首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kavakli IH  Sancar A 《Biochemistry》2004,43(48):15103-15110
Escherichia coli DNA photolyase contains FADH(-) as the catalytic cofactor. The cofactor becomes oxidized to the FADH(*) blue neutral radical during purification. The E-FADH(*) form of the enzyme is catalytically inert but can be converted to the active E-FADH(-) form by a photoreduction reaction that involves intraprotein electron transfer from Trp306. It is thought that the E-FADH(*) form is also transiently generated during pyrimidine dimer repair by photoinduced electron transfer, and it has been suggested that the FADH(*) that is generated after each round of catalysis must be photoreduced before the enzyme can engage in subsequent rounds of repair. In this study, we introduced the Trp306Phe mutation into the chromosomal gene and tested the non-photoreducible W306F mutant for photorepair in vivo. We find that both wild-type and W306F mutant photolyases carry out at least 25 rounds of photorepair at the same rate. We conclude that photoreduction by intraprotein electron transfer is not part of the photolyase photocycle under physiological conditions.  相似文献   

2.
Byrdin M  Villette S  Eker AP  Brettel K 《Biochemistry》2007,46(35):10072-10077
DNA photolyases repair UV-induced cyclobutane pyrimidine dimers in DNA by photoinduced electron transfer. The redox-active cofactor is FAD in its doubly reduced state FADH-. Typically, during enzyme purification, the flavin is oxidized to its singly reduced semiquinone state FADH degrees . The catalytically potent state FADH- can be reestablished by so-called photoactivation. Upon photoexcitation, the FADH degrees is reduced by an intrinsic amino acid, the tryptophan W306 in Escherichia coli photolyase, which is 15 A distant. Initially, it has been believed that the electron passes directly from W306 to excited FADH degrees , in line with a report that replacement of W306 with redox-inactive phenylalanine (W306F mutant) suppressed the electron transfer to the flavin [Li, Y. F., et al. (1991) Biochemistry 30, 6322-6329]. Later it was realized that two more tryptophans (W382 and W359) are located between the flavin and W306; they may mediate the electron transfer from W306 to the flavin either by the superexchange mechanism (where they would enhance the electronic coupling between the flavin and W306 without being oxidized at any time) or as real redox intermediates in a three-step electron hopping process (FADH degrees * <-- W382 <-- W359 <-- W306). Here we reinvestigate the W306F mutant photolyase by transient absorption spectroscopy. We demonstrate that electron transfer does occur upon excitation of FADH degrees and leads to the formation of FADH- and a deprotonated tryptophanyl radical, most likely W359 degrees. These photoproducts are formed in less than 10 ns and recombine to the dark state in approximately 1 micros. These results support the electron hopping mechanism.  相似文献   

3.
S T Kim  P F Heelis  T Okamura  Y Hirata  N Mataga  A Sancar 《Biochemistry》1991,30(47):11262-11270
Escherichia coli DNA photolyase, which photorepairs cyclobutane pyrimidine dimers, contains two chromophore cofactors, 1,5-dihydroflavin adenine dinucleotide (FADH2) and 5,10-methenyltetrahydrofolate (MTHF). Previous work has shown that MTHF is the primary photoreceptor which transfers energy to the FADH2 cofactor; the FADH2 singlet excited state then repairs the photodimer by electron transfer. In this study, we have determined the rate constants for these photophysical processes by time-resolved fluorescence and absorption spectroscopy. From time-resolved fluorescence, we find that energy transfer from MTHF to FADH2 and FADH degrees occurs at rates of 4.6 x 10(9) and 3.0 x 10(10) s-1, respectively, and electron transfer from FADH2 to a pyrimidine dimer occurs at a rate of 5.5 x 10(9) s-1. Using F?rster theory for long-range energy transfer and assuming K2 = 2/3, the interchromophore distances were estimated to be 22 A in the case of the MTHF-FADH2 pair and 21 A for the MTHF-FADH degrees pair. Picosecond absorption spectroscopy identified an MTHF single state which decays to yield the first excited singlet state of FADH2. The lifetimes of MTHF and FADH2 singlets and the rates of interchromophore energy transfer, as well as the rate of electron transfer from FADH2 to DNA measured by time-resolved fluorescence, were in excellent agreement with the values obtained by picosecond laser flash photolysis. Similarly, fluorescence or absorption lifetime studies of the folate-depleted enzyme with and without photodimer suggest that FADH2, in its singlet excited state, transfers an electron to the dimer with 89% efficiency. The distance between FADH2 and the photodimer was calculated to be ca. 14 A.  相似文献   

