首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Wassilewskija (WS) strain of Arabidopsis has four PAI genes at three sites: an inverted repeat at one locus plus singlet genes at two unlinked loci. These four genes are methylated over their regions of DNA identity. In contrast, the Columbia (Col) strain has three singlet PAI genes with no methylation. To test the hypothesis that the WS inverted repeat locus triggers methylation of unlinked identical sequences, we introduced this locus into the Col background by genetic crosses. The inverted repeat induced de novo methylation of all three unmethylated Col PAI genes, with methylation efficiency varying with the position of the target locus. These results, plus results with inverted repeat transgenes, show that methylation is communicated by a DNA/DNA pairing mechanism.  相似文献   

2.
Zhai J  Liu J  Liu B  Li P  Meyers BC  Chen X  Cao X 《PLoS genetics》2008,4(4):e1000056
Progress in epigenetics has revealed mechanisms that can heritably regulate gene function independent of genetic alterations. Nevertheless, little is known about the role of epigenetics in evolution. This is due in part to scant data on epigenetic variation among natural populations. In plants, small interfering RNA (siRNA) is involved in both the initiation and maintenance of gene silencing by directing DNA methylation and/or histone methylation. Here, we report that, in the model plant Arabidopsis thaliana, a cluster of approximately 24 nt siRNAs found at high levels in the ecotype Landsberg erecta (Ler) could direct DNA methylation and heterochromatinization at a hAT element adjacent to the promoter of FLOWERING LOCUS C (FLC), a major repressor of flowering, whereas the same hAT element in ecotype Columbia (Col) with almost identical DNA sequence, generates a set of low abundance siRNAs that do not direct these activities. We have called this hAT element MPF for Methylated region near Promoter of FLC, although de novo methylation triggered by an inverted repeat transgene at this region in Col does not alter its FLC expression. DNA methylation of the Ler allele MPF is dependent on genes in known silencing pathways, and such methylation is transmissible to Col by genetic crosses, although with varying degrees of penetrance. A genome-wide comparison of Ler and Col small RNAs identified at least 68 loci matched by a significant level of approximately 24 nt siRNAs present specifically in Ler but not Col, where nearly half of the loci are related to repeat or TE sequences. Methylation analysis revealed that 88% of the examined loci (37 out of 42) were specifically methylated in Ler but not Col, suggesting that small RNA can direct epigenetic differences between two closely related Arabidopsis ecotypes.  相似文献   

3.
In Arabidopsis a SWI2/SNF2 chromatin remodeling factor-related protein DDM1 and a cytosine methyltransferase MET1 are required for maintenance of genomic cytosine methylation. Mutations in either gene cause global demethylation. In this work we have assessed the effects of these mutations on the PAI tryptophan biosynthetic gene family, which consists of four densely methylated genes arranged as a tail-to-tail inverted repeat plus two unlinked singlet genes. The methylation mutations caused only partial demethylation of the PAI loci: ddm1 had a strong effect on the singlet genes but a weaker effect on the inverted repeat, whereas met1 had a stronger effect on the inverted repeat than on the singlet genes. The double ddm1 met1 mutant also displayed partial demethylation of the PAI genes, with a pattern similar to the ddm1 single mutant. To determine the relationship between partial methylation and expression for the singlet PAI2 gene we constructed a novel reporter strain of Arabidopsis in which PAI2 silencing could be monitored by a blue fluorescent plant phenotype diagnostic of tryptophan pathway defects. This reporter strain revealed that intermediate levels of methylation correlate with intermediate suppression of the fluorescent phenotype.  相似文献   

4.
5.
Malagnac F  Bartee L  Bender J 《The EMBO journal》2002,21(24):6842-6852
Cytosine methylation is critical for correct development and genome stability in mammals and plants. In order to elucidate the factors that control genomic DNA methylation patterning, a genetic screen for mutations that disrupt methylation-correlated silencing of the endogenous gene PAI2 was conducted in Arabidopsis: This screen yielded seven loss-of-function alleles in a SET domain protein with histone H3 Lys9 methyltransferase activity, SUVH4. The mutations conferred reduced cytosine methylation on PAI2, especially in non-CG sequence contexts, but did not affect methylation on another PAI locus carrying two genes arranged as an inverted repeat. Moreover, an unmethylated PAI2 gene could be methylated de novo in the suvh4 mutant background. These results suggest that SUVH4 is involved in maintenance but not establishment of methylation at particular genomic regions. In contrast, a heterochromatin protein 1 homolog, LHP1, had no effect on PAI methylation.  相似文献   

