共查询到20条相似文献,搜索用时 15 毫秒
1.
Bowman et al. (Journal of Biogeography, 2008, 35 , 1976–1988) aimed to explain observed increases in woody cover on floodplains and savannas of Kakadu National Park using estimates of buffalo (Bubalus bubalis) density as a causal variable. They found that buffalo were a minor model variable and concluded that buffalo are ‘not a major driver of floodplain and eucalypt dynamics’. However, the authors mislabelled the historical density of buffalo on their site, citing a period as high density instead of low density. Further, their results were not contextualized within the substantial body of scientific and historical evidence of the buffalo’s strong influence on vegetation in Kakadu. The authors instead postulated three unanalysed drivers of observed patterns of change: fire regime, rainfall and atmospheric CO2. We suggest that further analyses of change in woody vegetation should make use of accurate historical records of grazers as well as available data sets on fire history. 相似文献
2.
D. M. J. S. Bowman J. E. Riley G. S. Boggs C. E. R. Lehmann L. D. Prior 《Journal of Biogeography》2008,35(11):1976-1988
Aim To study changes in woody vegetation in both floodplains and eucalypt savanna over a 40‐year period using multi‐temporal spatial analysis of variation in density of a large introduced herbivore, the Asian water buffalo (Bubalus bubalis). Feral buffalo built up to high densities in the study area until c. 1985, after which a control programme almost eliminated the animals. From 1990, low densities of managed buffalo were maintained inside an enclosure. We compared trends in woody vegetation when buffalo were high‐density feral, low‐density managed or absent. Location The study area was located in and around a 116‐km2 buffalo enclosure inside Kakadu National Park, in monsoonal northern Australia. Methods We analysed sequences of digitized and geo‐rectified aerial photographs, acquired in 1964, 1975, 1984, 1991 and 2004, to chart changes in woody cover on the floodplain and in the savanna. On the floodplain we assessed whether trees were present at these times at 14,568 points, and buffalo density was estimated from the density of animal tracks. In the savanna we estimated woody cover at pre‐selected sites. Generalized linear modelling was used to analyse changes in woody vegetation, using elevation and presence of woody vegetation in neighbouring points on the floodplain, and buffalo regime and initial woody cover in the savanna. Results Changes in animal track density reflected park‐wide historical estimates of buffalo numbers. Tree cover increased in both floodplain and savanna, but this was only weakly related to buffalo density. The best predictor of whether a floodplain cell converted from treeless to woody, or the converse, was the woodiness of neighbouring vegetation. There was slightly less thickening with high buffalo densities. In savanna, low densities of managed buffalo were weakly associated with increases in tree cover relative to either high densities of feral buffalo or no buffalo. Main conclusions Our study indicates that buffalo are not a major driver of floodplain and eucalypt savanna dynamics. Rather, the observed increase in woody cover in both savanna and flood plains concords with regional trends and may be related to increased atmospheric CO2, increasing rainfall and changing fire regimes during the study period. 相似文献
3.
- 1 Analysis of digitized aerial photographs taken in 1941 and 1994, using image processing and geographical information system technology, enabled the quantification of change in the coverage of forest and grassland patches that occur within a Eucalyptus savanna matrix in a subcoastal region of the Australian monsoon tropics. The 3058 ha study area was orientated along a low escarpment that separated a sandstone plateau from lowlands that comprised 58% and 42% of the area, respectively.
- 2 In the 53‐year period, humans modified less than 1% of the study area, primarily for road building, and primarily in savanna areas. More than 85% of the study area at both sample times was covered by savanna. However, over the same period, the forest coverage increased from 5.03% to 9.91% of the study area and coverage of grassland decreased from 6.70% to 2.47%. The aerial photography also showed that tree density in the savanna had increased, although this was not assessed quantitatively.
- 3 There was an increase in the number of forest patches from 116 to 142. The number of grassland patches decreased (particularly those > 1 ha) from 87 to 59, although the size class distribution of forest and grassland patches was statistically similar for both sample times.
