共查询到20条相似文献,搜索用时 62 毫秒
1.
原子力显微镜不仅能对纳米生物结构进行观察,而且也能对其进行操纵。对纳米生物结构的观察已深入到生物大分子结构水平。原子力显微镜对生物大分子的操纵包括从染色质中提取DNA用于基因分析、对膜蛋白的结构进行观察、对蛋白构象进行可控操纵等。这些纳米技术的应用将揭示生物系统更多的结构和功能信息。 相似文献
2.
3.
Protecting osmolytes are widespread small organic molecules able to stabilize the folded state of most proteins against various denaturing stresses in vivo. The osmophobic model explains thermodynamically their action through a preferential exclusion of the osmolyte molecules from the protein surface, thus favoring the formation of intrapeptide hydrogen bonds. Few works addressed the influence of protecting osmolytes on the protein unfolding transition state and kinetics. Among those, previous single molecule force spectroscopy experiments evidenced a complexation of the protecting osmolyte molecules at the unfolding transition state of the protein, in apparent contradiction with the osmophobic nature of the protein backbone. We present single-molecule evidence that glycerol, which is a ubiquitous protecting osmolyte, stabilizes a globular protein against mechanical unfolding without binding into its unfolding transition state structure. We show experimentally that glycerol does not change the position of the unfolding transition state as projected onto the mechanical reaction coordinate. Moreover, we compute theoretically the projection of the unfolding transition state onto two other common reaction coordinates, that is, the number of native peptide bonds and the weighted number of native contacts. To that end, we augment an analytic Ising-like protein model with support for group-transfer free energies. Using this model, we find again that the position of the unfolding transition state does not change in the presence of glycerol, giving further support to the conclusions based on the single-molecule experiments. 相似文献
4.
Jilin Tang Andreas Ebner Bernhard Kraxberger Michael Leitner Alba Hykollari Christian Kepplinger Christian Grunwald Hermann J. Gruber Robert Tamp Uwe B. Sleytr Nicola Ilk Peter Hinterdorfer 《Journal of structural biology》2009,168(1):217
Crystalline bacterial cell surface layers (S-layers) show the ability to recrystallize into highly regular pattern on solid supports. In this study, the genetically modified S-layer protein SbpA of Lysinibacillus sphaericus CCM 2177, carrying a hexa-histidine tag (His6-tag) at the C-terminus, was used to generate functionalized two-dimensional nanoarrays on a silicon surface. Atomic force microscopy (AFM) was applied to explore the topography and the functionality of the fused His6-tags. The accessibility of the His6-tags was demonstrated by in-situ anti-His-tag antibody binding to the functional S-layer array. The metal binding properties of the His6-tag was investigated by single molecule force microscopy. For this purpose, newly developed tris–NTA was tethered to the AFM tips via a flexible polyethylene glycol (PEG) linker. The functionalized tips showed specific interactions with S-layer containing His6-tags in the presence of nickel ions. Thus the His6-tag is located at the outer surface of the S-layer and can be used for stable but reversible attachment of functional tris–NTA derivatives. 相似文献
5.
The utility of single molecule fluorescence (SMF) for understanding biological reactions has been amply demonstrated by a diverse series of studies over the last decade. In large part, the molecules of interest have been limited to those within a small focal volume or near a surface to achieve the high sensitivity required for detecting the inherently weak signals arising from individual molecules. Consequently, the investigation of molecular behavior with high time and spatial resolution deep within cells using SMF has remained challenging. Recently, we demonstrated that narrow-field epifluorescence microscopy allows visualization of nucleocytoplasmic transport at the single cargo level. We describe here the methodological approach that yields 2 ms and approximately 15 nm resolution for a stationary particle. The spatial resolution for a mobile particle is inherently worse, and depends on how fast the particle is moving. The signal-to-noise ratio is sufficiently high to directly measure the time a single cargo molecule spends interacting with the nuclear pore complex. Particle tracking analysis revealed that cargo molecules randomly diffuse within the nuclear pore complex, exiting as a result of a single rate-limiting step. We expect that narrow-field epifluorescence microscopy will be useful for elucidating other binding and trafficking events within cells. 相似文献
6.
