首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbonylation of proteins is an irreversible oxidative damage, often leading to a loss of protein function, which is considered a widespread indicator of severe oxidative damage and disease-derived protein dysfunction. Whereas moderately carbonylated proteins are degraded by the proteasomal system, heavily carbonylated proteins tend to form high-molecular-weight aggregates that are resistant to degradation and accumulate as damaged or unfolded proteins. Such aggregates of carbonylated proteins can inhibit proteasome activity. Alarge number of neurodegenerative diseases are directly associated with the accumulation of proteolysis-resistant aggregates of carbonylated proteins in tissues. Identification of specific carbonylated protein(s) functionally impaired and development of selective carbonyl blockers should lead to the definitive assessment of the causative, correlative or consequential role of protein carbonylation in disease onset and/or progression, possibly providing new therapeutic approaches.  相似文献   

2.
Pepper fruits in green and red maturation stages were selected to study the protein pattern modified by oxidation measuring carbonylated proteins in isolated mitochondria, together with the accumulation of superoxide radical and hydrogen peroxide in the fruits. MALDI‐TOF/TOF analysis identified as carbonylated proteins in both green and red fruits, formate dehydrogenase, NAD‐dependent isocitrate dehydrogenase, porin, and defensin, pointing to a common regulation by carbonylation of these proteins independently of the maturation stage. However, other proteins such as glycine dehydrogenase P subunit and phosphate transporter were identified as targets of carbonylation only in green fruits, whereas aconitase, ATPase β subunit, prohibitin, orfB protein, and cytochrome C oxidase, were identified only in red fruits. In general, the results suggest that carbonylation of mitochondrial proteins is a PTM that drives the complex ripening process, probably establishing the accumulation and functionality of some mitochondrial proteins in the nonclimacteric pepper fruit.  相似文献   

3.
A number of oxidative protein modifications have been well characterized during the past decade. Presumably, reversible oxidative posttranslational modifications (PTMs) play a significant role in redox signaling pathways, whereas irreversible modifications including reactive protein carbonyl groups are harmful, as their levels are typically increased during aging and in certain diseases. Despite compelling evidence linking protein carbonylation to numerous disorders, the underlying molecular mechanisms at the proteome remain to be identified. Recent advancements in analysis of PTMs by mass spectrometry provided new insights into the mechanisms of protein carbonylation, such as protein susceptibility and exact modification sites, but only for a limited number of proteins. Here we report the first proteome-wide study of carbonylated proteins including modification sites in HeLa cells for mild oxidative stress conditions. The analysis relied on our recent strategy utilizing mass spectrometry-based enrichment of carbonylated peptides after DNPH derivatization. Thus a total of 210 carbonylated proteins containing 643 carbonylation sites were consistently identified in three replicates. Most carbonylation sites (284, 44.2%) resulted from oxidation of lysine residues (aminoadipic semialdehyde). Additionally, 121 arginine (18.8%), 121 threonine (18.8%), and 117 proline residues (18.2%) were oxidized to reactive carbonyls. The sequence motifs were significantly enriched for lysine and arginine residues near carbonylation sites (±10 residues). Gene Ontology analysis revealed that 80% of the carbonylated proteins originated from organelles, 50% enrichment of which was demonstrated for the nucleus. Moreover, functional interactions between carbonylated proteins of kinetochore/spindle machinery and centrosome organization were significantly enriched. One-third of the 210 carbonylated proteins identified here are regulated during apoptosis.  相似文献   

4.
Rao RS  Møller IM 《Proteomics》2011,11(21):4166-4173
Proteins are targets for modification by reactive oxygen species, and carbonylation is an important irreversible modification that increases during oxidative stress. While information on protein carbonylation is accumulating, its pattern is not yet understood. We have made a meta-analysis of the available literature data (456 carbonylation sites on 208 proteins) to appreciate the nature of carbonylation sites in proteins. Of the carbonylated (Arg, Lys, Pro, and Thr - RKPT) amino acids, Lys is the most abundant, whereas Pro is the most susceptible and Thr is the least susceptible. The incidence of carbonylation is lower in the N-terminal part of the protein primary sequence. Although a significantly higher number of carbonylated sites occur in Arg-, Lys-, Pro- and Thr-rich regions of proteins, the hydropathy environment of carbonylated sites is not significantly different from potential carbonylation sites. Comparison of metal-catalyzed oxidation of two closely related proteins indicates that this type of carbonylation might not be very specific in proteins. Interestingly, carbonylated sites show a very strong tendency to cluster together in the protein primary sequence hinting at some sort of discerning mechanism. While some attributes of protein carbonylation appear to be random, further investigations are warranted to appreciate the deterministic nature of protein carbonylation sites.  相似文献   