4.
Xu L  Mu W  Ding Y  Luo Z  Han Q  Bi F  Wang Y  Song Q 《Biochemistry》2008,47(33):8736-8743
Escherichia coli DNA photolyase repairs cyclobutane pyrimidine dimer (CPD) in UV-damaged DNA through a photoinduced electron transfer mechanism. The catalytic activity of the enzyme requires fully reduced FAD (FADH (-)). After purification in vitro, the cofactor FADH (-) in photolyase is oxidized into the neutral radical form FADH (*) under aerobic conditions and the enzyme loses its repair function. We have constructed a mutant photolyase in which asparagine 378 (N378) is replaced with serine (S). In comparison with wild-type photolyase, we found N378S mutant photolyase containing oxidized FAD (FAD ox) but not FADH (*) after routine purification procedures, but evidence shows that the mutant protein contains FADH (-) in vivo as the wild type. Although N378S mutant photolyase is photoreducable and capable of binding CPD in DNA, the activity assays indicate the mutant protein is catalytically inert. We conclude that the Asn378 residue of E. coli photolyase is crucial both for stabilizing the neutral flavin radical cofactor and for catalysis.  相似文献   

5.
Escherichia coli photolyase catalyzes the repair of cyclobutane pyrimidine dimers (CPD) in DNA under near UV/blue-light irradiation. The enzyme contains flavin adenine dinucleotide (FAD) and methenyltetrahydrofolate (MTHF) as noncovalently bound light sensing cofactors. To study the apoprotein-chromophore interactions we developed a new procedure to prepare apo-photolyase. MTHF-free photolyase was obtained by binding the C-terminal His-tagged holoenzyme to a metal-affinity column at neutral pH and washing the column with deionized water. Under these conditions the flavin remains bound and the defolated enzyme can be released from the column with 0.5 M imidazole pH 7.2. The MTHF-free protein was still capable of DNA repair, showing 70% activity of native enzyme. Fluorescence polarization experiments confirmed that MTHF binding is weakened at low ionic strength. Apo-photolyase was obtained by treating the His-tagged holoenzyme with 0.5 M imidazole pH 10.0. The apo-photolyase thus obtained was highly reconstitutable and bound nearly stoichiometric amounts of FAD(ox). Photolyase reconstituted with FAD(ox) had about 34% activity of native enzyme, which increased to 83% when FAD(ox) was reduced to FADH(-). Reconstitution kinetics performed at 20 degrees C showed that apo-photolyase associates with FADH(-) much faster (k(obs) approximately 3,000 M(-1) s(-1)) than with FAD(ox) (k(obs)=16 [corrected] M(-1) s(-1)). The dissociation constant of the photolyase-FAD(ox) complex is about 2.3 microM and that of E-FADH(-) is not higher than 20 nM (pH 7.2).  相似文献   

6.
DNA photolyase from the cyanobacterium Anacystis nidulans contains two chromophores, flavin adenine dinucleotide (FADH2) and 8-hydroxy-5-deazaflavin (8-HDF) (Eker, A. P. M., Kooiman, P., Hessels, J. K. C., and Yasui, A. (1990) J. Biol. Chem. 265, 8009-8015). While evidence exists that the flavin chromophore (in FADH2 form) can catalyze photorepair directly and that the 8-HDF chromophore is the major photosensitizer in photoreactivation it was not known whether 8-HDF splits pyrimidine dimer directly or indirectly through energy transfer to FADH2 at the catalytic center. We constructed a plasmid which over-produces the A. nidulans photolyase in Escherichia coli and purified the enzyme from this organism. Apoenzyme was prepared and enzyme containing stoichiometric amounts of either or both chromophores was reconstituted. The substrate binding and catalytic activities of the apoenzyme (apoE), E-FADH2, E-8-HDF, E-FAD(ox)-8-HDF, and E-FADH2-8-HDF were investigated. We found that FAD is required for substrate binding and catalysis and that 8-HDF is not essential for binding DNA, and participates in catalysis only through energy transfer to FADH2. The quantum yields of energy transfer from 8-HDF to FADH2 and of electron transfer from FADH2 to thymine dimer are near unity.  相似文献   

