首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RecA that catalyses efficient homology search and exchange of DNA bases has to effect major transitions in the structure as well as the dynamics of bases within RecA-DNA filament. RecA induces slippage of paired strands in poly(dA)-poly(dT) duplex using the energy of ATP hydrolysis. Here, we have adopted the targeted ligation assay and quantified the strand slippage within a short central cassette of (dA)(4)-(dT)(4) duplex. The design offers a stringent test case for scoring a cross-talk between A residues with those of T that are diagonally placed on the opposite strand at either -3, -2, -1, +1, +2, or +3 pairing frames. As expected, the cross-talk levels in RecA mediated as well as thermally annealed duplexes were maximal in non-diagonal pairing frame (i.e., 0-frame), the levels of which fell off gradually as the frames became more diagonal, i.e., -3<-2<-1 or +3<+2<+1. Interestingly, the level of cross-talk in naked duplexes was intrinsically less efficient in minus frames than their plus frame counterparts. The asymmetry created in naked duplexes by such a disparity between minus versus plus frames was partially obviated by RecA. Moreover, RecA promoted a significantly higher level of cross-talk selectively in -2 and -1 frames, as compared to that in naked DNA, which suggests a model that the elevated cross-talk in RecA filament may be limited to base pairs housed within the same rather than adjacent RecA monomers.  相似文献   

2.
A novel, multiple DNA phasing analysis is described in which three sequence motifs associated with bent DNA are clustered together in oligomers of identical base composition, but with different phasing relationships of these motifs to each other. Synthetic oligonucleotides containing different combinations of AAAAA(A), GGGCCC and GAGAG sequence motifs were ligated and analyzed by gel mobility and cyclization experiments to determine their global curvature. These assays were used to obtain relative bending contributions of the analyzed sequence motifs. The experimental results also provide a rigorous test of predictive models for DNA bending. We report, using molecular modeling, that none of the most widely used dinucleotide (nearest neighbor) models can accurately describe the conformational properties of these DNA sequences and that more complex models, at least at the trinucleotide level, are required.  相似文献   

3.
Haemophilus influenzae NadR protein (hiNadR) has been shown to be a bifunctional enzyme possessing both NMN adenylytransferase (NMNAT; EC ) and ribosylnicotinamide kinase (RNK; EC ) activities. Its function is essential for the growth and survival of H. influenzae and thus may present a new highly specific anti-infectious drug target. We have solved the crystal structure of hiNadR complexed with NAD using the selenomethionine MAD phasing method. The structure reveals the presence of two distinct domains. The N-terminal domain that hosts the NMNAT activity is closely related to archaeal NMNAT, whereas the C-terminal domain, which has been experimentally demonstrated to possess ribosylnicotinamide kinase activity, is structurally similar to yeast thymidylate kinase and several other P-loop-containing kinases. There appears to be no cross-talk between the two active sites. The bound NAD at the active site of the NMNAT domain reveals several critical interactions between NAD and the protein. There is also a second non-active-site NAD molecule associated with the C-terminal RNK domain that adopts a highly folded conformation with the nicotinamide ring stacking over the adenine base. Whereas the RNK domain of the hiNadR structure presented here is the first structural characterization of a ribosylnicotinamide kinase from any organism, the NMNAT domain of hiNadR defines yet another member of the pyridine nucleotide adenylyltransferase family.  相似文献   

4.
Y Xu  W Cheng  P Nie  F Zhou 《PloS one》2012,7(8):e43163
Haplotype phasing represents an essential step in studying the association of genomic polymorphisms with complex genetic diseases, and in determining targets for drug designing. In recent years, huge amounts of genotype data are produced from the rapidly evolving high-throughput sequencing technologies, and the data volume challenges the community with more efficient haplotype phasing algorithms, in the senses of both running time and overall accuracy. 2SNP is one of the fastest haplotype phasing algorithms with comparable low error rates with the other algorithms. The most time-consuming step of 2SNP is the construction of a maximum spanning tree (MST) among all the heterozygous SNP pairs. We simplified this step by replacing the MST with the initial haplotypes of adjacent heterozygous SNP pairs. The multi-SNP haplotypes were estimated within a sliding window along the chromosomes. The comparative studies on four different-scale genotype datasets suggest that our algorithm WinHAP outperforms 2SNP and most of the other haplotype phasing algorithms in terms of both running speeds and overall accuracies. To facilitate the WinHAP's application in more practical biological datasets, we released the software for free at: http://staff.ustc.edu.cn/~xuyun/winhap/index.htm.  相似文献   

