首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND AND AIMS: Mat-forming lichens in the genera Stereocaulon and Cladonia have ecosystem-level effects in northern boreal forests. Yet the factors affecting the productivity of mat-forming lichens are not known. The aim of the presented work was to investigate whether mat-forming lichens adapted to low N availability employ N-conserving mechanisms similar to those of vascular plants in nutrient-poor ecosystems. Specifically, the following questions were asked: (a) Do lichens translocate N from basal areas to apical growth areas? (b) Are the quantities of N translocated of ecological significance. (c) Is lichen growth dependent on tissue N concentration [N]. METHODS: Two different, but complementary, field experiments were conducted using the mat-forming N2-fixing Stereocaulon paschale and non-fixing Cladonia stellaris as model species. First, N translocation was investigated by feeding lichens with Na(15)NO3 either directly to the apex (theoretical sink) or to the basal part (theoretical source) and observing the redistribution of (15)N after a growth period. Secondly, growth and variation in [N] in thalli of different lengths was measured after a growth period. KEY RESULTS: (15)N fed to lower parts of lichen was translocated towards the growing top, but not vice versa, indicating physiologically dependent translocation that follows a sink-source relationship. In the growth experiment where thalli were cut to different lengths, the significant decrease in [N] in apices of short vs. longer thalli after a growth period is consistent with internal relocation as an ecologically important source of N. CONCLUSIONS: The presented results demonstrate that internal recycling of N occurs in both species investigated and may be ecologically important in these mat-forming lichens under field conditions. The higher nitrogen use efficiency and relative growth rate in C. stellaris in comparison with S. paschale probably enable C. stellaris to dominate the ground cover vegetation in dry boreal coniferous forests under undisturbed conditions.  相似文献   

2.
Nitrogen translocation was measured in Cladonia portentosa during 2 yr growth in Scottish heathland. Translocation was predicted to occur if N is resorbed from senescent basal tissue and recycled within the thallus. (15)N was introduced into either the lower (TU thalli) or upper (TD thalli) 25 mm of 50-mm-long thalli as (15)N-NH(4) (+), (15)N-NO(3) (-) or (15)N-glycine. Labelled thalli were placed within intact lichen cushions, either upright (TU) or inverted (TD). Vertical distribution of label was quantified immediately following labelling and after 1 and 2 yr. Independently of the form of introduced label, (15)N migrated upwards in TU thalli, with new growth being a strong sink. Sink regions for (15)N during year 1 (including new growth) became sources of (15)N translocated to new growth in year 2. Upward migration into inverted bases was minimal in TD thalli, but was again marked in new growth that developed from inverted apices. Relocation of N to regions of growth could facilitate internal N recycling, a process postulated to explain the ecological success of mat-forming lichens.  相似文献   

3.
The extent of vertical migration of 33P in thalli of the heathland lichen Cladonia portentosa was investigated under field conditions. 33P-labelled orthophosphate was introduced into the bottom 25 mm of podetia cut to a length of 50 mm from the apices. The distribution of label was scanned using a molecular imager immediately after incubation, and after growing for 8 wk and 6 months. Differences in the relative distribution of label between podetia harvested at the beginning and the end of the experiment showed that there had been a significant migration of 33P upwards out of the labelled 25 mm stratum towards the apex. This was confirmed by statistically significant changes in the median (md) and the 90 percentile of total relative distribution of 33P label. In a control treatment in which label was introduced into the apical 25 mm of podetia, which were then grown inverted (top down), no upward movement of label was detected. By contrast, a statistically significant reduction in the md of the distribution indicated migration downwards towards the thallus apex. The results are consistent with the hypothesis that P is recycled within podetia of mat-forming lichens, migrating from degrading basal regions upwards to the growing apices following a source–sink relationship.  相似文献   

4.
Abstract: The effect of plant succession on methane uptake was measured on intact soil cores collected from seven heathland sites. Six of the sites had undergone either secondary succession with grass or oak, ammonium fertilization or ploughing, while the seventh site was located in the native heathland. There was a positive relationship between methane uptake rate and time elapsed since the plant invasion had taken place in the native heathland. The native heathland site showed an insignificant atmospheric methane uptake of 0.01 mg CH4 m−2 d−1, whereas the established oak brushwood (70 years old) and the grass invaded heathland (13 years old) showed rates of 1.36 mg CH4 m−2 d−1 and 0.73 mg CH4 m−2 d−1, respectively. In the fertilized heathland plot (112 kg N ha−1 six years prior to this study) grass had become the dominating species and showed a methane oxidation rate of 0.28 mg CH4 m−2 d−1. Ploughing of the heathland resulted in methane oxidation rates seven times the rates measured in the native heathland. The results suggested that an increased future atmospheric nitrogen deposition in heathlands and other nutrient poor ecosystems may have a stimulating effect on the soil sink for atmospheric methane.  相似文献   