5.
Proteins can become oxidatively modified in many different ways, either by direct oxidation of amino acid side chains and protein backbone or indirectly by conjugation with oxidation products of polyunsaturated fatty acids and carbohydrates. While reversible oxidative modifications are thought to be relevant in physiological processes, irreversible oxidative modifications are known to contribute to cellular damage and disease. The most well-studied irreversible protein oxidation is carbonylation. In this work we first examine how protein carbonylation occurs via metal-catalyzed oxidation (MCO) in vivo and in vitro with an emphasis on cellular metal ion homeostasis and metal binding. We then review proteomic methods currently used for identifying carbonylated proteins and their sites of modification. Finally, we discuss the identified carbonylated proteins and the pattern of carbonylation sites in relation to cellular metabolism using the mitochondrion as a case story.  相似文献   

6.
The purpose of this study was to determine (1) whether oxidative damage to plasma proteins in mice and rats, accrued during aging and manifested as carbonyl modifications, was selective or random, and (2) whether the putative carbonylated proteins could be used as markers of oxidative stress and aging. The total protein carbonyl content of the plasma significantly increased with age in mice but not in rats. Immunostaining of mouse plasma proteins, resolved by SDS-PAGE to localize carbonyls, revealed that only two specific proteins exhibited an age-associated increase in carbonylation. These proteins with molecular weights of 68 and 75 kDa, were identified as albumin and transferrin, respectively. In the rat, albumin and a 167-kDa protein, alpha1-macroglobulin (alpha-1M), showed significant age-dependent accrual of carbonylation. In the plasma of middle age Rhesus monkeys, in addition to albumin, a 54-kDa protein showed carbonylation. However, neither transferrin nor alpha-1M were carbonylated in the plasma of Rhesus monkey. Albumin was the only protein that showed carbonylation in all the three species examined. Results of this study indicate that age-associated increase in protein carbonylation is a selective and not a random phenomenon. However, the set of proteins that become carbonylated differs in different species.  相似文献   

7.
Oxidative stress plays a pivotal role in normal brain aging and various neurodegenerative diseases, including Alzheimer’s disease (AD). Irreversible protein carbonylation, a widely used marker for oxidative stress, rises during aging. The temporal cortex is essential for learning and memory and particularly susceptible to oxidative stress during aging and in AD patients. In this study, we used 2-DE, MALDI-TOF/TOF MS, and Western blotting to analyze the differentially carbonylated proteins in the rat temporal cortex between 1-month-old and 24-month-old. We showed that the carbonyl levels of ten protein spots corresponding to six gene products: SOD1, SOD2, peroxiredoxin 1, peptidylprolyl isomerase A, cofilin 1, and adenylate kinase 1, significantly increased in the temporal cortex of aged rats. These proteins are associated with antioxidant defense, the cytoskeleton, and energy metabolism. Several oxidized proteins identified in aged rat brain are known to be involved in neurodegenerative disorders as well. Our findings indicate that these carbonylated proteins may be implicated in the decline of normal brain aging process and provide insights into the mechanisms underlying age-associated dysfunction of temporal cortex.  相似文献   

8.
9.
Increased oxidative stress in a failing heart may contribute to the pathogenesis of heart failure (HF). The aim of this study was to identify the oxidised proteins in the myocardium of HF patients and analyse the consequences of oxidation on protein function. The carbonylated proteins in left ventricular tissue from failing (n?=?14) and non-failing human hearts (n?=?13) were measured by immunoassay and identified by proteomics. HL-1 cardiomyocytes were incubated in the presence of stimuli relevant for HF in order to assess the generation of reactive oxygen species (ROS), the induction of protein carbonylation, and its consequences on protein function. The levels of carbonylated proteins were significantly higher in the HF patients than in the controls (p<0.01). We identified two proteins that mainly underwent carbonylation: M-type creatine kinase (M-CK), whose activity is impaired, and, to a lesser extent, α-cardiac actin. Exposure of cardiomyocytes to angiotensin II and norepinephrine led to ROS generation and M-CK carbonylation with loss of its enzymatic activity. Our findings indicate that protein carbonylation is increased in the myocardium during HF and that these oxidative changes may help to explain the decreased CK activity and consequent defects in energy metabolism observed in HF.  相似文献   