7.
Native DNA photolyase, as isolated from Escherichia coli, contains a neutral flavin radical (FADH.) plus a pterin chromophore (5,10-methenyltetrahydropteroylpolyglutamate) and can be converted to its physiologically significant form by reduction of FADH. to fully reduced flavin (FADH2) with dithionite or by photoreduction. Either FADH2 or the pterin chromophore in dithionite-reduced native enzyme can function as a sensitizer in catalysis. Various enzyme forms (EFADox, EFADH., EFADH2, EPteFADox, EPteFADH., EPteFADH2, EPte) containing stoichiometric amounts of FAD in either of its three oxidation states and/or 5,10-methenyltetrahydrofolate (Pte) have been prepared in reconstitution experiments. Studies with EFADox and EPte showed that these preparations retained the ability to bind the missing chromophore. The results suggest that there could be considerable flexibility in the biological assembly of holoenzyme since the order of binding of the enzyme's chromophores is apparently unimportant, the binding of FAD is unaffected by its redox state, and enzyme preparations containing only one chromophore are reasonably stable. The same catalytic properties are observed with dithionite-reduced native enzyme or EFADH2. These preparations do not exhibit a lag in catalytic assays whereas lags are observed with preparations containing FADox or FADH. in the presence or absence of pterin. Photochemical studies show that these lags can be attributed to enzyme activation under assay conditions in a reaction involving photoreduction of enzyme-bound FADox or FADH. to FADH2. EPte is catalytically inactive, but catalytic activity is restored upon reconstitution of EPte with FADox. The results show that pterin is not required for dimer repair when FADH2 acts as the sensitizer but that FADH2 is required when dimer repair is initiated by excitation of the pterin chromophore. The relative intensity of pterin fluorescence in EPte, EPteFADH., EPteFADox, or EPteFADH2 has been used to estimate the efficiency of pterin singlet quenching by FADH. (93%), FADox (90%), or FADH2 (58%). Energy transfer from the excited pterin to flavin is energetically feasible and may account for the observed quenching of pterin fluorescence and also explain why photoreduction of FADox or FADH. is accelerated by the pterin chromophore. An irreversible photobleaching of the pterin chromophore is accelerated by FADH2 in a reaction that is accompanied by a transient oxidation of FADH2 to FADH.. Both pterin bleaching and FADH2 oxidation are inhibited by substrate.  相似文献   

8.
Escherichia coli DNA photolyase was expressed as C-terminal 6x histidine-fused protein. Purification of His-tagged E. coli DNA photolyase was developed using immobilized metal affinity chromatography with Chelating Sepharose Fast Flow. By one-step affinity chromatography, approximate 4.6 mg DNA photolyase was obtained from 400 ml E. coli culture. The purified His-tagged enzyme was combined with two chromophors, FADH and MTHF. Using the oligonucleotide containing cyclobutane pyrimidine dimer as substrate, both reversed-phase high-performance liquid chromatography and size-exclusion high-performance liquid chromatography were developed to measure the enzyme activity. The enzyme was found to be able to repair the cyclobutane pyrimidine dimer with the turnover rate of 2.4 dimers/photolyase molecule/min.  相似文献   