5.
Aiming to investigate whether a carbon-to-nitrogen equilibrium model describes resource allocation in lichens, net photosynthesis (NP), respiration (R), concentrations of nitrogen (N), chlorophyll (Chl), chitin and ergosterol were investigated in 75 different lichen associations collected in Antarctica, Arctic Canada, boreal Sweden, and temperate/subtropical forests of Tenerife, South Africa and Japan. The lichens had various morphologies and represented seven photobiont and 41 mycobiont genera. Chl a, chitin and ergosterol were used as indirect markers of photobiont activity, fungal biomass and fungal respiration, respectively. The lichens were divided into three groups according to photobiont: (1) species with green algae, (2) species with cyanobacteria, and (3) tripartite species with green algal photobionts and cyanobacteria in cephalodia. Across species, thallus N concentration ranged from 1 to 50 mg g-1 dry wt., NP varied 50-fold, and R 10-fold. In average, green algal lichens had the lowest, cyanobacterial Nostoc lichens the highest and tripartite lichens intermediate N concentrations. All three markers increased with thallus N concentration, and lichens with the highest Chl a and N concentrations had the highest rates of both P and R. Chl a alone accounted for ca. 30% of variation in NP and R across species. On average, the photosynthetic efficiency quotient [KF=(NPmax+R)/R)] ranged from 2.4 to 8.6, being higher in fruticose green algal lichens than in foliose Nostoc lichens. The former group invested more N in Chl a and this trait increased NPmax while decreasing R. In general terms, the investigated lichens invested N resources such that their maximal C input capacity matched their respiratory C demand around a similar (positive) equilibrium across species. However, it is not clear how this apparent optimisation of resource use is regulated in these symbiotic organisms.  相似文献   

6.
[15N]-depleted (NH4)2SO4 applied to the soil in 1985 resulted in residual labeling of about 16% of the storage nitrogen (N) pool of mature walnut ( Juglans regia L. cv. Serr) trees in 1987. Application of [15N]-depleted (NH4)2SO4 fertilizer to a different set of mature walnut trees in 1987 allowed monitoring of the kinetics and utilization of N from current year uptake in 1987 and resulted in >20% labeling of fruit N following completion of leaf expansion. Redistribution of storage N to the new growth predominated during the spring flush of growth although N derived from the soil during current-year uptake contributed increasingly during leaf expansion. Labeled N from current year uptake accumulated preferentially in the leaves as compared with reproductive organs during leaf expansion but subsequent to leaf expansion, fruit were more highly labeled with N derived from current-year uptake than leaves. Pistillate flower abortion was coincident with an apparent competition for N among developing vegetative and reproductive organs and preceded the period of significant N contribution from current-year uptake.  相似文献   

7.
We tested the hypothesis that lichen species with a photosynthetic CO2-concentrating mechanism (CCM) use nitrogen more efficiently in photosynthesis than species without this mechanism. Total ribulose bisphosphate carboxylase-oxygenase (Rubisco; EC 4.1.1.39) and chitin (the nitrogenous component of fungal cell walls), were quantified and related to photosynthetic capacity in eight lichens. The species represented three modes of CO2 acquisition and two modes of nitrogen acquisition, and included one cyanobacterial ( Nostoc ) lichen with a CCM and N2 fixation, four green algal ( Trebouxia ) lichens with a CCM but without N2 fixation and three lichens with green algal primary photobionts ( Coccomyxa or Dictyochloropsis ) lacking a CCM. The latter have N2-fixing Nostoc in cephalodia. When related to thallus dry weight, total thallus nitrogen varied 20-fold, chitin 40-fold, Chl a 5-fold and Rubisco 4-fold among the species. Total nitrogen was lowest in three of the four Trebouxia lichens and highest in the bipartite cyanobacterial lichen. Lichens with the lowest nitrogen invested a larger proportion of this into photosynthetic components, while the species with high nitrogen made relatively more chitin. As a result, the potential photosynthetic nitrogen use efficiency was negatively correlated to total thallus nitrogen for this range of species. The cyanobacterial lichen had a higher photosynthetic capacity in relation to both Chl a and Rubisco compared with the green algal lichens. For the range of green algal lichens both Chl a and Rubisco contents were linearly related to photosynthetic capacity, so the data did not support the hypothesis of an enhanced photosynthetic nitrogen use efficiency in green-algal lichens with a CCM.  相似文献   