Witold K. Subczynski 《生物化学与生物物理学报:生物膜》2003,1610(2):231-243
Lipid rafts in the plasma membrane, domains rich in cholesterol and sphingolipids, have been implicated in a number of important membrane functions. Detergent insolubility has been used to define membrane “rafts” biochemically. However, such an approach does not directly contribute to the understanding of the size and the lifetime of rafts, dynamics of the raft-constituent molecules, and the function of rafts in the membrane in situ. To address these issues, we have developed pulse EPR spin labeling and single molecule tracking optical techniques for studies of rafts in both artificial and cell membranes. In this review, we summarize our results and perspectives obtained by using these methods. We emphasize the importance of clearly distinguishing small/unstable rafts (lifetime shorter than a millisecond) in unstimulated cells and stabilized rafts induced by liganded and oligomerized (GPI-anchored) receptor molecules (core receptor rafts, lifetime over a few minutes). We propose that these stabilized rafts further induce temporal, greater rafts (signaling rafts, lifetime on the order of a second) for signaling by coalescing other small/unstable rafts, including those in the inner leaflet of the membrane, each containing perhaps one molecule of the downstream effector molecules. At variance with the general view, we emphasize the importance of cholesterol segregation from the liquid-crystalline unsaturated bulk-phase membrane for formation of the rafts, rather than the affinity of cholesterol and saturated alkyl chains. In the binary mixture of cholesterol and an unsaturated phospholipid, cholesterol is segregated out from the bulk unsaturated liquid-crystalline phase, forming cholesterol-enriched domains or clustered cholesterol domains, probably due to the lateral nonconformability between the rigid planar transfused ring structure of cholesterol and the rigid bend of the unsaturated alkyl chain at C9-C10. However, such cholesterol-rich domains are small, perhaps consisting of only several cholesterol molecules, and are short-lived, on the order of 1-100 ns. We speculate that these cholesterol-enriched domains may be stabilized by the presence of saturated alkyl chains of sphingomyelin or glycosphingolipids, and also by clustered raft proteins. In the influenza viral membrane, one of the simplest forms of a biological membrane, the lifetime of a protein and cholesterol-rich domain was evaluated to be on the order of 100 μs, again showing the short lifetime of rafts in an unstimulated state. Finally, we propose a thermal Lego model for rafts as the basic building blocks for signaling pathways in the plasma membrane. 相似文献
7.
Dahan M 《Histochemistry and cell biology》2006,125(5):451-456
Semiconductor quantum dots (QDs) have emerged as new fluorescent probes for biology. When combined with ultrasensitive optical techniques, they allow motions of individual biomolecules to be tracked in live cells with high signal-to-noise and over unprecedented durations. Single QD imaging readily offers a powerful tool to investigate the organization in cell membranes. Altogether QDs will contribute to more advanced biological imaging and enable new studies on the dynamics of cellular processes.Robert Feulgen Lecture 2005 presented at the Joint Meeting of the Society for Histochemistry and The Histochemical Society in Noordwijkerhout, The Netherlands 相似文献
8.
Kaminski T Siebrasse JP Gieselmann V Kubitscheck U Kappler J 《Glycoconjugate journal》2008,25(6):555-560
Hyaluronan is an important soluble component of the extracellular matrix of many tissues with well known space-filling, lubricating
and signaling functions. As such, hyaluronan can regulate cell adhesion, migration, differentiation and proliferation. Ultrastructural
studies showed the existence of fibers and networks of hyaluronan molecules at surfaces, while bulk studies of hyaluronan
in solution indicated that the polymer forms random coils. Here, we show that single hyaluronan molecules can be visualized
and tracked in three-dimensional samples at room temperature in aqueous buffer. Using a wide-field fluorescence microscope
equipped with laser excitation and an sensitive and fast EMCCD camera for fluorescence detection, single FITC-labeled hyaluronan
molecules from rooster comb were detected in aqueous solutions. Freely moving hyaluronan-FITC could be tracked over up to
20 images acquired at a frame rate of 98 Hz. Analysis of the trajectories revealed Brownian motion of hyaluronan in tris-buffered
saline with an average diffusion coefficient D = 3.0 ± 0.2 μm2/s. These observations confirm the concept that hyaluronan molecules form random coils in solution. The possibility of following
the tracks of single hyaluronan molecules in solution facilitates the analysis of processes that lead to the formation of
more organized forms of hyaluronan and its interactions with cells with very high spatial and temporal accuracy.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
9.