9.
G Payne  A Sancar 《Biochemistry》1990,29(33):7715-7727
Escherichia coli DNA photolyase mediates photorepair of pyrimidine dimers occurring in UV-damaged DNA. The enzyme contains two chromophores, 1,5-dihydroflavin adenine dinucleotide (FADH2) and 5,10-methenyltetrahydrofolylpolyglutamate (MTHF). To define the roles of the two chromophores in the photochemical reaction(s) resulting in DNA repair and the effect of DNA structure on the photocatalytic step, we determined the absolute action spectra of the enzyme containing only FADH2 (E-FADH2) or both chromophores (E-FADH2-MTHF), with double- and single-stranded substrates and with substrates of different sequences in the immediate vicinity of the thymine dimer. We found that the shape of the action spectrum of E-FADH2 matches that of the absorption spectrum with a quantum yield phi (FADH2) = 0.69. The action spectrum of E-FADH2-MTHF is also in a fairly good agreement with the absorption spectrum with phi (FADH2-MTHF) = 0.59. From these values and from the previously established properties of the two chromophores, we propose that MTHF transfers energy to FADH2 with a quantum yield of phi epsilon T = 0.8 and that 1FADH2 singlet transfers an electron to or from the dimer with a quantum yield phi ET = 0.69. The chemical nature of the chromophores did not change after several catalytic cycles. The enzyme repaired a thymine dimer in five different sequence contexts with the same efficiency. Similarly, single- and double-stranded DNAs were repaired with the same overall quantum yield.  相似文献   

10.
DNA photolyase catalyzes the repair of pyrimidine dimers in UV-damaged DNA in a reaction which requires visible light. Class I photolyases (Escherichia coli, yeast) contain 1,5-dihydroFAD (FADH2) plus a pterin derivative (5,10-methenyltetrahydropteroylpolyglutamate). In class II photolyases (Streptomyces griseus, Scenedesmus acutus, Anacystis nidulans, Methanobacterium thermoautotrophicum) the pterin chromophore is replaced by an 8-hydroxy-5-deazaflavin derivative. The two classes of enzymes exhibit a high degree of amino acid sequence homology, suggesting similarities in protein structure. Action spectra studies show that both chromophores in each enzyme tested act as sensitizers in catalysis. Studies with E. coli photolyase show that the pterin chromophore is not required when FADH2 acts as the sensitizer but that FADH2 is required when the pterin chromophore acts as sensitizer. FADH2 is probably the chromophore that directly interacts with substrate in a reaction which may be initiated by electron transfer from the excited singlet state (1FADH2*) to form a flavin radical plus an unstable pyrimidine dimer radical. Pterin, the major chromophore in E. coli photolyase, may act as an antenna to harvest light energy which is then transferred to FADH2.  相似文献   

11.
P F Heelis  T Okamura  A Sancar 《Biochemistry》1990,29(24):5694-5698
Escherichia coli DNA photolyase contains a stable flavin radical that is readily photoreduced in the presence of added electron donors. Picosecond, nanosecond, and conventional flash photolysis technique have been employed to investigate the events leading to photoreduction from 40 ps to tens of milliseconds following flash excitation. Direct light absorption by the flavin radical produces the first excited doublet state which undergoes rapid (within 100 ps) intersystem crossing to yield the lowest excited quartet (n pi*) state. In contrast, light absorption by the folate chromophore produces a new intermediate state via interaction of the folate excited singlet state with the ground-state flavin radical, leading to an enhanced yield of the excited radical doublet state and hence quartet state. Subsequent reaction of the excited quartet state involves hydrogen atom abstraction from a tryptophan residue. Secondary electron transfer from added electron donors occurs to the oxidized tryptophan radical with rate constants ranging from 10(4) (dithiothreitol) to 4 x 10(6) M-1 s-1 (n-propyl gallate). The low value of the latter rate compared to reduction of the tryptophan radical in lysozyme suggests that the reactive tryptophan is highly buried in photolyase. A redox potential diagram has been constructed for the ground and excited states involved. It is concluded that the one-electron reduction potential of the excited quartet state of the flavin radical must be at least 1.23 V more positive than the ground state, in agreement with the value of delta E greater than 1.77 V calculated from spectroscopic data.  相似文献   

