and then mediate dispersed H3K27me3. Analysis of transgenes carrying AG regulatory sequences confirms that H3K27me3 can spread to novel sequences in a CLF-dependent manner and further shows that H3K27me3 methylation is not sufficient for silencing of targets. We suggest that the spread of H3K27me3 contributes to the mitotic heritability of Pc-G silencing, and that the loss of silencing caused by transposon insertions at plant Pc-G targets reflects impaired spreading.  相似文献   

18.
Meiotic recombination generates reciprocal exchanges between homologous chromosomes (also called crossovers, COs) that are essential for proper chromosome segregation during meiosis and are a major source of genome diversity by generating new allele combinations. COs have two striking properties: they occur at specific sites, called hotspots, and these sites evolve rapidly. In mammals, the Prdm9 gene, which encodes a meiosis-specific histone H3 methyltransferase, has recently been identified as a determinant of CO hotspots. Here, using transgenic mice, we show that the sole modification of PRDM9 zinc fingers leads to changes in hotspot activity, histone H3 lysine 4 trimethylation (H3K4me3) levels, and chromosome-wide distribution of COs. We further demonstrate by an in vitro assay that the PRDM9 variant associated with hotspot activity binds specifically to DNA sequences located at the center of the three hotspots tested. Remarkably, we show that mutations in cis located at hotspot centers and associated with a decrease of hotspot activity affect PRDM9 binding. Taken together, these results provide the direct demonstration that Prdm9 is a master regulator of hotspot localization through the DNA binding specificity of its zinc finger array and that binding of PRDM9 at hotspots promotes local H3K4me3 enrichment.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号