10.
11.
Mukhopadhyay R Srivatsan SG Verma S 《Biochemical and biophysical research communications》2003,308(1):165-169
Direct observation of DNA topological intermediates generated from a 'chemical nuclease' treatment has been made by atomic force microscopy (AFM). The intermediates were trapped at the mica-water interface and imaging was carried out in the dynamic force mode. Complete conversion from supercoiled circular state to relaxed circular/linear state has been observed over a time scale of 8 min. Implication of such studies in complementing gel electrophoresis data has been predicted. 相似文献
12.
Ramanathan A Huff EJ Lamers CC Potamousis KD Forrest DK Schwartz DC 《Analytical biochemistry》2004,330(2):227-241
A new approach for optically sequencing ensembles of single DNA molecules using DNA polymerase to mediate the consecutive incorporation of fluorochrome-labeled nucleotides into an array of large single DNA molecules is presented. The approach utilizes cycles of labeled fluorochrome addition, detection to count incorporations, and bleaching to reset the counter. These additions are imaged and analyzed to estimate the number of labeled additions and to correlate them on a per-locus basis along DNA backbones. Initial studies used precisely labeled polymerase chain reaction products to aid the development and validation of simple models of fluorochrome point spread functions within the imaging system. In complementary studies, nucleotides labeled with the fluorochrome R110 were incorporated into surface-elongated lambda DNA, and fluorescent signals corresponding to the addition of R110-dUTP were counted and assigned precise loci along DNA backbones. The labeled DNAs were then subjected to photobleaching and to a second cycle of addition of R110-labeled nucleotides-a second round of additions was correlated with the first to establish strings of addition histories among the ensemble of largely double-stranded templates. These results confirm the basic operational validity of this approach and point the way to the development of a practical system for optical sequencing. 相似文献
13.
Discriminating small molecule DNA binding modes by single molecule force spectroscopy 总被引:11,自引:0,他引:11
Rupert Krautbauer Lisa H. Pope Tobias E. Schrader Stephanie Allen Hermann E. Gaub 《FEBS letters》2002,510(3):59-158
Drugs may interact with double stranded DNA via a variety of binding modes, each mode giving rise to a specific pharmacological function. Here we demonstrate the ability of single molecule force spectroscopy to discriminate between different interaction modes by measuring the mechanical properties of DNA and their modulation upon the binding of small molecules. Due to the unique topology of double stranded DNA and due to its base pair stacking pattern, DNA undergoes several well-characterised structural transitions upon stretching. We show that small molecule binding markedly affects these transitions in ways characteristic to the binding mode and that these effects can be detected at the level of an individual molecule. The minor groove binder berenil, the crosslinker cisplatin and the intercalator ethidium bromide are compared. 相似文献
14.
The mitochondrial respiratory chain consists of 5 enzyme complexes that are responsible for ATP generation. The paradigm of the electron transport chain as discrete enzymes diffused in the inner mitochondrial membrane has been replaced by the solid state supercomplex model wherein the respiratory complexes associate with each other to form supramolecular complexes. Defects in these supercomplexes, which have been shown to be functionally active and required for forming stable respiratory complexes, have been associated with many genetic and neurodegenerative disorders demonstrating their biomedical significance. In this review, we will summarize the functional and structural significance of supercomplexes and provide a comprehensive review of their assembly and the assembly factors currently known to play a role in this process. 相似文献
15.
