首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 85 毫秒
1.
S Chao  R Sederoff    C S Levings  rd 《Nucleic acids research》1984,12(16):6629-6644
The nucleotide sequence of the gene coding for the 18S ribosomal RNA of maize mitochondria has been determined and a model for the secondary structure is proposed. Dot matrix analysis has been used to compare the extent and distribution of sequence similarities of the entire maize mitochondrial 18S rRNA sequence with that of 15 other small subunit rRNA sequences. The mitochondrial gene shows great similarity to the eubacterial sequences and to the maize chloroplast, and less similarity to mitochondrial rRNA genes in animals and fungi. We propose that this similarity is due to a slow rate of nucleotide divergence in plant mtDNA compared to the mtDNA of animals. Sequence comparisons indicate that the evolution of the maize mitochondrial 18S, chloroplast 16S and nuclear 17S ribosomal genes have been essentially independent, in spite of evidence for DNA transfer between organelles and the nucleus.  相似文献   

2.
The purification and identification by peptide sequence and immunological data of the spinach chloroplast homologue of E. coli L15 is presented. A significant increase in its mass over the E. coli counterpart is shown and is accounted for, in part, by a sequenced 18-residue N-terminal extension. A still larger C-terminal extension or internal insertion(s) is inferred. The migration position of the L15 in a 2D gel pattern of spinach chloroplast 50S subunit proteins is shown. Lack of sequence identity with the known chloroplast genomic data confirms the nuclear coding of this protein, and the N-terminal sequence given here provides the transit peptide cleavage site of the cytoplasmic precursor.  相似文献   

3.
Linocin M18 is an antilisterial bacteriocin produced by the red smear cheese bacterium Brevibacterium linens M18. Oligonucleotide probes based on the N-terminal amino acid sequence were used to locate its single copy gene, lin, on the chromosomal DNA. The amino acid composition, N-terminal sequence, and molecular mass derived from the nucleotide sequence of an open reading frame of 798 nucleotides coding for 266 amino acids found on a 3-kb BamHI restriction fragment correspond closely to those obtained from the purified protein (N. Valdés-Stauber and S. Scherer, Appl. Environ. Microbiol. 60:3809-3814, 1994). No sequence homology to any protein or nucleotide sequences deposited in databases was found. Comparison of the nucleotide sequence and the N-terminal amino acid sequence derived from the protein suggests that B. linens M18 produces an N-formyl-methionyl-CAC tRNA. A wide taxonomical distribution of the gene within coryneform bacteria has been demonstrated by PCR amplification. The structural gene from linocin M18 is present at least in three Brevibacterium species, five Arthrobacter species, and five Corynebacterium species.  相似文献   

4.
We present a catalog of sequences of oligonucleotides produced by T1 ribonuclease digestion of 32P-labeled small-ribosomal-subunit RNA ("18S rRNA) isolated from purified wheat embryo mitochondria. This catalog is compared to catalogs published for prokaryotic and chloroplast 16S rRNAs and to preliminary results for wheat cytosol 18S rRNA. These comparisons indicate that: (1) wheat mitochondrial 18S rRNA is clearly prokaryotic in nature, showing significantly more sequence homology with 16S rRNAs than can be expected to arise by chance (p less than 0.000001); (2) shared oligonucleotide sequences include an especially high proportion of those identified as conserved in the evolution of prokaryotic rRNAs; and (3) wheat embryo mitochondrial and cytosol 18S rRNAs retain no more, and perhaps less, than the minimum sequence homology detectable by this sensitive method. These results argue in favor of an endosymbiotic origin for mitochondria.  相似文献   

5.
M Wu  Z Q Nie    J Yang 《The Plant cell》1989,1(5):551-557
From a high-salt extract of the purified thylakoid membrane, an 18-kD protein was detected. This protein was translated by the chloroplast ribosomes and could form a stable DNA-protein complex with a cloned chloroplast DNA replicative origin [Nie, Z.Q., Chang, D.Y., and Wu, M. (1987) Mol. Gen. Genet. 209, 265-269]. In this paper, the 18-kD protein is linked to frxB, a chloroplast-encoded, ferredoxin-type, iron-sulfur protein, by N-terminal microsequencing of the purified protein and computer analysis. The identification is further supported empirically by the fact that the electron paramagnetic resonance spectra of the protein indicate the presence of iron-sulfur clusters. A polyclonal antibody raised against a synthetic pentadecameric peptide with amino acid sequence corresponds to the highly conserved region of the frxB protein and reacts strongly and specifically with the 18-kD protein band in protein gel blot analyses. The 18-kD iron-sulfur protein is found to be related to a subunit of the respiratory chain NADH dehydrogenase by its cross-reaction with a polyclonal antibody raised against highly purified NADH-ubiquinone oxidoreductase, a key enzyme of the respiratory chain. These data are consistent with chlororespiration, and, thus, possible implication of chlororespiration in regulating the initiation of chloroplast DNA replication is discussed.  相似文献   