- 4 A 50‐m GIS buffer was used to distinguish creek‐lines environments from surrounding catchments. Using this criterion, 14% of the study area was classified as plateau creek‐lines and 9% lowland creek‐lines. Although the expansion of forest and loss of grassland varied significantly amongst catchment and creek‐lines on the plateau and lowlands, the 1941 rank order of coverage of each vegetation type was maintained in these four landscape categories in 1994. In both years the greatest extent of forest and grassland occurred on the lowland catchments, despite their accounting for only one‐third of the study area.
- 5 Transition matrices for vegetation change among the four landscape categories demonstrated that, unlike the other vegetation types, grasslands, particularly on the plateau, had a low probability of remaining unchanged during the study period.
- 6 The cause(s) of the overall increase of woody biomass across the topographic and edaphic gradient remains unclear but may be related to a period of increased rainfall since the 1970s, as well as to the cessation of Aboriginal landscape burning at the beginning of the study period.
4.
Aim There has been considerable debate about pre‐settlement stand structures in temperate woodlands in south‐eastern Australia. Traditional histories assumed massive tree losses across the region, whereas a number of recent histories propose that woodlands were originally open and trees regenerated densely after settlement. To reconcile these conflicting models, we gathered quantitative data on pre‐settlement stand structures in Eucalyptus–Callitris woodlands in central New South Wales Australia, including: (1) tree density, composition, basal area and canopy cover at the time of European settlement; and (2) post‐settlement changes in these attributes. Location Woodlands dominated by Eucalyptus species and Callitris glaucophylla, which originally occupied approximately 100,000 km2 in central New South Wales, Australia. Methods We recorded all evidence of pre‐settlement trees, including stumps, stags and veteran trees, from 39 relatively undisturbed 1‐ha stands within 16 State Forests evenly distributed across the region. Current trees were recorded in a nested 900 m2 quadrat at each site. Allometric relationships were used to estimate girth over bark at breast height, tree basal area, and crown diameter from the girth of cut stumps. A post‐settlement disturbance index was developed to assess correlations between post‐settlement disturbance and attributes of pre‐settlement stands. Results The densities of all large trees (> 60 cm girth over bark at breast height) were significantly greater in current stands than at the time of European settlement (198 vs. 39 trees ha?1). Pre‐settlement and current stands did not differ in basal area. However, the proportional representation of Eucalyptus and Callitris changed completely. At the time of settlement, stands were dominated by Eucalyptus (78% of basal area), whereas current stands are dominated by Callitris (74%). On average, Eucalyptus afforded 83% of crown cover at the time of settlement. Moreover, the estimated density, basal area and crown cover of Eucalyptus at the time of settlement were significantly negatively correlated with post‐settlement disturbance, which suggests that these results underestimate pre‐settlement Eucalyptus representation in the most disturbed stands. Main conclusions These results incorporate elements of traditional and recent vegetation histories. Since European settlement, State Forests have been transformed from Eucalyptus to Callitris dominance as a result of the widespread clearance of pre‐settlement Eucalyptus and dense post‐settlement recruitment of Callitris. Tree densities did increase greatly after European settlement, but most stands were much denser at the time of settlement than recent histories suggest. The original degree of dominance by Eucalyptus was unexpected, and has been consistently underestimated in the past. This study has greatly refined our understanding of post‐settlement changes in woodland stand structures, and will strengthen the foundation for management policies that incorporate historical benchmarks of landscape vegetation changes. 相似文献
5.