10.
Saccharomyces cerevisiae expresses two forms of superoxide dismutase (SOD): MnSOD, encoded by SOD2, which is located within the mitochondrial matrix, and CuZnSOD, encoded by SOD1, which is located in both the cytosol and the mitochondrial intermembrane space. Because two different SOD enzymes are located in the mitochondrion, we examined the relative roles of each in protecting mitochondria against oxidative stress. Using protein carbonylation as a measure of oxidative stress, we have found no correlation between overall levels of respiration and the level of oxidative mitochondrial protein damage in either wild type or sod mutant strains. Moreover, mitochondrial protein carbonylation levels in sod1, sod2, and sod1sod2 mutants are not elevated in cells harvested from mid-logarithmic and early stationary phases, suggesting that neither MnSOD nor CuZnSOD is required for protecting the majority of mitochondrial proteins from oxidative damage during these early phases of growth. During late stationary phase, mitochondrial protein carbonylation increases in all strains, particularly in sod1 and sod1sod2 mutants. By using matrix-assisted laser desorption ionization time-of-flight mass spectrometry, we have found that specific proteins become carbonylated in sod1 and sod2 mutants. We identified six mitochondrial protein spots representing five unique proteins that become carbonylated in a sod1 mutant and 19 mitochondrial protein spots representing 11 unique proteins that become carbonylated in a sod2 mutant. Although some of the same proteins are carbonylated in both mutants, other proteins are not. These findings indicate that MnSOD and CuZnSOD have both unique and overlapping functions in the mitochondrion.  相似文献   

11.
Recent work has highlighted the importance of protein post-translational modifications such as phosphorylation (enzymatic) and nitrosylation (nonenzymatic) in the early stages of apoptosis. In this study, we have investigated the levels of protein carbonylation, a nonenzymatic protein modification that occurs in conditions of cellular oxidative stress, during etopside-induced apoptosis of HL60 cells. Within 1 h of VP16 treatment, a number of proteins underwent carbonylation due to oxidative stress. This was inhibited by the antioxidant N-acetyl-L-cysteine. Among the proteins found to be carbonylated were glycolytic enzymes. Subsequently, we found that the rate of glycolysis was significantly reduced, probably due to a carbonylation mediated reduction in enzymatic activity of glycolytic enzymes. Our work demonstrates that protein carbonylation can be rapidly induced through cytotoxic drug treatment and may specifically inhibit the glycolytic pathway. Given the importance of glycolysis as a source of cellular ATP, this has severe implications for cell function.  相似文献   

12.
H(2)O(2) induces a specific protein oxidation in yeast cells, and the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (Tdh) is a major target. Using a 2D-gel system to study protein carbonylation, it is shown in this work that both Tdh2p and Tdh3p isozymes were oxidized during exposure to H(2)O(2). In addition, we identified two other proteins carbonylated and inactivated: Cu,Zn-superoxide dismutase and phosphoglycerate mutase. The oxidative inactivation of Cu,Zn-superoxide dismutase decreases the antioxidant capacity of yeast cells and probably contributes to H(2)O(2)-induced cell death. Cyclophilin 1 was also carbonylated, but CPH1 gene disruption did not affect peroxide stress sensitivity. The correlation between H(2)O(2) sensitivity and the accumulation of oxidized proteins was evaluated by assaying protein carbonyls in mutants deficient in the stress response regulators Yap1p and Skn7p. The results show that the high sensitivity of yap1delta and skn7delta mutants to H(2)O(2) was correlated with an increased induction of protein carbonylation. In wild-type cells, the acquisition of stress resistance by pre-exposure to a sublethal H(2)O(2) stress was associated with a lower accumulation of oxidized proteins. However, pre-exposure of yap1delta and skn7delta cells to 0.4 mM H(2)O(2) decreased protein carbonylation induced by 1.5 mM H(2)O(2), indicating that the adaptive mechanism involved in the protection of proteins from carbonylation is Yap1p- and Skn7p-independent.  相似文献   