6.
Chloroplast ribosomal protein L32 is encoded in the chloroplast genome   总被引:3,自引:0,他引:3  
The 50 S subunit of chloroplast ribosomes was prepared from tobacco leaves. The proteins were fractionated and the N-terminal amino acid sequence of a 14 kDa protein was determined. This sequence matches the N-terminal sequence deduced from ORF55 located between ndhF and trnL on the small single-copy region of tobacco chloroplast DNA. The deduced protein shows homology to E. coli and B. stearothermophilus L32 proteins, and it has been named as CL32 and ORF55 as rpl32. The tobacco chloroplast genome therefore contains 21 different ribosomal protein genes.  相似文献   

7.
A rapid and simple method for constructing restriction maps of large DNAs (100-200 kb) is presented. The utility of this method is illustrated by mapping the Sal I, Sac I, and Hpa I sites of the 152 kb Atriplex triangularis chloroplast genome, and the Sal I and Pvu II sites of the 155 kb Cucumis sativa chloroplast genome. These two chloroplast DNAs are very similar in organization; both feature the near-universal chloroplast DNA inverted repeat sequence of 22-25 kb. The positions of four different genes have been localized on these chloroplast DNAs. In both genomes the 16S and 23S ribosomal RNAs are encoded by duplicate genes situated at one end of the inverted repeat, while genes for the large subunit of ribulose-1,5-bisphosphate carboxylase and a 32 kilodalton photosystem II polypeptide are separated by 55 kb of DNA within the large single copy region. The physical and genetic organization of these DNAs is compared to that of spinach chloroplast DNA.  相似文献   

8.
P W Gray  R B Hallick 《Biochemistry》1979,18(9):1820-1825
Ribosomal RNA (5S) from Euglena gracilis chloroplasts was isolated by preparative electrophoresis, labeled in vitro with 125I, and hybridized to restriction nuclease fragments from chloroplast DNA or cloned chloroplast DNA segments. Euglena chloroplast 5S rRNA is encoded in the chloroplast genome. The coding region of 5S rRNA has been positioned within the 5.6 kilobase pair (kbp) repeat which also codes for 16S and 23S rRNA. There are three 5S rRNA genes on the 130-kbp genome. The order of RNAs within a single repeat is 16S-23S-5S. The organization and size of the Euglena chloroplast ribosomal repeat is very similar to the ribosomal RNA operons of Escherichia coli.  相似文献   

9.
A fragment of ribosomal protein L18 was prepared by limited trypsin digestion of a specific complex of L18 and 5S RNA. It was characterised for sequence and the very basic N-terminal region of the protein was found to be absent. No smaller resistant fragments were produced. 5S RNA binding experiments indicated that the basic N-terminal region, from amino acid residues 1 to 17, was not important for the L18-5S RNA association. Under milder trypsin digestion conditions three resistant fragments were produced from the free protein. The largest corresponded to that isolated from the complex. The smaller ones were trimmed slightly further at both N- and C-terminal ends. These smaller fragments did not reassociate with 5S RNA. It was concluded on the basis of the trypsin protection observations and the 5S RNA binding results that the region extending from residues 18 to 117 approximates to the minimum amount of protein required for a specific and stable protein-RNA interaction. The accessibility of the very basic N-terminal region of L18, in the L18-5S RNA complex, suggests that it may be involved, in some way, in the interaction of 5S RNA with 23S RNA.  相似文献   

10.
Complete sequence of Euglena gracilis chloroplast DNA.   总被引:20,自引:4,他引:16       下载免费PDF全文
We report the complete DNA sequence of the Euglena gracilis, Pringsheim strain Z chloroplast genome. This circular DNA is 143,170 bp, counting only one copy of a 54 bp tandem repeat sequence that is present in variable copy number within a single culture. The overall organization of the genome involves a tandem array of three complete and one partial ribosomal RNA operons, and a large single copy region. There are genes for the 16S, 5S, and 23S rRNAs of the 70S chloroplast ribosomes, 27 different tRNA species, 21 ribosomal proteins plus the gene for elongation factor EF-Tu, three RNA polymerase subunits, and 27 known photosynthesis-related polypeptides. Several putative genes of unknown function have also been identified, including five within large introns, and five with amino acid sequence similarity to genes in other organisms. This genome contains at least 149 introns. There are 72 individual group II introns, 46 individual group III introns, 10 group II introns and 18 group III introns that are components of twintrons (introns-within-introns), and three additional introns suspected to be twintrons composed of multiple group II and/or group III introns, but not yet characterized. At least 54,804 bp, or 38.3% of the total DNA content is represented by introns.  相似文献   