Aims
Woody plant encroachment is a widespread phenomenon affecting treeless or sparsely treed habitats. We aimed to determine the extent and timing of tree and shrub encroachment into rock barrens of eastern Ontario over the last century, and to assess implications for their ongoing management.Location
Queen's University Biological Station in the Frontenac Arch ecoregion.Methods
We quantified the extent of change in woody vegetation in 290 rock barrens using aerial photography from 1925, 1965, and 2008. Composition and structure of woody plant communities in 10 barrens was subsequently quantified in the field using plot-based sampling. Cores or cross-sections were obtained from individuals >1.5 m height and dendrochronological techniques were used to determine their age and identify temporal patterns of any woody encroachment.Results
Aerial photography indicated that the mean proportion of woody plant cover in barrens increased 22.5% from 1925 to 2008. Dendroecological analysis supported this. Few trees were present prior to 1900 and most established since 1960. Fraxinus americana, Juniperus virginiana, and Juniperus communis were the most common woody species colonizing the barrens. Remnants of large Pinus strobus stumps with extensive charring were found in 90% of the sampled barrens at a mean density of 22.6 stumps ha−1.Conclusions
Rock barrens on the Frontenac Arch have changed substantially over the past century; gradually being colonized by trees and shrubs and losing their distinctly open character. Active management — including prescribed fire and mechanical thinning — may be necessary if there is a desire to maintain these barrens and the rare species they support as components of the region's biodiversity. However, identification of a reference state for restoration is complicated by the fact that the structure and composition of these habitats were undoubtedly altered by European land clearance in the 19th century, and that some of these areas likely existed as pine woodlands before that. 相似文献6.
D. M. J. S. Bowman S. W. Wood D. Neyland G. J. Sanders L. D. Prior 《Austral ecology》2013,38(6):627-638
The persistence of treeless grasslands and sedgelands within a matrix of eucalypt and rainforest vegetation in the montane plateaux of northern Tasmania has long puzzled ecologists. Historical sources suggest that Tasmanian Aborigines were burning these treeless patches and models seeking to explain their maintenance generally include fire, soil properties and Aboriginal landscape burning. We aimed to provide a new historical perspective of the dynamics of the vegetation mosaics of Surrey Hills and Paradise Plains in north‐west and north‐east Tasmania, respectively, and used vegetation surveys and soil sampling to explore the role of vegetation and soils in these dynamics. Sequences of historical maps (1832 and 1903) and aerial photography showed that many treeless patches have persisted in the landscape since European settlement and that forests have rapidly expanded into the treeless patches since the early 1950s. Stand structure and floristic data described an expanding forest dominated by Leptospermum, which is consistent with vegetation succession models for the region. Soils under expanding forest boundaries did not have higher soil nitrogen or phosphorus than those under stable boundaries, signalling a lack of edaphic limitation to forest expansion. The magnitude of forest expansion at Paradise Plains (granite), Surrey Hills (basalt) and south‐west Tasmania (quartzite) appears to follow a nutrient availability gradient and this hypothesis is backed by differences in soil phosphorus capital between the three systems. Given that existing vegetation boundaries in northern Tasmania do not coincide with soil nutrient gradients, we suggest that treeless vegetation was maintained by Aboriginal landscape burning and that the recent contraction of treeless vegetation is related to the breakdown of these fire regimes following European settlement. The observed rates of forest expansion could result in a substantial loss of these grasslands if sustained through this century and therefore our work supports the continuation of prescribed burning to maintain this high conservation value ecosystem. 相似文献
7.
Melaleuca swamp forests form a fringe around seasonally inundated freshwater flood plains of Kakadu National Park (KNP). Previous studies based on the analysis of aerial photography reported an increase in woody plant cover on these flood plains, apparently associated with changed fire regimes, increased rainfall and possibly increased atmospheric CO2. In opposition to this woody vegetation encroachment past high densities of feral buffalo in the 1960 to mid 1980s changed the hydrology of the KNP flood plains, allowing increased penetration of saltwater causing extensive death of Melaleuca forests. Climate change has increased sea levels and there is concern that this will threaten the freshwater ecosystems of KNP. We hypothesized that Melaleuca forests that were previously impacted by high densities of feral buffalo have continued to decline because of salinization driven by sea level rise. We examined this hypothesis by overlaying georeferenced aerial photography taken in 1964, 1984 and 2004 in a geographic information environment, and then constructing generalized linear fixed effects and mixed effects models to rank the statistical strength of different drivers of Melaleuca forest contraction. We found that there has been a 5% overall contraction of Melaleuca forests over the last 50 years on our study sites, although the amount of contraction varied both geographically and temporally. The amount of Melaleuca forest contraction was greatest during the 1984–2004 interval, when buffalo densities were low. Contraction was greatest on the Melaleuca forest edges, at low‐lying sites, and where high densities of buffalo were apparent in 1964. These results suggest the enduring legacy effect of past buffalo damage will amplify the effects of sea level rise on the flood plains of KNP. 相似文献
8.