8.
The in vivo nitrogen isotope discrimination among organic plant compounds   总被引:1,自引:0,他引:1  
The bulk delta 15 N-value of plant (leaf) biomass is determined by that of the inorganic primary nitrogen sources NO(3)(-), NH(4)(+) and N(2), and by isotope discriminations on their uptake or assimilation. NH(4)(+) from these is transferred into "organic N" mainly by the glutamine synthetase reaction. The involved kinetic nitrogen isotope effect does not become manifest, because the turnover is quantitative. From the product glutamine any further conversion proceeds in a "closed system", where kinetic isotope effects become only efficient in connection with metabolic branching. The central and most important corresponding process is the GOGAT-reaction, involved in the de novo nitrogen binding and in recycling processes like the phenylpropanoid biosynthesis and photorespiration. The reaction yields relatively 15N-depleted glutamate and remaining glutamine, source of 15N-enriched amide-N in heteroaromatic compounds. Glutamate provides nitrogen for all amino acids and some other compounds with different 15N-abundances. An isotope equilibration is not connected to transamination; the relative delta 15 N-value of individual amino acids is determined by their metabolic tasks. Relative to the bulk delta 15 N-value of the plant cell, proteins are generally 15N-enriched, secondary products like chlorophyll, lipids, amino sugars and alkaloids are depleted in 15N. Global delta 15 N-values and 15N-patterns of compounds with several N-atoms can be calculated from those of their precursors and isotope discriminations in their biosyntheses.  相似文献   

9.
Atmospheric deposition of nitrogen is responsible for widespread changes in the structure and function of sensitive seminatural ecosystems. The proposed reduction in emissions of nitrogenous pollutants in Europe under the Gothenburg Protocol raises the question of whether affected ecosystems have the potential to recover to their previous condition and, if so, over what timescale. Since 1998, we have monitored the response of a lowland heathland in southern England following the cessation of a long‐term nitrogen addition experiment, and subsequent management, assessing changes in vegetation growth and chemistry, soil chemistry and the soil microbial community. Persistent effects of earlier nutrient loading on Calluna growth and phenology, and on the abundance of lichens, were apparent up to 8 years after nitrogen additions ceased, indicating the potential for long‐term effects of modest nutrient loading (up to 15.4 kg N ha?1 yr?1, over 7 years) on heathland ecosystems. The size and activity of the soil microbial community was elevated in former N‐treated plots, 6–8 years after additions ceased, suggesting a prolonged effect on the rate of nutrient cycling. Although habitat management in 1998 reduced nitrogen stores in plant biomass, effects on belowground nitrogen stores were small. Although some parameters (e.g. soil pH) recover pretreatment levels relatively rapidly, others (e.g. vegetation cover and microbial activity) respond much more slowly, indicating that the ecological effects of even small increases in nitrogen deposition will persist for many years after deposition inputs are reduced. Indeed, calculations suggest that the additional soil nitrogen storage associated with 7 years of experimental nitrogen inputs could sustain the observed effects on plant growth and phenology for several decades. Carry over effects on plant phenology and sensitivity to drought suggest that the persistence of vegetation responses to nitrogen deposition should be integrated into long‐term assessments of the impact of global climate change on sensitive ecosystems.  相似文献   

10.
Stable isotope patterns in lichens are known to vary largely, but effects of substrate on carbon and nitrogen stable isotope signatures of lichens were previously not investigated systematically. N and C contents and stable isotope (δ15N, δ13C) patterns have been measured in 92 lichen specimens of Xanthoria parietina from southern Bavaria growing on different substrates (bark and stone). Photobiont and mycobiont were isolated from selected populations and isotopically analyzed. Molecular investigations of the internal transcribed spacer of the nuclear ribosomal DNA (ITS nrDNA) region have been conducted on a subset of the specimens of X. parietina. Phylogenetic analysis showed no correlation between the symbionts X. parietina and Trebouxia decolorans and the substrate, isotope composition, or geographic origin. Instead specimens grown on organic substrate significantly differ in isotope values from those on minerogenic substrate. This study documents that the lichens growing on bark use additional or different N sources than the lichens growing on stone. δ15N variation of X. parietina apparently is controlled predominantly by the mass fraction of the mycobiont and its nitrogen isotope composition. In contrast with mycobionts, photobionts of X. parietina are much more 15N‐depleted and show less isotopic variability than mycobionts, probably indicating a mycobiont‐independent nitrogen acquisition by uptake of atmospheric ammonia.  相似文献   