6.
Transcribed inverted repeats are potent triggers for RNA interference and RNA-directed DNA methylation in plants through the production of double-stranded RNA (dsRNA). For example, a transcribed inverted repeat of endogenous genes in Arabidopsis thaliana, PAI1-PAI4, guides methylation of itself as well as two unlinked duplicated PAI genes, PAI2 and PAI3. In previous work, we found that mutations in the SUVH4/KYP histone H3 lysine 9 (H3 K9) methyltransferase cause a loss of DNA methylation on PAI2 and PAI3, but not on the inverted repeat. Here we use chromatin immunoprecipitation analysis to show that the transcribed inverted repeat carries H3 K9 methylation, which is maintained even in an suvh4 mutant. PAI1-PAI4 H3 K9 methylation and DNA methylation are also maintained in an suvh6 mutant, which is defective for a gene closely related to SUVH4. However, both epigenetic modifications are reduced at this locus in an suvh4 suvh6 double mutant. In contrast, SUVH6 does not play a significant role in maintenance of H3 K9 or DNA methylation on PAI2, transposon sequences, or centromere repeat sequences. Thus, SUVH6 is preferentially active at a dsRNA source locus versus targets for RNA-directed chromatin modifications.  相似文献   

7.
8.
The mitochondrial genome of 23 Arabidopsis thaliana ecotypes was analysed by Southern hybridization in total cellular DNA. Firstly, the extent of divergence between the mitochondrial genomes in closely related lines of one plant species and secondly, the use of mitochondrial versus nuclear RFLPs to determine evolutionary relationships between Arabidopsis ecotype isolates was investigated. Highly divergent stoichiometries of alternative mitochondrial genome arrangements characterize individual ecotypes including the complete loss of a 5 kb region from ecotype Landsberg without apparent effect on plant viability. The genetic similarities between ecotypes suggested by mitochondrial genome arrangements differ from those deduced from 18 nuclear RFLP loci (CAPS markers). Similarity of nuclear RFLP patterns among the 23 Arabidopsis ecotypes neitehr correlates with their geographic origin nor with the observed mitochondrial genome arrangements. A promiscuous mitochondrial sequence insertion previously identified in ecotype Columbia is also found in the nuclear genomes of ecotypes Eifel, Enkheim and Hilversum. Two ecotypes (Eifel and Tabor) displaying identical RFLP patterns at all 18 nuclear loci show differences in both this sequence transfer and a mitochondrial DNA recombination event.  相似文献   

9.
10.
Summary The Arabidopsis ecotypes Columbia (Col), Landsberg erecta (Ler), Cape Verde Island (Cvi) and Wassilewskija (WS) have been tested for their regeneration response in vitro. A characteristic morphology of leaf-derived calluses has been found for each ecotype. Differences in regeneration ability have been detected depending on the plant strain. the explant source and on the culture medium composition. In CIR/SIR media, which contain 0.5 mg l−1 (2.26 μM) of 2,4-dichlorophenoxyacetic acid (2,4-D) and glucose, root explants from the four ecotypes are able to reach a considerable regeneration level, while leaf explants do not regenerate beyond a basal level (5% approximately). In CIH/SIH media, which contain 2.2 mg l−1 (9.95 μM) of 2,4-D and suerose, leaf explants from all the ecotypes, with the exception of Col, are able to regenerate, but they do it at variable levels (Ler 5.75%, WS 75.09%, and Cvi 27.53% as regeneration rates). With these media all root explants are able to regenerate, but again the four ecotypes show different rates (Col 27.7%, Ler 57.25%, WS 98.54%, and Cvi 42.25%). The variation of the different medium components affects differentially the regeneration ability of the four ecotypes depending also on the kind of explant. Thus, when the 2,4-D concentration is raised WS duplicates its regeneration rate in both leaf and root explants. Changing glucose for sucrose in CIR/SIR media diminishes to the basal level the regeneration of Cvi root explants, while the CIH/SIH salts and vitamin concentration permit the regeneration of leaf explants from all the ecotypes except Col. The genes responsible for those observed differences in regeneration ability could be identified and mapped by analyzing the in vitro regeneration behavior of the recombinant inbred lines (RILs) obtained by crossing these ecotypes.  相似文献   