Aim To deepen understanding of the factors that influenced the formation of oak savanna in central Kentucky, USA. Particular attention was focused on the link between historical disturbance and the formation of savanna ecosystem structure. Location Central Kentucky, USA. Methods We used dendrochronological analysis of tree‐ring samples to understand the historical growth environment of remnant savanna stems. We used release detection and branch‐establishment dates to evaluate changes in tree growth and the establishment of savanna physiognomy. We contrasted our growth chronology with reference chronologies for regional tree growth, climate and human population dynamics. Results Trees growing in Kentucky Inner Bluegrass Region (IBR) savanna remnants exhibited a period of suppression, extending from the establishment date of the tree to release events that occurred c. 1800. This release resulted in a tripling of the annual radial growth rate from levels typical of oaks suppressed under a forest canopy (< 1 mm year?1) to levels typical of open‐grown stems (3 mm year?1). The growth releases in savanna trees coincided with low branch establishment. Over the release period, climatic conditions remained relatively constant and growth in regional forest trees was even; however, the growth increase in savanna stems was strongly correlated with a marked increase in Euro‐American population density in the region. Main conclusions Our data suggest that trees growing in savanna remnants originated in the understorey of a closed canopy forest. We hypothesize that Euro‐American land clearing to create pasturelands released these trees from light competition and resulted in the savanna physiognomy that is apparent in remnant stands in the IBR. Although our data suggest that savanna trees originated in a forest understorey, this system structure itself may have been a result of an unprecedented lack of Native American activity in the region due to population loss associated with pandemics brought to North America by Euro‐Americans. We present a hypothetical model that links human population dynamics, land‐use activities and ecosystem structure. Our model focuses on the following three land‐use eras: Native American habitation/utilization; land abandonment; and Euro‐American land clearance. Ecological understanding of historical dynamics in other ecosystems of eastern North America may be enhanced through recognition of these eras. 相似文献
9.
Future eating and country keeping: what role has environmental history in the management of biodiversity? 总被引:3,自引:0,他引:3
D.M.J.S. Bowman 《Journal of Biogeography》2001,28(5):549-564
In order to understand and moderate the effects of the accelerating rate of global environmental change land managers and ecologists must not only think beyond their local environment but also put their problems into a historical context. It is intuitively obvious that historians should be natural allies of ecologists and land managers as they struggle to maintain biodiversity and landscape health. Indeed, ‘environmental history’ is an emerging field where the previously disparate intellectual traditions of ecology and history intersect to create a new and fundamentally interdisciplinary field of inquiry. Environmental history is rapidly becoming an important field displacing many older environmentally focused academic disciplines as well as capturing the public imagination. By drawing on Australian experience I explore the role of ‘environmental history’ in managing biodiversity. First I consider some of the similarities and differences of the ecological and historical approaches to the history of the environment. Then I review two central questions in Australian environment history: landscape‐scale changes in woody vegetation cover since European settlement and the extinction of the marsupials in both historical and pre‐historical time. These case studies demonstrate that environmental historians can reach conflicting interpretations despite using essentially the same data. The popular success of some environmental histories hinges on the fact that they narrate a compelling story concerning human relationships and human value judgements about landscape change. Ecologists must learn to harness the power of environmental history narratives to bolster land management practices designed to conserve biological heritage. They can do this by using various currently popular environmental histories as a point of departure for future research, for instance by testing the veracity of competing interpretations of landscape‐scale change in woody vegetation cover. They also need to learn how to write parables that communicate their research findings to land managers and the general public. However, no matter how sociologically or psychologically satisfying a particular environmental historical narrative might be, it must be willing to be superseded with new stories that incorporate the latest research discoveries and that reflects changing social values of nature. It is contrary to a rational and publicly acceptable approach to land management to read a particular story as revealing the absolute truth. 相似文献
10.