11.
Complete structure of the chloroplast genome of Arabidopsis thaliana.   总被引:7,自引:0,他引:7  
The complete nucleotide sequence of the chloroplast genome of Arabidopsis thaliana has been determined. The genome as a circular DNA composed of 154,478 bp containing a pair of inverted repeats of 26,264 bp, which are separated by small and large single copy regions of 17,780 bp and 84,170 bp, respectively. A total of 87 potential protein-coding genes including 8 genes duplicated in the inverted repeat regions, 4 ribosomal RNA genes and 37 tRNA genes (30 gene species) representing 20 amino acid species were assigned to the genome on the basis of similarity to the chloroplast genes previously reported for other species. The translated amino acid sequences from respective potential protein-coding genes showed 63.9% to 100% sequence similarity to those of the corresponding genes in the chloroplast genome of Nicotiana tabacum, indicating the occurrence of significant diversity in the chloroplast genes between two dicot plants. The sequence data and gene information are available on the World Wide Web database KAOS (Kazusa Arabidopsis data Opening Site) at http://www.kazusa.or.jp/arabi/.  相似文献   

12.
Summary Tobacco chloroplast DNA contains a large inverted repeat sequence of 26 kilobase pairs (kbp). The inverted repeat is separated by 20 kbp small single-copy and 90 kbp large single-copy regions. We have cloned four DNA fragments containing each junction between the inverted repeat and the single-copy regions. The sequence analysis revealed the exact edges of the inverted repeat. A putative coding region for a ribosomal protein CS19 was found 4 base pairs (bp) away from the inverted repeat on the left margin of the large single-copy region. A sequence AGGAG, which is complementary to the 3 terminal sequence of tobacco chloroplast 16S rRNA, was found within the inverted repeat. A tRNAHis gene was found 5 bp away from the inverted repeat on the right-hand margin of the large single-copy region.  相似文献   

13.
The flanking regions and the end of the chloroplast ribosomal unit of Chlamydomonas reinhardii have been sequenced. The upstream region of the ribosomal unit contains three open reading frames coding for 111, 117 and 124 amino acids, respectively. The latter polypeptide is partially related to the ribosomal protein L16 of E. coli. Two of the open reading frames overlap each other and are oriented in opposite direction. The region between these open reading frames and the 5' end of the 16S rRNA gene contains numerous short direct and inverted repeats which can be folded into large stem-loop structures. Sequence elements that resemble prokaryotic promoters are found in the same region. Several of the repeated elements are distributed throughout the non-coding regions of the chloroplast inverted repeat. Sequence comparison between the 5S rRNA and its gene does not reveal any significant sequence heterogeneity between the chloroplast 5S rRNA genes.  相似文献   

14.
Summary Chloroplast ribosomal protein L-18 is made in the cytoplasm as a precursor, imported into the chloroplast, and processed to the mature form in two steps. We report here that the intermediate produced following the first processing step associates specifically with a ribosomal complex migrating with the chloroplast ribosome large subunit peak in sucrose gradients, and is then processed into mature L-18. This processing event is slowed down in mutant cells deficient in synthesis of non-ribosomal proteins in the chloroplast. Thus the second processing step of L-18 occurs during ribosome assembly, depends on one or more nonribosomal proteins made in the chloroplast, and may be required for the maturation of the 50 S ribosome subunit. The mature L-18 protein shows extensive sequence homology at its amino-terminus to Escherichia coli ribosomal protein L27, which is located at the interface, between 30 S and 50 S subunits and is involved in the formation of the peptidyl-tRNA binding site.  相似文献   

15.
16.
The 18 S subassembly particles obtained by partial dissociation of phycobilisomes from Synechococcus 6301 (Anacystis nidulans) strain AN 112 contain approximately one-half of the mass of the phycobilisome and include core-rod junctions (Yamanaka, G., Lundell, D. J., and Glazer, A. N. (1982) J. Biol. Chem. 257, 4077-4086). The polypeptide composition of 18 S complexes, determined by analysis of uniformly 14C-labeled phycobilisomes, gave the following stoichiometry: 75K:27K:18.3K:alpha beta allophycocyanin monomer: alpha beta phycocyanin monomer of 1:2:1:5:6; where 75K, 27K, etc. represent polypeptides of 75, 27 kilodaltons, etc. The 18.3K polypeptide is a hitherto underscribed biliprotein bearing a single phycocyanobilin. The NH2-terminal sequence of this subunit was determined to be homologous to that of the beta subunit of allophycocyanin. Chromatography of products resulting from limited trypsin treatment of the 18 S complex led to the isolation of three subcomplexes: a mixture of (alpha beta)3 . 22K and (alpha beta)3 . 24K phycocyanin complexes, an (alpha beta)3 allophycocyanin trimer, and an (alpha beta)2 . 18.3K.40K.11K allophycocyanin-containing complex. The 22K and 24K components were products of the degradation of the 27K polypeptides, whereas the 40K and 11K components were derived from the 75K polypeptide. The subcomplexes accounted for the composition of the 18 S complex. Determination of the composition, stoichiometry, and spectroscopic properties of the subcomplexes has led to a model of the polypeptide arrangement within the 18 S complex and of the pathway of energy transfer among these polypeptides.  相似文献   