13.
14.
Seed germination is an important aspect of the plant life cycle, during which, reactive oxygen species (ROS) accumulate. The accumulation of ROS results in an increase in protein oxidation of which carbonylation is the most canonical one. However, there is insufficient information concerning protein oxidation, especially carbonylation and its contribution to seed germination. In this study, biotin hydrazide labeled chromatography combined with sequential window acquisition of all theoretical fragment ion spectra (SWATH) method was used to analyze the dynamic pattern of protein carbonylation in rice embryos during germination. A total of 1872 unique proteins were quantified, among which 288 carbonylated peptides corresponding to 144 proteins were determined based on the filtering through mass shifts of modified amino acids. In addition, 66 carbonylated proteins were further analyzed based on their carbonylation intensity in four stages of germination. These identified carbonylated proteins were mainly involved in maintaining the levels of ROS, abscisic acid and seed reserves. Remarkably, a peroxiredoxin was found with 23 unique carbonylated peptides, and the expression of which was consistent with its increased activity. This study describes the dynamic pattern of carbonylated proteins during seed germination, and may help to further understand the biochemical mechanisms on this process.  相似文献   

15.
Necrotic neuronal death is recently known to be mediated by the calpain-cathepsin cascade from simpler organisms to primates. The main event of this cascade is calpain-mediated lysosomal rupture and the resultant release of lysosomal cathepsins into the cytoplasm. However, the in-vivo substrate of calpain for inducing lysosomal destabilization still remains completely unknown. The recent proteomics data using the post-ischemic hippocampal CA1 tissues and glaucoma-suffered retina from the primates suggested that heat shock protein (Hsp) 70.1 might be the in-vivo substrate of activated μ-calpain at the lysosomal membrane of neurons. Hsp70.1 is known to stabilize lysosomal membrane by recycling damaged proteins and protect cells from oxidative stresses. Here, we studied the molecular interaction between activated μ-calpain and the lysosomal Hsp70.1 in the monkey hippocampal CA1 neurons after the ischemia-reperfusion insult. Immunofluorescence histochemistry showed a colocalization of the activated μ-calpain and upregulated Hsp70.1 at the lysosomal membrane of the post-ischemic CA1 neurons. In-vitro cleavage assay of hippocampal Hsp70.1 by Western blotting demonstrated that Hsp70.1 in the CA1 tissue is an in-vivo substrate of activated μ-calpain, and that carbonylated Hsp70.1 in the CA1 tissue by artificial oxidative stressors such as hydroxynonenal (HNE) or hydrogen peroxide is much more vulnerable to the calpain cleavage. These data altogether suggested that Hsp70.1 can become a target of the carbonylation by HNE, and Hsp70.1 is a modulator of calpain-mediated lysosomal rupture/permeabilization after the ischemia-reperfusion injury.  相似文献   

16.
Regular physical activity is associated with a reduced risk of coronary heart disease, as it probably modifies the balance between free-radical generation and antioxidant activity. On the other hand, however, acute physical activity increases oxygen uptake and leads to a temporary imbalance between the production of reactive oxygen and nitrogen species (RONS) and their disposal: this phenomenon is called oxidative stress. Proteins are one of the most important oxidation targets during physical exercise and carbonylation is one of the most common oxidative protein modifications. In cells there is a physiological level of oxidized proteins that doesn't interfere with cell function; however, an increase in oxidized protein levels may cause a series of cellular malfunctions that could lead to a disease state. For this reason the quantification of protein oxidation is important to distinguish a healthy state from a disease state. Several studies have demonstrated an increase of carbonylated plasma proteins in athletes after exercise, but none have identified targets of this oxidation. Recently a process of protein decarbonylation has been discovered, this may indicate that carbonylation could be involved in signal transduction. The aim of our research was to characterize plasma protein carbonylation in response to physical exercise in trained male endurance athletes. We analyzed by proteomic approach their plasma proteins at resting condition and after two different kinds of physical exercise (PE). We used 2D-GE followed by western blot with specific antibodies against carbonylated proteins. The 2D analysis identified Haptoglobin as potential protein target of carbonylation after PE. We also identified Serotransferrin and Fibrinogen whose carbonylation is reduced after exercise. These methods have allowed us to obtain an overview of plasma protein oxidation after physical exercise.  相似文献   