11.
A new disease resistance locus in Arabidopsis, RPS3 , was identified using a previously cloned avirulence gene from a non- Arabidopsis pathogen. The avrB avirulence gene from the soybean pathogen Pseudomonas syringae pv. glycinea was transferred into a P. syringae pv. tomato strain that is virulent on Arabidopsis , and conversion to avirulence was assayed on Arabidopsis plants. The avrB gene had avirulence activity on most, but not all, Arabidopsis ecotypes. Of 53 ecotypes examined, 45 were resistant to a P. syringae pv. tomato strain carrying avrB , and eight were susceptible. The inheritance of this resistance was examined using crosses between the resistant ecotype Col-0 and the susceptible ecotype Bla-2. In F2 plants from this cross, the ratio of resistant:susceptible plants was approximately 3:1, indicating that resistance to P. syringae expressing avrB is determined by a single dominant locus in ecotype Col-0, which we have designated RPS3 . Using RFLP analysis, RPS3 was mapped to chromosome 3, adjacent to markers M583 and G4523, and ≤ 1 cM from another disease resistance locus, RPM1 . In soybean, resistance to P. syringae strains that carry avrB is controlled by the locus RPG1 . Thus, RPG1 and RPS3 both confer avrB -specific disease resistance, suggesting that these genes may be homologs.  相似文献   

12.
13.
Sequence analysis of a newly identified polyubiquitin gene (UBQ13) from the Columbia ecotype of Arabidopsis thaliana revealed that the gene contained a 3.9-kb insertion in the coding region. All subclones of the 3.9-kb insert hybridized to isolated mitochondrial DNA. The insert was found to consist of at least two, possibly three, distinct DNA segments from the mitochondrial genome. A 590-bp region of the insert is nearly identical to the Arabidopsis mitochondrial nad1 gene. UBQ13 restriction fragments in total cellular DNA from ecotypes Ler, No-0, Be-0, WS, and RLD were identified and, with the exception of Be-0, their sizes were equivalent to that predicted from the corresponding ecotype Columbia UBQ13 restriction fragment without the mitochondrial insert. Isolation by polymerase chain reaction and sequence determination of UBQ13 sequences from the other ecotypes showed that all lacked the mitochondrial insert. All ecotypes examined, except Columbia, contain intact open reading frames in the region of the insert, including four ubiquitin codons which Columbia lacks. This indicates that the mitochondrial DNA in UBQ13 in ecotype Columbia is the result of an integration event that occurred after speciation of Arabidopsis rather than a deletion event that occurred in all ecotypes except Columbia. This stable movement of mitochondrial DNA to the nucleus is so recent that there are few nucleotide changes subsequent to the transfer event. This allows for precise analysis of the sequences involved and elucidation of the possible mechanism. The presence of intron sequences in the transferred nucleic acid indicates that DNA was the transfer intermediate. The lack of sequence identity between the integrating sequence and the target site, represented by the other Arabidopsis ecotypes, suggests that integration occurred via nonhomologus recombination. This nuclear/organellar gene transfer event is strikingly similar to the experimentally accessible process of nuclear integration of introduced heterologous DNA.  相似文献   

14.
H. Innan  R. Terauchi    N. T. Miyashita 《Genetics》1997,146(4):1441-1452
Variation in repeat number at 20 microsatellite loci of Arabidopsis thaliana was studied in a worldwide sample of 42 ecotypes to investigate the pattern and level of polymorphism in repetitive sequences in natural plant populations. There is a substantial amount of variation at microsatellite loci despite the selfing nature of this plant species. The average gene diversity was 0.794 and the average number of alleles per locus was 10.6. The distribution of alleles was centered around the mean of repeat number at most loci, but could not be regarded as normal. There was a significantly positive correlation between the number of repeats and the amount of variation. For most loci, the observed number of alleles was between the expected values of the infinite allele and stepwise mutation models. The two models were rejected by the sign test. Linkage disequilibrium was detected in 12.1% of the pairwise comparisons between loci. In phylogenetic tree, there was no association between ecotype and geographic origin. This result is consistent with the recent expansion of A. thaliana throughout the world.  相似文献   