11.
Recent studies have documented transfer of labeled nitrogen from [2-(15)N]glutamine to citrulline and arginine in fasting human adults. Conversely, in neonates and piglets we have shown no synthesis of arginine from [2-(15)N]glutamate, and others have shown in mice that glutamine is a nitrogen, but not a carbon donor, for arginine synthesis. Therefore, we performed a multitracer study to determine whether glutamine is a nitrogen and/or carbon donor for arginine in healthy adult men. Two glutamine tracers, 2-(15)N and 1-(13)C, were given enterally to five healthy men fed a standardized milkshake diet. There was no difference in plasma enrichments between the two glutamine tracers. 1-(13)C isotopomers of citrulline and arginine were synthesized from [1-(13)C]glutamine. Three isotopomers each of citrulline and arginine were synthesized from the [2-(15)N]glutamine tracer: 2-(15)N, 5-(15)N, and 2,5-(15)N(2). Significantly greater enrichment was found of both [5-(15)N]arginine (0.75%) and citrulline (3.98%) compared with [2-(15)N]arginine (0.44%) and [2-(15)N]citrulline (2.62%), indicating the amino NH(2) from glutamine is mostly transferred to arginine and citrulline by transamination. Similarly, the enrichment of the 1-(13)C isotopomers was significantly less than the 2-(15)N isotopomers, suggesting rapid formation of α-ketoglutarate and recycling of the nitrogen label. Our results show that the carbon for 50% of newly synthesized arginine comes from dietary glutamine but that glutamine acts primarily as a nitrogen donor for arginine synthesis. Hence, studies using [2-(15)N]glutamine will overestimate arginine synthesis rates.  相似文献   

12.
Summary Green lichens have been shown to attain positive net photosynthesis in the presence of water vapour while blue-green lichens require liquid water (Lange et al. 1986). This behaviour is confirmed not only for species with differing photobionts in the genusPseudocyphellaria but for green and blue-green photobionts in a single joined thallus (photosymbiodeme), with a single mycobiont, and also when adjacent as co-primary photobionts. The different response is therefore a property of the photobiont. The results are consistent with published photosynthesis/water content response curves. The minimum thallus water content for positive net photosynthesis appears to be much lower in green lichens (15% to 30%, related to dry weight) compared to blue-greens (85% to 100%). Since both types of lichen rehydrate to about 50% water content by water vapour uptake only green lichens will show positive net photosynthesis. It is proposed that the presence of sugar alcohols in green algae allow them to retain a liquid pool (concentrated solution) in their chloroplasts at low water potentials and even to reform it by water vapour uptake after being dried. The previously shown difference in δ13C values between blue-green and green lichens is also retained in a photosymbiodeme and must be photobiont determined. The wide range of δ13C values in lichens can be explained by a C3 carboxylation system and the various effects of different limiting processes for photosynthetic CO2 fixation. If carboxylation is rate limiting, there will be a strong discrimination of13CO2, at high internal CO2 partial pressure. The resulting very low δ13C values (-31 to-35‰) have been found only in green lichens which are able to photosynthesize at low thallus water content by equilibraiton with water vapour. When the liquid phase diffusion of CO2 becomes more and more rate limiting and the internal CO2 pressure decreases, the13C content of the photosynthates increases and less negative δ13C values results, as are found for blue-green lichens.  相似文献   

13.
The success of a symbiosis: Lichens Lichens are a unique group of organisms composed of one or two alga and a fungus. Together they form species specific thalli. Their common eco‐physiological properties allow colonizing almost all terrestrial habitats, even the most hostile climatic zones on earth. However, as poikilohydrous organisms they also suffer from disadvantages related with their nature. As water content cannot be actively controlled, many lichens experience water‐oversaturation, thus being not able to gain full photosynthetic rates, even though they have otherwise optimal conditions. These eco‐physiological properties set up the frame for which microclimatic situation the realized thallus construction might do best. As all optimizations regarding water uptake also count for water loss, lichens are always at the edge of having either too much or not enough water for optimal carbon gain. So each habitat has its own challenge for the lichen thallus construction and lichens have to fit well into a specific ecological niche.  相似文献   