5.
Base triples are recurrent clusters of three RNA nucleobases interacting edge-to-edge by hydrogen bonding. We find that the central base in almost all triples forms base pairs with the other two bases of the triple, providing a natural way to geometrically classify base triples. Given 12 geometric base pair families defined by the Leontis-Westhof nomenclature, combinatoric enumeration predicts 108 potential geometric base triple families. We searched representative atomic-resolution RNA 3D structures and found instances of 68 of the 108 predicted base triple families. Model building suggests that some of the remaining 40 families may be unlikely to form for steric reasons. We developed an on-line resource that provides exemplars of all base triples observed in the structure database and models for unobserved, predicted triples, grouped by triple family, as well as by three-base combination (http://rna.bgsu.edu/Triples). The classification helps to identify recurrent triple motifs that can substitute for each other while conserving RNA 3D structure, with applications in RNA 3D structure prediction and analysis of RNA sequence evolution.  相似文献   

6.
The rDNA in Dictyostelium discoideum is organized in linear, extrachromosomal, palindromic dimers of approximately 88 X 10(3) bases in length. The dimers are repeated about 90 times per haploid genome. Using indirect end-labeling, we have mapped micrococcal nuclease and DNAase I-sensitive sites in the chromatin near the rDNA telomeres. This region is 3' to the 36 S rRNA coding region and contains a single 5 S rRNA cistron but is primarily non-coding. We have observed somewhat irregularly spaced but specific phasing of nuclease-sensitive sites relative to the underlying DNA sequence. Comparison of the sites in chromatin with those in naked DNA reveals an unusual and striking pattern: the sites in naked DNA that are attacked most readily by both nucleases, presumably because of the specificity of the nucleases for certain sequences or physical characteristics of the DNA, appear to be the same sites that are most protected in chromatin. This pattern extends over most of a 10(4) base region, from the sequence immediately distal to the 36 S rRNA coding region and extending to the terminus. Although much of the sequence-specific phasing is irregularly spaced, salt extraction data are consistent with the presence of nucleosomes. In addition, phasing in the terminal region may be directed partially by proteins that do not bind DNA as tightly as do core histones. We present a model for phasing in spacer regions in which the sequence preferences of nucleases such as micrococcal nuclease and DNAase I may be useful tools in predicting nucleosome placement.  相似文献   

7.
Liu X  Zhang H  Wang XJ  Li LF  Su XD 《PloS one》2011,6(9):e24227
The crystal structures of two proteins, a putative pyrazinamidase/nicotinamidase from the dental pathogen Streptococcus mutans (SmPncA) and the human caspase-6 (Casp6), were solved by de novo arsenic single-wavelength anomalous diffraction (As-SAD) phasing method. Arsenic (As), an uncommonly used element in SAD phasing, was covalently introduced into proteins by cacodylic acid, the buffering agent in the crystallization reservoirs. In SmPncA, the only cysteine was bound to dimethylarsinoyl, which is a pentavalent arsenic group (As (V)). This arsenic atom and a protein-bound zinc atom both generated anomalous signals. The predominant contribution, however, was from the As anomalous signals, which were sufficient to phase the SmPncA structure alone. In Casp6, four cysteines were found to bind cacodyl, a trivalent arsenic group (As (III)), in the presence of the reducing agent, dithiothreitol (DTT), and arsenic atoms were the only anomalous scatterers for SAD phasing. Analyses and discussion of these two As-SAD phasing examples and comparison of As with other traditional heavy atoms that generate anomalous signals, together with a few arsenic-based de novo phasing cases reported previously strongly suggest that As is an ideal anomalous scatterer for SAD phasing in protein crystallography.  相似文献   

8.
The common approaches for haplotype inference from genotype data are targeted toward phasing short genomic regions. Longer regions are often tackled in a heuristic manner, due to the high computational cost. Here, we describe a novel approach for phasing genotypes over long regions, which is based on combining information from local predictions on short, overlapping regions. The phasing is done in a way, which maximizes a natural maximum likelihood criterion. Among other things, this criterion takes into account the physical length between neighboring single nucleotide polymorphisms. The approach is very efficient and is applied to several large scale datasets and is shown to be successful in two recent benchmarking studies (Zaitlen et al., in press; Marchini et al., in preparation). Our method is publicly available via a webserver at http://research.calit2.net/hap/.  相似文献   