15.
Cao X  Jacobsen SE 《Current biology : CB》2002,12(13):1138-1144
Proper DNA methylation patterning requires the complementary processes of de novo methylation (the initial methylation of unmethylated DNA sequences) and maintenance methylation (the faithful replication of preexisting methylation). Arabidopsis has two types of methyltransferases with demonstrated maintenance activity: MET1, which maintains CpG methylation and is homologous to mammalian DNMT1, and CHROMOMETHYLASE 3 (CMT3), which maintains CpNpG (N = A, T, C, or G) methylation and is unique to the plant kingdom. Here we describe loss-of-function mutations in the Arabidopsis DOMAINS REARRANGED METHYLASE (DRM) genes and provide evidence that they encode de novo methyltransferases. drm1 drm2 double mutants retained preexisting CpG methylation at the endogenous FWA locus but blocked de novo CpG methylation that is normally associated with FWA transgene silencing. Furthermore, drm1 drm2 double mutants blocked de novo CpNpG and asymmetric methylation and gene silencing of the endogenous SUPERMAN (SUP) gene, which is normally triggered by an inverted SUP repeat. However, drm1 drm2 double mutants did not show reactivation of previously established SUPERMAN epigenetic silenced alleles. Thus, drm mutants prevent the establishment but not the maintenance of gene silencing at FWA and SUP, suggesting that the DRMs encode the major de novo methylation enzymes affecting these genes.  相似文献   

16.
DeCook R  Lall S  Nettleton D  Howell SH 《Genetics》2006,172(2):1155-1164
The genetic control of gene expression during shoot development in Arabidopsis thaliana was analyzed by combining quantitative trait loci (QTL) and microarray analysis. Using oligonucleotide array data from 30 recombinant inbred lines derived from a cross of Columbia and Landsberg erecta ecotypes, the Arabidopsis genome was scanned for marker-by-gene linkages or so-called expression QTL (eQTL). Single-feature polymorphisms (SFPs) associated with sequence disparities between ecotypes were purged from the data. SFPs may alter the hybridization efficiency between cDNAs from one ecotype with probes of another ecotype. In genome scans, five eQTL hot spots were found with significant marker-by-gene linkages. Two of the hot spots coincided with classical QTL conditioning shoot regeneration, suggesting that some of the heritable gene expression changes observed in this study are related to differences in shoot regeneration efficiency between ecotypes. Some of the most significant eQTL, particularly those at the shoot regeneration QTL sites, tended to show cis-chromosomal linkages in that the target genes were located at or near markers to which their expression was linked. However, many linkages of lesser significance showed expected "trans-effects," whereby a marker affects the expression of a target gene located elsewhere on the genome. Some of these eQTL were significantly linked to numerous genes throughout the genome, suggesting the occurrence of large groups of coregulated genes controlled by single markers.  相似文献   

17.
To develop a model system for molecular genetic analysis of plant-pathogen interactions, we studied the interaction between Arabidopsis thaliana and the bacterial pathogen Pseudomonas syringae pv tomato (Pst). Pst strains were found to be virulent or avirulent on specific Arabidopsis ecotypes, and single ecotypes were resistant to some Pst strains and susceptible to others. In many plant-pathogen interactions, disease resistance is controlled by the simultaneous presence of single plant resistance genes and single pathogen avirulence genes. Therefore, we tested whether avirulence genes in Pst controlled induction of resistance in Arabidopsis. Cosmids that determine avirulence were isolated from Pst genomic libraries, and the Pst avirulence locus avrRpt2 was defined. This allowed us to construct pathogens that differed only by the presence or absence of a single putative avirulence gene. We found that Arabidopsis ecotype Col-0 was susceptible to Pst strain DC3000 but resistant to the same strain carrying avrRpt2, suggesting that a single locus in Col-0 determines resistance. As a first step toward genetically mapping the postulated resistance locus, an ecotype susceptible to infection by DC3000 carrying avrRpt2 was identified. The avrRpt2 locus from Pst was also moved into virulent strains of the soybean pathogen P. syringae pv glycinea to test whether this locus could determine avirulence on soybean. The resulting strains induced a resistant response in a cultivar-specific manner, suggesting that similar resistance mechanisms may function in Arabidopsis and soybean.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号