The impact of Aboriginal landscape burning on the Australian biota 总被引:12,自引:0,他引:12
D. M. J. S. BOWMAN 《The New phytologist》1998,140(3):385-410
11.
12.
Stefania Ondei Lynda D. Prior Tom Vigilante David M.J.S. Bowman 《Journal of Biogeography》2017,44(10):2331-2342
13.
An analysis using an artificial neural network model suggests that the tropical forests of north Queensland are highly sensitive to climate change within the range that is likely to occur in the next 50–100 years. The distribution and extent of environments suitable for 15 structural forest types were estimated, using the model, in 10 climate scenarios that include warming up to 1°C and altered precipitation from –10% to +20%. Large changes in the distribution of forest environments are predicted with even minor climate change. Increased precipitation favours some rainforest types, whereas decreased rainfall increases the area suitable for forests dominated by sclerophyllous genera such as Eucalyptus and Allocasuarina. Rainforest environments respond differentially to increased temperature. The area of lowland mesophyll vine forest environments increases with warming, whereas upland complex notophyll vine forest environments respond either positively or negatively to temperature, depending on precipitation. Highland rainforest environments (simple notophyll and simple microphyll vine fern forests and thickets), the habitat for many of the region’s endemic vertebrates, decrease by 50% with only a 1°C warming. Estimates of the stress to present forests resulting from spatial shifts of forest environments (assuming no change in the present forest distributions) indicate that several forest types would be highly stressed by a 1°C warming and most are sensitive to any change in rainfall. Most forests will experience climates in the near future that are more appropriate to some other structural forest type. Thus, the propensity for ecological change in the region is high and, in the long term, significant shifts in the extent and spatial distribution of forests are likely. A detailed spatial analysis of the sensitivity to climate change indicates that the strongest effects of climate change will be experienced at boundaries between forest classes and in ecotonal communities between rainforest and open woodland. 相似文献
14.
Ian D. Lunt Lisa M. Winsemius Simon P. McDonald John W. Morgan Remy L. Dehaan 《Journal of Biogeography》2010,37(4):722-732
Aim Encroachment or densification by woody plants affects natural ecosystems around the world. Many studies have reported encroachment in temperate Australia, particularly in coastal ecosystems and grassy woodlands. However, the degree to which published studies reflect broad-scale changes is unknown because most studies intentionally sampled areas with conspicuous densification. We aimed to estimate changes in woody vegetation cover within lowland grassy woodland and coastal ecosystems in Victoria from 1989 to 2005 to determine whether published reports of recent encroachment are representative of broad-scale ecosystem changes. Location All lowland grassy woodland and coastal ecosystems (c. 6.11 × 105 ha) in Victoria, Australia. Four major ecosystems were analysed: Plains woodlands, Herb-rich woodlands, Riverine woodlands and Coastal vegetation. Methods Changes in woody vegetation cover from 1989 to 2005 were assessed based on state-wide vegetation maps and Landsat analyses of woody vegetation cover conducted by the Australian Greenhouse Office’s National Carbon Accounting System. The results show changes in woody cover within mapped patches of native vegetation, rather than changes in the extent of woody vegetation resulting from clearing and revegetation. Results When pooled across all ecosystems, woody vegetation increased by 18,730 ha from 1989 to 2005. Woody cover within Riverine woodlands and within Plains woodlands each increased by >7000 ha. At the patch scale, the mean percentage cover of woody vegetation in each polygon increased by >5% in all four ecosystems: Riverine woodlands (+9.2% on average), Herb-rich woodlands (+7.6%), Plains woodlands (+6.7%) and Coastal vegetation (+5.9%). Regression models relating degree of encroachment to geographic and climatic variables were extremely weak (r2 ≤ 0.026), indicating that most variation occurred at local scales rather than across broad geographic gradients. Main conclusions At the scale of observation, woody vegetation cover increased in all lowland woodland and coastal ecosystems over the 16-year period. Thus, published examples of encroachment in selected coastal and woodland patches do appear to reflect widespread increases in woody vegetation cover in these ecosystems. This densification appears to be associated with changes in land management rather than with post-fire vegetation recovery and is likely to be ongoing and long-lasting, with substantial implications for biodiversity conservation and ecosystem services. 相似文献
15.