12.
We review our work on electron transfer and proton dynamics during photoactivation in DNA photolyase from E. coli and discuss a recent theoretical study on this issue. In addition, we present unpublished data on the charge recombination between the fully reduced FADH(-) and the neutral (deprotonated) radical of the solvent exposed tryptophan W306. We found a pronounced acceleration with decreasing pH and an inverse deuterium isotope effect (k(H)/k(D)=0.35 at pL 6.5) and interpret it in a model of a fast protonation equilibrium for the W306 radical. Due to this fast equilibrium, two parallel recombination channels contribute differently at different pH values: one where reprotonation of the W306 radical is followed by electron transfer from FADH(-) (electron transfer time constant tau(et) in the order of 10-50 micros), and one where electron transfer from FADH(-) (tau(et)=25 ms) is followed by reprotonation of the W306 anion.  相似文献   

13.
Photolyases are proteins with an FAD chromophore that repair UV-induced pyrimidine dimers on the DNA in a light-dependent manner. The cyclobutane pyrimidine dimer class III photolyases are structurally unknown but closely related to plant cryptochromes, which serve as blue-light photoreceptors. Here we present the crystal structure of a class III photolyase termed photolyase-related protein A (PhrA) of Agrobacterium tumefaciens at 1.67-Å resolution. PhrA contains 5,10-methenyltetrahydrofolate (MTHF) as an antenna chromophore with a unique binding site and mode. Two Trp residues play pivotal roles for stabilizing MTHF by a double π-stacking sandwich. Plant cryptochrome I forms a pocket at the same site that could accommodate MTHF or a similar molecule. The PhrA structure and mutant studies showed that electrons flow during FAD photoreduction proceeds via two Trp triads. The structural studies on PhrA give a clearer picture on the evolutionary transition from photolyase to photoreceptor.  相似文献   

14.
Cyclobutane-type pyrimidine dimers generated by ultraviolet irradiation of DNA can be cleaved by DNA photolyase. The enzyme-catalysed reaction is believed to be initiated by the light-induced transfer of an electron from the anionic FADH- chromophore of the enzyme to the pyrimidine dimer. In this contribution, first infrared experiments using a novel E109A mutant of Escherichia coli DNA photolyase, which is catalytically active but unable to bind the second cofactor methenyltetrahydrofolate, are described. A stable blue-coloured form of the enzyme carrying a neutral FADH radical cofactor can be interpreted as an intermediate analogue of the light-driven DNA repair reaction and can be reduced to the enzymatically active FADH- form by red-light irradiation. Difference Fourier transform infrared (FT-IR) spectroscopy was used to monitor vibronic bands of the blue radical form and of the fully reduced FADH- form of the enzyme. Preliminary band assignments are based on experiments with 15N-labelled enzyme and on experiments with D2O as solvent. Difference FT-IR measurements were also used to observe the formation of thymidine dimers by ultraviolet irradiation and their repair by light-driven photolyase catalysis. This study provides the basis for future time-resolved FT-IR studies which are aimed at an elucidation of a detailed molecular picture of the light-driven DNA repair process.  相似文献   

15.
Photolyase is an enzyme that catalyses photorepair of thymine dimers in UV damaged DNA by electron transfer reaction. The structure of the photolyase/DNA complex is unknown at present. Using crystal structure coordinates of the substrate-free enzyme from E. coli, we have recently built a computer molecular model of a thymine dimer docked to photolyase catalytic site and studied molecular dynamics of the system. In this paper, we present analysis of the electronic coupling and electron transfer pathway between the catalytic cofactor FADH(-) and the pyrimidine dimer by the method of interatomic tunneling currents. Electronic structure is treated in the extended Hückel approximation. The root mean square transfer matrix element is about 6 cm(-1), which is consistent with the experimentally determined rate of transfer. We find that electron transfer mechanism responsible for the repair utilizes an unusual folded conformation of FADH(-) in photolyases, in which the isoalloxazine ring of the flavin and the adenine are in close proximity, and the peculiar features of the docked orientation of the dimer. The tunneling currents show explicitly that despite of the close proximity between the donor and acceptor complexes, the electron transfer mechanism between the flavin and the thymine bases is not direct, but indirect, with the adenine acting as an intermediate. These calculations confirm the previously made conclusion based on an indirect evidence for such mechanism.  相似文献   