9.
Damaged DNA bases are removed from mammalian genomes by base excision repair (BER). Single nucleotide BER requires several enzymatic activities, including DNA polymerase and 5',2'-deoxyribose-5-phosphate lyase. Both activities are intrinsic to four human DNA polymerases whose base substitution error rate during gap-filling DNA synthesis varies by more than 10,000-fold. This suggests that BER fidelity could vary over a wide range in an enzyme dependent manner. To investigate this possibility, here we describe an assay to measure the fidelity of BER reactions reconstituted with purified enzymes. When human uracil DNA glycosylase, AP endonuclease, DNA polymerase beta, and DNA ligase 1 replace uracil opposite template A or G, base substitution error rates are 相似文献   

10.
The elytral base sclerites (= sclerites located at the articular region between the forewing and thorax in Coleoptera) of selected taxa were examined and homologized. Although the elytral base sclerites are highly modified compared to the wing base sclerites of the other neopterans, they can be homologized by using the conservative wing flapping and folding lines as landmarks. A reduction of the first axillary sclerite was identified as a general trend of the elytral base sclerites, although the sclerite usually has a very important function to mediate flight power from the notum to the wing. This result indicates that the functional constraint against the basal sclerites is relaxed because of the lack of an ability to produce flight power by elytra. In contrast, the elytral folding system formed by the basal sclerites is well retained, which probably occurs because proper wing folding is a key for the shelter function of the elytra. The elytral base sclerites apparently contain more homoplasies than the serially homologous hindwing base sclerites of Coleoptera, which suggests that the structure is less useful for higher-level systematics. However, the faster evolutionary rate of the elytral base sclerites suggests there is potential for studying the lower-level phylogeny of Coleoptera.  相似文献   

11.
High-throughput sequencing technologies produce short sequence reads that can contain phase information if they span two or more heterozygote genotypes. This information is not routinely used by current methods that infer haplotypes from genotype data. We have extended the SHAPEIT2 method to use phase-informative sequencing reads to improve phasing accuracy. Our model incorporates the read information in a probabilistic model through base quality scores within each read. The method is primarily designed for high-coverage sequence data or data sets that already have genotypes called. One important application is phasing of single samples sequenced at high coverage for use in medical sequencing and studies of rare diseases. Our method can also use existing panels of reference haplotypes. We tested the method by using a mother-father-child trio sequenced at high-coverage by Illumina together with the low-coverage sequence data from the 1000 Genomes Project (1000GP). We found that use of phase-informative reads increases the mean distance between switch errors by 22% from 274.4 kb to 328.6 kb. We also used male chromosome X haplotypes from the 1000GP samples to simulate sequencing reads with varying insert size, read length, and base error rate. When using short 100 bp paired-end reads, we found that using mixtures of insert sizes produced the best results. When using longer reads with high error rates (5–20 kb read with 4%–15% error per base), phasing performance was substantially improved.  相似文献   

12.
Degeneracy in the genetic code is known to minimise the deleterious effects of the most frequent base substitutions: transitions at the third base of codons are generally synonymous substitutions. Transversions that alter degeneracy were reported by Rumer. Here the other transversions are shown to leave invariant degeneracy when applied to the first base of codons. As a summary, degeneracy is considered with respect to all three types of base substitutions, the transitions and the two types of transversions. The symmetries of degeneracy by base substitutions are independent of the representation of the genetic code and discussed with respect to the quasi-universality of the genetic code.  相似文献   

13.
The paradigm for repair of oxidized base lesions in genomes via the base excision repair (BER) pathway is based on studies in Escherichia coli, in which AP endonuclease (APE) removes all 3' blocking groups (including 3' phosphate) generated by DNA glycosylase/AP lyases after base excision. The recently discovered mammalian DNA glycosylase/AP lyases, NEIL1 and NEIL2, unlike the previously characterized OGG1 and NTH1, generate DNA strand breaks with 3' phosphate termini. Here we show that in mammalian cells, removal of the 3' phosphate is dependent on polynucleotide kinase (PNK), and not APE. NEIL1 stably interacts with other BER proteins, DNA polymerase beta (pol beta) and DNA ligase IIIalpha. The complex of NEIL1, pol beta, and DNA ligase IIIalpha together with PNK suggests coordination of NEIL1-initiated repair. That NEIL1/PNK could also repair the products of other DNA glycosylases suggests a broad role for this APE-independent BER pathway in mammals.  相似文献   