Ruchira Somaweera Mathew L. Brien Steven G. Platt Charlie Manolis Bruce L. Webber 《Freshwater Biology》2019,64(2):257-268
- As one of the world's largest predators of freshwater environments, crocodylians play an important role in shaping their community. In turn, many aspects of crocodylian life histories are influenced and have been shaped by characteristics of their environment, especially vegetation. However, our understanding of just how vegetation impacts crocodylian life histories remains limited, particularly in regard to indirect interactions. Such interactions can be critical for understanding population dynamics and, therefore, for informing conservation management decisions.
- We reviewed contemporary understanding of these plant–crocodylian interactions in peer‐reviewed journals and the grey literature, synthesising life history‐shaping dynamics against aspects of their ecology. We then conceptualised how global environmental change, including climate change, species invasions and land use change, may threaten these critical dependencies, and how future conservation plans need to account for these pressures.
- We identified five primary aspects of crocodylian ecology—habitat selection, nesting ecology, communication, physiology, and feeding ecology—that are probably shaped by vegetation interactions at different spatial scales. These interactions include direct and indirect impacts, with both positive and negative outcomes from a crocodylian perspective.
- Anthropogenic impacts on environments via global environmental change drivers is causing unprecedented change to vegetation dynamics. What is often overlooked is how these changes impact large aquatic predators such as crocodylians. Our synthesis shows that while many impacts can be identified, their magnitude and mechanism are not well understood, making management driven mitigation challenging. We recommend that future studies prioritise quantifying how vegetation communities shape the suitability of crocodylian nest sites, and how to best detect the fingerprint of impacts caused by invasive alien plants on demographic change in crocodylians over longer durations. An improved understanding of the impact of vegetation impacts on crocodylians is essential for building effective conceptual frameworks and management agendas for the conservation of these iconic reptiles.
16.
Understanding the drivers of spatial patterns of genomic diversity has emerged as a major goal of evolutionary genetics. The flexibility of forward-time simulation makes it especially valuable for these efforts, allowing for the simulation of arbitrarily complex scenarios in a way that mimics how real populations evolve. Here, we present Geonomics, a Python package for performing complex, spatially explicit, landscape genomic simulations with full spatial pedigrees that dramatically reduces user workload yet remains customizable and extensible because it is embedded within a popular, general-purpose language. We show that Geonomics results are consistent with expectations for a variety of validation tests based on classic models in population genetics and then demonstrate its utility and flexibility with a trio of more complex simulation scenarios that feature polygenic selection, selection on multiple traits, simulation on complex landscapes, and nonstationary environmental change. We then discuss runtime, which is primarily sensitive to landscape raster size, memory usage, which is primarily sensitive to maximum population size and recombination rate, and other caveats related to the model’s methods for approximating recombination and movement. Taken together, our tests and demonstrations show that Geonomics provides an efficient and robust platform for population genomic simulations that capture complex spatial and evolutionary dynamics. 相似文献
17.