14.
Hovenden  Mark J. 《Annals of botany》2000,86(4):717-721
The thallus nitrogen (N) concentration of two dominant macrolichensof continental Antarctica (Usnea sphacelata and Umbilicariadecussata) was estimated each month for 1 year on a low roundedknoll on Clark Peninsula, Windmill Islands, Wilkes Land, Antarctica.Thallus N was significantly higher in Umbilicaria decussatathan in Usnea sphacelata and varied according to site. Duringthe winter months, when the lichens were metabolically inactive,thalli gradually accumulated N. At the onset of warmer conditions,thallus N content fell dramatically in both species, with thetiming of the decline being related to microclimatic conditions.The strongly seasonal pattern of metabolic activity in thesespecies is reflected in their nitrogen relations. Copyright2000 Annals of Botany Company Lichen, nitrogen, Antarctica, season, Usnea sphacelata, Umbilicaria decussata  相似文献   

15.
Hyvärinen M  Walter B  Koopmann R 《Oecologia》2003,134(2):176-181
Responses of concentrations of usnic (UA) and perlatolic (PA) acids and the relative growth rate (RGR) of a mat-forming lichen, Cladina stellaris, to enhanced N and P input were studied in a fertilisation experiment. It was predicted on the basis of carbon-nutrient balance (CNB) hypothesis that the concentrations of these phenolics would decline and the growth rate increase in response to increased nutrient uptake. The concentration of UA showed a convex response pattern to increased N input whereas the concentration of PA was non-responsive. An ecologically realistic, "moderate", N treatment clearly lowered the level of UA both with and without the P application. Applying P alone caused a significant increase in the level of UA. The RGR of C. stellaris did not respond to nutrient addition. The results indicate that even though the CNB hypothesis may be applicable in explaining concentrations of lichen secondary metabolites, it may be applied under a relatively narrow set of conditions. Especially inherited constraints in the growth of lichen fungi may seriously limit the responsiveness of lichens to short-time changes in the availability of resources. These limitations may also apply to other perennials adapted to nutrient-poor conditions.  相似文献   

16.
Abstract: A continuous dual 13CO2 and 15NH415NO3 labelling experiment was undertaken to determine the effects of ambient (350μmol mol-1) or elevated (700μmol mol-1) atmospheric CO2 concentrations on C and N uptake and allocation within 3-year-old beech ( Fagus sylvatica L.) during leafing. After six weeks of growth, total carbon uptake was increased by 63 % (calculated on total C content) under elevated CO2 but the carbon partitioning was not altered. 56 % of the new carbon was found in the leaves. On a dry weight basis was the content of structural biomass in leaves 10 % lower and the lignin content remained unaffected under elevated as compared to ambient [CO2]. Under ambient [CO2] 37 %, and under elevated [CO2] 51 %, of the lignin C of the leaves derived from new assimilates. For both treatments, internal N pools provided more than 90 % of the nitrogen used for leaf-growth and the partitioning of nitrogen was not altered under elevated [CO2]. The C/N ratio was unaffected by elevated [CO2] at the whole plant level, but the C/N ratio of the new C and N uptake was increased by 32 % under elevated [CO2].  相似文献   

17.
Organic and inorganic nitrogen uptake in lichens   总被引:8,自引:0,他引:8  
Dahlman L  Persson J  Palmqvist K  Näsholm T 《Planta》2004,219(3):459-467
In order to learn more about nitrogen (N) acquisition in lichens, and to see whether different lichens differ in their affinity to various N sources, N uptake was measured in 14 various lichen associations (species). These species represented various morphologies (fruticose or foliose), contrasting microhabitat preferences (epiphytic or terricolous), and had green algal, cyanobacterial or both forms of photobionts. N was supplied under non-limiting conditions as an amino acid mixture, ammonium, or nitrate, using 15N to quantify uptake. Carbonyl cyanide m-chlorophenylhydrazone (CCCP) was used to separate active and passive uptake. Thallus N, amino acids, soluble polyol concentrations, and the biont-specific markers chlorophyll a and ergosterol were quantified, aiming to test if these metabolites or markers were correlated with N uptake capacity. Ammonium uptake was significantly greater and to a higher extent passive, relative to the other two N sources. Nitrate uptake differed among lichen photobiont groups, cyanobacterial lichens having a lower uptake rate. All lichens had the capacity to assimilate amino acids, in many species at rates equal to nitrate uptake or even higher, suggesting that organic N compounds could potentially have an important role in the N nutrition of these organisms. There were no clear correlations between N uptake rates and any of the measured metabolites or markers. The relative uptake rates of ammonium, nitrate and amino acids were not related to morphology or microhabitat.Abbreviations CCCP Carbonyl cyanide m-chlorophenylhydrazone - Chl Chlorophyll - N Nitrogen  相似文献   