14.
In a phasing experiment, two bends are introduced into a long duplex RNA or DNA and the number of base pairs between them varied. When electrophoresed in a gel, the set of molecules may show a periodic variation in mobility that contains information about the twist associated with the bends and the intervening helix. We show how a set of three phasing experiments can be used to extract this information, and apply it to an RNA helix bend at the bulge sequence A2. The bulge introduces a negative (left-handed) twist of approximately 30 degrees; at low temperatures, it is mostly confined to the 5' side of the bulge. The apparent helical repeat of random sequence RNA measured in these experiments was 10.2 +/- 0.1 base pairs, an unexpectedly low value. It is likely that moderate curvative of the RNA helix axis (30-40 degrees over 80 bp) has affected the measurement.  相似文献   

15.
The current "working model" for mammalian base excision repair involves two sub-pathways termed single-nucleotide base excision repair and long patch base excision repair that are distinguished by their repair patch sizes and the enzymes/co-factors involved. These base excision repair sub-pathways are designed to sequester the various DNA intermediates, passing them along from one step to the next without allowing these toxic molecules to trigger cell cycle arrest, necrotic cell death, or apoptosis. Although a variety of DNA-protein and protein-protein interactions are known for the base excision repair intermediates and enzymes/co-factors, the molecular mechanisms accounting for step-to-step coordination are not well understood. In this review, we explore the question of whether there is an actual step-to-step "hand-off" of the DNA intermediates during base excision repair in vitro. The results show that when base excision repair enzymes are pre-bound to the initial single-nucleotide base excision repair intermediate, the DNA is channeled from apurinic/apyrimidinic endonuclease 1 to DNA polymerase beta and then to DNA ligase. In the long patch base excision repair sub-pathway, where the 5'-end of the incised strand is blocked, the intermediate after polymerase beta gap filling is not channeled from polymerase beta to the subsequent enzyme, flap endonuclease 1. Instead, flap endonuclease 1 must recognize and bind to the intermediate in competition with other molecules.  相似文献   

16.
The retinylidene Schiff base counterion in bacteriorhodopsin   总被引:9,自引:0,他引:9  
Previous studies of bacteriorhodopsin have indicated interactions between Asp-85, Asp-212, Arg-82, and the retinylidene Schiff base. The counterion environment of the Schiff base has now been further investigated by using single and double mutants of the above amino acids. Chromophore regeneration from bacterioopsin proceeds to a normal extent in the presence of a single aspartate or glutamate residue at position 85 or 212, whereas replacement of both charged amino acids in the mutant Asp-85----Asn/Asp-212----Asn abolishes the binding of retinal. This indicates that a carboxylate group at either residue 85 or 212 is required as counterion for formation and for stabilization of the protonated Schiff base. Measurements of the pKa of the Schiff base reveal reductions of greater than 3.5 units for neutral single mutants of Asp-85 but only decreases of less than 1.2 units for corresponding substitutions of Asp-212, relative to the wild type. Substitutions of Asp-85 show large red shifts in the absorption spectrum that are partially reversible upon addition of anions, whereas mutants of Asp-212 display minor red shifts or blue shifts. We conclude, therefore, that Asp-85 is the retinylidene Schiff base counterion in wild-type bacteriorhodopsin. In the mutant Asp-85----Asn/Asp-212----Asn formation of a protonated Schiff base chromophore is restored in the presence of salts. The spectral properties of the double mutant are similar to those of the acid-purple form of bacteriorhodopsin. Upon addition of salts the folded structure of wild-type and mutant proteins can be stabilized at low pH in lipid/detergent micelles. The data indicate that exogenous anions serve as surrogate counterions to the protonated Schiff base, when the intrinsic counterions have been neutralized by mutation or by protonation.  相似文献   

17.
This paper highlights our work to establish a new class of macrocycles based on Schiff base condensation chemistry. The chemistry of a series of azomethine macrocycles, with selenium/tellurium atoms in o-positions with respect to the CN bond is discussed. These are the first Schiff base macrocycles to incorporate selenium or tellurium atom in the ring. The strong stabilization of the 10-E-3 (E = Se/Te) structures of these macrocycles by E-N coordination permits the access to these novel macrocycles by [2+2] template-free condensation of bis(aldehyde) with primary diamines. The success of cyclization has been confirmed by the usual methods of IR, NMR and X-ray structural determinations. After a brief discussion of the synthetic methods adopted for these macrocycles, their complexing abilities toward different metal ions are covered. The macrocyclic polyamine ligands, derived by reduction of the corresponding Schiff bases, readily form complexes with a range of metal ions. This allows a comparison of the properties of complexes of these ligands with those derived from the Schiff bases containing the same denticity but having a different flexibility. The selena- and tellura-macrocycles reported by other groups in the field are also included for comparison. Also discussed is the anion binding studies of some of these macrocycles.  相似文献   