16.
Native DNA photolyase from Escherichia coli contains 1,5-dihydroFAD (FADH2) plus 5,10-methenyltetrahydropteroylpolyglutamate. Quantum yield and action spectral data for thymine dimer repair were obtained by using a novel multiple turnover approach under aerobic conditions. This method assumes that catalysis proceeds via a (rapid-equilibrium) ordered mechanism with light as the second substrate, as verified in steady state kinetic studies. The action spectrum observed with native enzyme matched its absorption spectrum and an action spectrum simulated based on an energy transfer mechanism where dimer repair is initiated either by direct excitation of FADH2 or by pterin excitation followed by singlet-singlet energy transfer to FADH2. The quantum yield observed for dimer repair with native enzyme (phi Native = 0.722 +/- 0.0414) is similar to that observed with enzyme containing only FADH2 (phi EFADH2 = 0.655 +/- 0.0256), as expected owing to the high efficiency of energy transfer from the natural pterin to FADH2 [EET = 0.92]. The quantum yield observed for dimer repair decreased (2.1-fold) when the natural pterin was partially (68.8%) replaced with 5,10-CH(+)-H4folate (phi obs = 0.342 +/- 0.0149). This is consistent with the energy transfer mechanism (phi calc = 0.411 +/- 0.0118) since a 2-fold lower energy transfer efficiency is observed when the natural pterin is replaced with 5,10-CH(+)-H4folate (EET = 0.46) (Lipman & Jorns, 1992). The action spectrum observed for 5,10-CH(+)-H4folate-supplemented enzyme matched a simulated action spectrum which exhibited a small (5 nm) hypsochromic shift as compared with the absorption spectrum (lambda max = 385 nm).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
We have purified DNA photolyase from the autotrophic anaerobic archaebacterium Methanobacterium thermoautotrophicum to near homogeneity by a two-column affinity chromatography. The purified enzyme has an Mr = 60,000 and shows near UV absorption peak at 440 nm and a fluorescence emission maximum at 462 nm indicating that it contains 8-hydroxy-5-deazaflavin (coenzyme F420) as an intrinsic chromophore. The photolyase binds with high specificity to thymine dimer in DNA with an equilibrium binding constant, KA = 1.4 x 10(9) M-1, and a dissociation rate constant, koff = 1.4 x 10(-4) s-1 (t1/2 = 43 min). Despite 6-fold higher affinity compared to the folate-containing Escherichia coli photolyase the two enzymes apparently contact the same phosphates around the thymine dimer: the phosphate immediately 5' and the three phosphates immediately 3' to the dimer on the damaged strand and the phosphate across from the dimer in the minor groove on the complementary strand. The absolute action spectrum of the Methanobacterium photolyase in the 400-500-nm region closely matches the absorption of the enzyme-bound F420. The quantum yield (phi) over this region is constant and is approximately 0.2. The value is measurably smaller than the quantum yields reported for other DNA photolyases.  相似文献   

18.
MacFarlane AW  Stanley RJ 《Biochemistry》2003,42(28):8558-8568
DNA photolyase (PL) is a monomeric flavoprotein that repairs cyclobutylpyrimidine dimers (CPDs) via photoinduced electron transfer from a reduced flavin adenine dinucleotide cofactor (FADH(-)) to the bound CPD. We have used subpicosecond UV transient absorption spectroscopy to measure the electron-transfer and repair kinetics of Anacystis nidulans DNA photolyase with dimeric and pentameric oligothymidine substrates. Here we show that the electron-transfer lifetime is 32 +/- 20 ps for the pentameric substrate. Repair of the carbon-carbon double bonds (C=C) in the CPD is initiated in approximately 60 ps, and bond scission appears to be completed by 1500 ps. This suggests that the repair of the two C=C bonds proceeds sequentially and that the first bond scission has a much lower activation barrier than the second. Our experiments also suggest that the semiquinone FADH(*) cofactor is not reduced to its catalytically active FADH(-) state by substrate after repair but remains in the semiquinone state. In contrast to the longer substrate, the dinucleotide substrate produced a mixture of kinetics representing bound and unbound substrate.  相似文献   