17.
以红豆杉科单种属植物白豆杉(Pseudotaxus chienii(W.C.Cheng)W.C.Cheng)为材料,进行叶绿体全基因组测序,并对其基因含量、结构及重复序列进行分析.结果显示:白豆杉叶绿体基因组不包含典型的反向重复区,基因组全长为130427 bp,共编码116个基因,包含83个蛋白编码基因、4个rRNA...  相似文献   

18.
Mitochondrial F1-ATPases purified from several dicotyledonous plants contain six different subunits of alpha, beta, gamma, delta, delta' and epsilon. Previous N-terminal amino acid sequence analyses indicated that the gamma-, delta-, and epsilon-subunits of the sweet potato mitochondrial F1 correspond to the gamma-subunit, the oligomycin sensitivity-conferring protein and the epsilon-subunit of animal mitochondrial F1F0 complex (Kimura, T., Nakamura, K., Kajiura, H., Hattori, H., Nelson, N., and Asahi, T. (1989) J. Biol. Chem. 264, 3183-3186). However, the N-terminal amino acid sequence of the delta'-subunit did not show any obvious homologies with known protein sequences. A cDNA clone for the delta'-subunit of the sweet potato mitochondrial F1 was identified by oligonucleotide-hybridization selection of a cDNA library. The 1.0-kilobase-long cDNA contained a 600-base pair open reading frame coding for a precursor for the delta'-subunit. The precursor for the delta'-subunit contained N-terminal presequence of 21-amino acid residues. The mature delta'-subunit is composed of 179 amino acids and its sequence showed similarities of about 31-36% amino acid positional identity with the delta-subunit of animal and fungal mitochondrial F1 and about 18-25% with the epsilon-subunit of bacterial F1 and chloroplast CF1. The sweet potato delta'-subunit contains N-terminal sequence of about 45-amino acid residues that is absent in other related subunits. It is concluded that the six-subunit plant mitochondrial F1 contains the subunit that is homologous to the oligomycin sensitivity-conferring protein as one of the component in addition to five subunits that are homologous to subunits of animal mitochondrial F1.  相似文献   

19.
We have cloned a novel nuclear gene for a ribosomal protein of rice and Arabidopsis that is like the bacterial ribosomal protein S9. To determine the subcellular localization of the gene product, we fused the N-terminal region and green fluorescent protein and expressed it transiently in rice seedlings. Localized fluorescence was detectable only in chloroplasts, indicating that this nuclear gene encodes chloroplast ribosomal protein S9. The N-terminal region of rice ribosomal protein S9 was found to have a high sequence similarity to the transit peptide region of the rice chloroplast ribosomal protein L12, suggesting that these transit peptides have a common lineage.  相似文献   

20.
Mapping of the ribosomal RNA genes on spinach chloroplast DNA.   总被引:22,自引:12,他引:10       下载免费PDF全文
Spinach chloroplast ribosomal RNAs have been hybridized to restriction endonuclease fragments of spinach chloroplast DNA. All three RNA species (23S, 16S and 5S) hybridized to a single large fragment when the DNA was digested with either Sall or Pstl. Hybridization of 23S RNA to fragments produced by Smal yielded two radioactive bands which corresponded to the bi-molar 2.5 X 10(6) and 1.15 X 10(6) Mr fragments. 16S RNA also hybridized to two, bi-molar Smal fragments (3.4 X 10(6) and 2.5 X 10(6) Mr) and 5S RNA hybridized to the 1.15 X 10(6) Mr bi-molar Smal fragment. The 23S RNA and 16S RNA cistrons were each also shown to contain a single EcoRI site. From the data it was possible to conclude that the ribosomal RNA genes are located on the inverted repeat region of the spinach chloroplast DNA restriction map [1,2], that the sequence of the cistrons is 16S - 23S - 5S and that the size of the spacer between the 16S and 23S RNA cistrons is approximately 0.90 X 10(6) Mr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号