18.
Qin PZ  Hideg K  Feigon J  Hubbell WL 《Biochemistry》2003,42(22):6772-6783
Site-directed spin labeling utilizes site-specific attachment of a stable nitroxide radical to probe the structure and dynamics of macromolecules. In the present study, a 4-thiouridine base is introduced at each of six different positions in a 23-nucleotide RNA molecule. The 4-thiouridine derivatives were subsequently modified with one of three methanethiosulfonate nitroxide reagents to introduce a spin label at specific sites. The electron paramagnetic resonance spectra of the labeled RNAs were analyzed in terms of nitroxide motion and the RNA solution structure. At a base-paired site in the RNA helix, where the nitroxide has weak or no local interactions, motion of the nitroxide is apparently dominated by rotation about bonds within the probe. The motion is similar to that found for a structurally related probe on helical sites in proteins, suggesting a similar mode of motion. At other sites that are hydrogen bonded and stacked within the helix, local interactions within the RNA molecule modulate the nitroxide motion in a manner consistent with expectations based on the known structure. For a base that is not structurally constrained, the mobility is higher than at any other site, presumably due to motion of the base itself. These results demonstrate the general utility of the 4-thiouridine/methanethiosulfonate coupling method to introduce nitroxide spin labels into RNA and the ability of the resulting label to probe local structure and dynamics.  相似文献   

19.
Zhu J  Wartell RM 《Biochemistry》1999,38(48):15986-15993
Forty-eight RNA duplexes were constructed that contained all common single base bulges at six different locations. The stabilities of the RNAs were determined by temperature gradient gel electrophoresis (TGGE). The relative stability of a single base bulge was dependent on both base identity and the nearest neighbor context. The single base bulges were placed into two categories. A bulged base with no identical neighboring base was defined as a Group I base bulge. Group II-bulged bases had at least one neighboring base identical to it. Group II bulges were generally more stable than Group I bulges in the same nearest neighbor environments. This indicates that position degeneracy of an unpaired base enhances stability. Differences in the mobility transition temperatures between the RNA fragments with bulges and the completely base-paired reference RNAs were related to free energy differences. Simple models for estimating the free energy contribution of single base bulges were evaluated from the free energy difference data. The contribution of a Group I bulge 5'-(XNZ)-3'.5'-(Z'-X')-3' where N is the unpaired base and X.X' and Z.Z' the neighboring base pairs, could be well-represented (+/-0.34 kcal/mol) by the equation, DeltaG((X)(N)()(Z))(.)((Z)(')(-)(X)(')()) = 3.11 + 0. 40DeltaG(s)()((XZ))(.)((Z)(')(X)(')()). DeltaG(s)()((XZ))(. )((Z)(')(X)(')()) is the stacking energy of the closing base pair doublet. By adding a constant term, delta = -0.3 kcal/mol, to the right side of the above equation, free energies of Group II bulges could also be predicted with the same accuracy. The term delta represents the stabilizing effect due to position degeneracy. A similar equation/model was applied to previous data from 32 DNA fragments with single base bulges. It predicted the free energy differences with a similar standard deviation.  相似文献   

20.
Purine base transport in Neurospora crassa.   总被引:6,自引:4,他引:2       下载免费PDF全文
Observations presented in this paper point to the presence of dual transport mechanisms for the base adenine in Neurospora crassa. Competition for transport, as well as growth inhibition studies using an ad-1 auxotroph, show that the purine bases adenine, guanine, and hypoxanthine share at least one transport mechanism which is insensitive to adenosine, cytosine, and a variety of other purine base analogues. On the other hand, uptake of adenine by an ad-8 mutant strain unable to transport [8-14C]hypoxanthine at any concentration was not inhibited by guanine or hypoxanthine. This observation demonstrates the existence of an adenine-specific transport system which was also found to be insensitive to inhibition by other purine base analogues, adenosine or cytosine. Recombination analysis of ad-8 by wild-type crosses showed that the inability to transport [8-14C]hypoxanthine was a consequence of the ad-8 lesion or a closely linked mutation. Saturation plots of each system gave intermediary plateaus and nonlinear reciprocal plots which, based on comparison with pure enzyme kinetic analysis, suggest that either each system consists of two or more uptake systems, at least one of which exhibits cooperativity, or that each system is a single uptake mechanism which possesses more than two binding sites where the relative affinity for the purine base first decreases and then increases as the sites are filled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号