19.
A J Ramsey  M S Jorns 《Biochemistry》1992,31(36):8437-8441
DNA photolyase from Escherichia coli contains 1,5-dihydroFAD (FADH2) plus 5,10-methenyltetrahydropteroylpolyglutamate. The action spectrum observed for apoenzyme reconstituted with 5-deazaFADH2 (EdFADH2) matched its absorption spectrum after correction for the presence of a small amount of inactive 5-deazaFADox. The quantum yield for dimer repair with EdFADH2 (phi EdFADH2 = 0.110) was 6-fold lower than that observed with apoenzyme reconstituted with FADH2. Excited-state redox potential calculations indicate that 5-deazaFADH2 singlet is a better one-electron donor (E = -3.5 V) than FADH2 singlet (E = -2.7 V). Other studies indicate that the quantum yield for electron transfer from reduced flavin singlet to pyrimidine dimer (0.88) is unaffected when FADH2 is replaced by 5-deazaFADH2. Enhanced back electron transfer from pyrimidine dimer radical to flavin radical may account for the decreased quantum yield observed with EdFADH2 since, in the ground state, 5-deazaFADH. is a better oxidant than FADH.. The action spectrum observed for apoenzyme reconstituted with 5-deazaFADH2 plus 5,10-CH(+)-H4folate (EPtedFADH2) matched the absorption spectrum determined for enzyme-bound 5-deazaFADH2, indicating that the pterin chromophore was inactive as a sensitizer. This differs from results obtained with native enzyme, where pterin acts as a sensitizer via efficient singlet-singlet energy transfer to FADH2. The quantum yield for dimer repair by 5-deazaFADH2 bound to EPtedFADH2 (phi EPtedFADH2 = 0.0318) was 28.9% of that observed for EdFADH2. Spectroscopic studies indicate that singlet-singlet energy transfer in EPtedFADH2 is very efficient but only occurs in the "wrong" direction, i.e., from excited 5-deazaFADH2 to pterin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
5-DeazaFAD bound to a hydrophobic site in apophotolyase and formed a stable reconstituted enzyme, similar to that observed with FAD. Although stoichiometric incorporation was observed, the flavin ring modification in 1-deazaFAD interfered with normal binding, decreased protein stability, and prevented formation of a stable flavin radical, unlike that observed with FAD. The results suggest that an important hydrogen bond is formed between the protein and N (1) in FAD, but not N (5), and that there is sufficient space at the normal flavin binding site near N (5) to accommodate an additional hydrogen but not near N (1). Catalytic activity was observed with enzyme containing 5-deazaFADH2 (42% of native enzyme) or 1-deazaFADH2 (11% of native enzyme) as its only chromophore, but no activity was observed with the corresponding oxidized flavins, similar to that observed with FAD and consistent with a mechanism where dimer cleavage is initiated by electron donation from excited reduced flavin to substrate. The protein environment in photolyase selectively enhanced photochemical reactivity in the fully reduced state, as evidenced by comparison with results obtained in model studies with the corresponding free flavins. Phosphorescence was observed with free or photolyase-bound 5-deazaFADH2, providing the first example of a flavin that exhibits phosphorescence in the fully reduced state. Formation of an enzyme-substrate complex resulted in a nearly identical extent of quenching of 5-deazaFADH2 phosphorescence (85.1%) and fluorescence (87.5%). The data are consistent with a mechanism involving exclusive reaction of substrate with the excited singlet state of 5-deazaFADH2, analogous to that proposed for FADH2 in native enzyme. Direct evidence for singlet-singlet energy transfer from enzyme-bound 5-deazaFADH2 to 5,10-CH(+)-H4folate was provided by the fact that pterin fluorescence was observed upon excitation of 5-deazaFADH2, accompanied by a decrease in 5-deazaFADH2 fluorescence. On the other hand, the fluorescence of enzyme-bound pterin was quenched by 5-deazaFADox, consistent with energy transfer from pterin to 5-deazaFADox. In each case, the spectral properties of the chromophores were consistent with the observed direction of energy transfer and indicated that transfer in the opposite direction was energetically unlikely. Unlike 5-deazaFAD, energy transfer from pterin to FAD is energetically feasible with FADH2 or FADox. The results indicate that the direction of flavin-pterin energy transfer at the active site of photolyase can be manipulated by changes in the flavin ring or redox state which alter the energy level of the flavin singlet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号