生命活动过程与生物分子内或生物分子间机械力的作用密不可分.原子力显微镜具有极高的力学分辨率,可以在近生理条件下对生物样品进行力学测量,是研究生物体系力学相互作用的理想工具.基于原子力显微镜的单分子力谱(AFM-SMFS)技术可以在单分子、单细胞水平测量生物分子内或生物分子间的相互作用.本文首先扼要介绍了AFM-SMFS技术,包括AFM-SMFS的基本原理、力谱测量及分析方法(蠕虫链模型、自由连接链模型和自由旋转链模型)以及探针的化学修饰方法(硅/氮化硅探针和镀金探针的修饰);重点介绍了利用AFM-SMFS技术对活体细胞表面蛋白(转化生长因子β1、CD20、热休克蛋白以及蛋白酪氨酸激酶)和糖类分子(葡萄糖和甘露糖)的近期研究进展;随后介绍了利用AFM-SMFS技术对活菌体表面蛋白(肝素结合血凝黏附素和Als5p黏附蛋白)和糖类分子(半乳糖、甘露糖、B族碳水化合物、荚膜多糖、α-甘露聚糖、β-甘露聚糖、β-葡聚糖以及几丁质)的近期研究进展;最后对AFM-SMFS技术的缺点和发展前景进行了总结和展望. 相似文献
16.
We review structure and dynamic measurements of biomembranes by atomic force microscopy (AFM). We focus mainly on studies involving supported lipid bilayers (SLBs), particularly formation by vesicle rupture on flat and corrugated surfaces, nucleation and growth of domains in phase-separated systems, anesthetic-lipid interactions, and protein/peptide interactions in multicomponent systems. We show that carefully designed experiments along with real-time AFM imaging with superior lateral and z resolution (0.1 nm) have revealed quantitative details of the mechanisms and factors controlling vesicle rupture, domain shape and size, phase transformations, and some model biological interactions. The AFM tip can also be used as a mechanical transducer and incorporated in electrochemical measurements of membrane components; therefore, we touch on these important applications in both model and cell membranes. 相似文献
17.
Christopher P. Toseland 《Journal of chemical biology》2013,6(3):85-95
This review provides an outline for fluorescent labeling of proteins. Fluorescent assays are very diverse providing the most sensitive and robust methods for observing biological processes. Here, different types of labels and methods of attachment are discussed in combination with their fluorescent properties. The advantages and disadvantages of these different methods are highlighted, allowing the careful selection for different applications, ranging from ensemble spectroscopy assays through to single-molecule measurements. 相似文献
18.
Rudolf Rigler 《Biochemical and biophysical research communications》2010,396(1):170-4392
An overview is presented which describes the development of fluorescence spectroscopy at the cellular level from its beginning as a quantitative tool to determine the content of cellular components to its present use. Analysis of individual biomolecules, their transport and kinetics within a single cell is now possible. 相似文献
19.
Mechanisms of folding and misfolding of membrane proteins are of interest in cell biology. Recently, we have established single-molecule force spectroscopy to observe directly the stepwise folding of the Na+/H+ antiporter NhaA from Escherichia coli in vitro. Here, we improved this approach significantly to track the folding intermediates of a single NhaA polypeptide forming structural segments such as the Na+-binding site, transmembrane alpha-helices, and helical pairs. The folding rates of structural segments ranged from 0.31 s(-1) to 47 s(-1), providing detailed insight into a distinct folding hierarchy of an unfolded polypeptide into the native membrane protein structure. In some cases, however, the folding chain formed stable and kinetically trapped non-native structures, which could be assigned to misfolding events of the antiporter. 相似文献
20.
Tessmer I Moore T Lloyd RG Wilson A Erie DA Allen S Tendler SJ 《Journal of molecular biology》2005,350(2):254-262
Genetic studies of rdgC in different bacterial systems suggest that it may play a role in replication and recombination. However, the exact function of the corresponding protein, RdgC, is unknown. In this study, we have imaged complexes of RdgC with both linear and supercoiled circular plasmid DNA using atomic force microscopy. We confirm that RdgC does not target any specific sequences in double-stranded DNA, as has been suggested from biochemical data. However, we detect an increased affinity of the protein to DNA ends, and an ability to promote bending of DNA. Similar binding preferences have been reported for enzymes involved in recombination. Protein complexes with supercoiled plasmid DNA further enabled us to study the effect of RdgC on DNA superstructure. At high concentrations of protein we observed promotion of DNA condensation. Recombination is largely enhanced by close contacts of distant regions along the DNA strands, as can occur, for instance, through condensation. Our data thus support a possible function of RdgC as a midwife of recombination. 相似文献