18.
The soil nitrogen cycle was investigated in a pre‐established Lolium perenne sward on a loamy soil and exposed to ambient and elevated atmospheric CO2 concentrations (350 and 700 μL L?1) and, at elevated [CO2], to a 3 °C temperature increase. At two levels of mineral nitrogen supply, N– (150 kgN ha?1 y?1) and N+ (533 kgN ha?1 y?1), 15N‐labelled ammonium nitrate was supplied in split applications over a 2.5‐y period. The recovery of the labelled fertilizer N was measured in the harvests, in the stubble and roots, in the macro‐organic matter fractions above 200 μm in size (MOM) and in the aggregated organic matter below 200 μM (AOM). Elevated [CO2] reduced the total amount of N harvested in the clipped parts of the sward. The harvested N derived from soil was reduced to a greater extent than that derived from fertilizer. At both N supplies, elevated [CO2] modified the allocation of the fertilizer N in the sward, in favour of the stubble and roots and significantly increased the recovery of fertilizer N in the soil macro‐organic matter fractions. The increase of fertilizer N immobilization in the MOM was associated with a decline of fertilizer N uptake by the grass sward, which supported the hypothesis of a negative feedback of elevated [CO2] on the sward N yield and uptake. Similar and even more pronounced effects were observed for the native N mineralized in the soil. At N–, a greater part of the fertilizer N organized in the root phytomass resulted in an underestimation of N immobilized in dead roots and, in turn, an underestimation of N immobilization in the MOM. The 3 °C temperature increase alleviated the [CO2] effect throughout much of the N cycle, increasing soil N mineralization, N derived from soil in the harvests, and the partitioning of the assimilated fertilizer N to shoots. In conclusion, at ambient temperature, the N cycle was slowed down under elevated [CO2], which restricted the increase in the aboveground production of the grass sward, and apparently contributed to the sequestration of carbon belowground. In contrast, a temperature increase under elevated [CO2] stimulated the soil nitrogen cycle, improved the N nutrition of the sward and restricted the magnitude of the soil C sequestration.  相似文献   

19.
The role of terrestrial soil nutrient supply in determining the composition and productivity of epiphyte communities has been little investigated. In a montane Hawaiian rainforest, we documented dramatic increases in the abundance and species richness of canopy epiphytes in a forest that had been fertilized annually with phosphorus (P) for 15 years; there was no response in forest that had been fertilized with nitrogen (N) or other nutrients. The response of N-fixing lichens to P fertilization was particularly strong, although mosses and non-N-fixing lichens also increased in abundance and diversity. We show that enhancement of canopy P availability is the most likely factor driving the bloom in epiphytes. These results provide strong evidence that terrestrial soil fertility may structure epiphyte communities, and in particular that the abundance of N-fixing lichens – a functionally important epiphyte group – may be particularly sensitive to ecosystem P availability.  相似文献   

20.
Archived soil samples (1937-1999) and historic air quality data from the Los Angeles Basin were used for reconstructing the record of change between atmospheric NO(x) loads, soil delta(15)N values and the diversity of arbuscular mycorrhizae (AM), which are ubiquitous plant-fungus mutualists that control plant community productivity. A tripling of atmospheric NO(x) loads between 1937 and the 1970s was paralleled by soil nitrogen enrichment (delta(15)N = 3.18). From 1975 onwards, atmospheric NO(x) declined, but soils became nitrogen saturated (delta(15) N = -4 and NO(3)-nitrogen = 171mgkg(-1)). The shifts in the AM community followed 28 years of atmospheric nitrogen enrichment and coincided with the onset of soil nitrogen saturation. Such changes were manifest in the loss of AM productivity, species richness (one species per year), three genera (Acaulospora, Scutellospora and Gigaspora) in the spore community and Gigaspora within the roots. Nitrogen enrichment also enhanced the proliferation of potentially less mutualistic species of Glomus. Autoregressive models implied that such patterns will persist and be driven by soil nitrogen cycling patterns. Chronic nitrogen enrichment from air pollution thus alters the diversity and mutualistic functioning of AM communities, which, in turn, may influence the plant community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号