17.
Understanding the relationship between physical exercise, reactive oxygen species and skeletal muscle modification is important in order to better identify the benefits or the damages that appropriate or inappropriate exercise can induce. Unbalanced ROS levels can lead to oxidation of cellular macromolecules and a major class of protein oxidative modification is carbonylation. The aim of this investigation was to study muscle protein expression and carbonylation patterns in trained and untrained animal models. We analyzed two muscles characterized by different metabolisms: tibialis anterior and soleus. Whilst tibialis anterior is mostly composed of fast-twitch fibers, the soleus muscle is mostly composed of slow-twitch fibers. By a proteomic approach we identified 15 protein spots whose expression is influenced by training. Among them in tibialis anterior we observed a down-regulation of several glycolitic enzymes. Concerning carbonylation, we observed the existence of a high basal level of protein carbonylation. Although this level shows some variation among individual animals, several proteins (mostly involved in energy metabolism, muscle contraction, and stress response) appear carbonylated in all animals and in both types of skeletal muscle. Moreover we identified 13 spots whose carbonylation increases after training.  相似文献   

18.
We previously reported that photodynamic therapy (PDT) using Purpurin-18 (Pu-18) induces apoptosis in HL60 cells. Using flow cytometry, two-dimensional electrophoresis coupled with immunodetection of carbonylated proteins and mass spectrometry, we now show that PDT-induced apoptosis is associated with increased reactive oxygen species generation, glutathione depletion, changes in mitochondrial transmembrane potential, simultaneous downregulation of mitofilin and carbonylation of specific proteins: glucose-regulated protein-78, heat-shock protein 60, heat-shock protein cognate 71, phosphate disulphide isomerase, calreticulin, beta-actin, tubulin-alpha-1-chain and enolase-alpha. Interestingly, all carbonylated proteins except calreticulin and enolase-alpha showed a pI shift in the proteome maps. Our results suggest that PDT with Pu-18 perturbs the normal redox balance and shifts HL60 cells into a state of oxidative stress, which systematically induces the carbonylation of specific chaperones. As these proteins normally produce a prosurvival signal during oxidative stress, we hypothesize that their carbonylation represents a signalling mechanism for apoptosis induced by PDT.  相似文献   

19.
Oxidative modifications of enzymes and structural proteins play a significant role in the aetiology and/or progression of several human diseases. Protein carbonyl content is the most general and well-used biomarker of severe oxidative protein damage. Human diseases associated with protein carbonylation include Alzheimer's disease, chronic lung disease, chronic renal failure, diabetes and sepsis. Rapid recent progress in the identification of carbonylated proteins should provide new diagnostic (possibly pre-symptomatic) biomarkers for oxidative damage, and yield basic information to aid the establishment an efficacious antioxidant therapy.  相似文献   

20.
Protein carbonylation is a well-documented and quantifiable consequence of oxidative stress in several neuropathologies, including multiple sclerosis, Alzheimer׳s disease, and Parkinson׳s disease. Although oxidative stress is a hallmark of traumatic brain injury (TBI), little work has explored the specific neural regions and cell types in which protein carbonylation occurs. Furthermore, the effect of gender on protein carbonylation after TBI has not been studied. The present investigation was designed to determine the regional and cell specificity of TBI-induced protein carbonylation and how this response to injury is affected by gender. Immunohistochemistry was used to visualize protein carbonylation in the brains of adult male and female Sprague–Dawley rats subjected to controlled cortical impact (CCI) as an injury model of TBI. Cell-specific markers were used to colocalize the presence of carbonylated proteins in specific cell types, including astrocytes, neurons, microglia, and oligodendrocytes. Results also indicated that the injury lesion site, ventral portion of the dorsal third ventricle, and ventricular lining above the median eminence showed dramatic increases in protein carbonylation after injury. Specifically, astrocytes and limited regions of ependymal cells adjacent to the dorsal third ventricle and the median eminence were most susceptible to postinjury protein carbonylation. However, these patterns of differential susceptibility to protein carbonylation were gender dependent, with males showing significantly greater protein carbonylation at sites distant from the lesion. Proteomic analyses were also conducted and determined that the proteins most affected by carbonylation in response to TBI include glial fibrillary acidic protein, dihydropyrimidase-related protein 2, fructose-bisphosphate aldolase C, and fructose-bisphosphate aldolase A. Many other proteins, however, were not carbonylated by CCI. These findings indicate that there is both regional and protein specificity in protein carbonylation after TBI. The marked increase in carbonylation seen in ependymal layers distant from the lesion suggests a mechanism involving the transmission of a cerebral spinal fluid-borne factor to these sites. Furthermore, this process is affected by gender, suggesting that hormonal mechanisms may serve a protective role against oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号