The history of isolated patches of monsoon rainforest within large tracts of Eucalyptus savanna is poorly understood because of the scarcity of reliable palaeoecological records in the Australian monsoon tropics. Elsewhere in the world, the ratio of the stable isotopes 13C to 12C (δ13C) in soil organic matter has shed light on the dynamics of rainforest–savanna boundaries because tropical grasses with the C4 photosynthetic pathway have a distinct δ13C signature (–17 to –9‰) compared with that of woody plants with the C3 photosynthetic pathway (–32 to –22‰). In order to determine the magnitude of the variation in δ13C, unreplicated soil profiles were sampled beneath different vegetation types on three boundaries between Eucalyptus savanna and rainforest that were both growing on Tertiary age laterite parent material. Replicated (n = 3) soil profiles, which were also derived from Tertiary age laterite, were sampled from beneath: (i) dense stands of African grasses within a frequently burnt Eucalyptus savanna; and within the same long unburnt Eucalyptus savanna, (ii) patches of African and natives grasses and (iii) clumps of Acacia trees. The strongly negative δ13C values of soil organic matter derived from the frequently burnt and long unburnt grassy understoreys in the Eucalyptus savannas showed that a considerable amount of the soil carbon was derived from C3 (woody) species despite the presence of a ground layer dominated by C4 grasses. However, a feature of these data was the considerable variability among the three ‘replicate’ profiles. The surface soil samples from beneath three clumps of Acacia trees in the unburnt Eucalyptus savanna had much less variable δ13C values and were similar to two of the three monsoon rainforests sampled. The pattern of δ13C values from unreplicated soil profiles from different vegetation types across three rainforest boundaries was also very variable and not always obviously related the known disturbance history of the extant vegetation. Given the considerable variability within and between vegetation types with contrasting disturbance histories, it is concluded that the use of carbon stable isotopes to advance understanding of the dynamics of rainforest and Eucalyptus savanna boundaries will require further development, such as determination of the 14C age and δ13C values of different soil carbon fractions. 相似文献
18.
Amy K. Hahs Mark J. McDonnell Michael A. McCarthy Peter A. Vesk Richard T. Corlett Briony A. Norton Steven E. Clemants Richard P. Duncan Ken Thompson Mark W. Schwartz Nicholas S. G. Williams 《Ecology letters》2009,12(11):1165-1173
Plant extinctions from urban areas are a growing threat to biodiversity worldwide. To minimize this threat, it is critical to understand what factors are influencing plant extinction rates. We compiled plant extinction rate data for 22 cities around the world. Two-thirds of the variation in plant extinction rates was explained by a combination of the city's historical development and the current proportion of native vegetation, with the former explaining the greatest variability. As a single variable, the amount of native vegetation remaining also influenced extinction rates, particularly in cities > 200 years old. Our study demonstrates that the legacies of landscape transformations by agrarian and urban development last for hundreds of years, and modern cities potentially carry a large extinction debt. This finding highlights the importance of preserving native vegetation in urban areas and the need for mitigation to minimize potential plant extinctions in the future. 相似文献
19.
\"个性\"是指不同时空条件下动物种群个体间行为的稳定差异。大量的理论和实验性研究表明,个性差异在动物界普遍存在,其是种群多度和分布、物种共存及群落构建的重要驱动因子。介绍了动物个性的概念、分类及衡量指标,将前人测量个性类型的方法加以总结;随后介绍了动物个性的生态学意义,尤其是个性对动物生活史策略、种群分布与多度、群落结构和动态、生态系统功能和过程以及疾病与信息传播等的影响。在此基础上,进一步分析了在人类活动增加等全球变化背景下,动物个性如何调控动物个体行为、种群和群落动态对这些环境变化的响应。阐述了动物个性的形成与维持机制,并对未来的研究方向进行了展望。 相似文献
20.
Antoine BeckerScarpitta Diane AubersonLavoie Raphael Aussenac Mark Vellend 《Ecology and evolution》2022,12(8)
Despite many studies showing biodiversity responses to warming, the generality of such responses across taxonomic groups remains unclear. Very few studies have tested for evidence of bryophyte community responses to warming, even though bryophytes are major contributors to diversity and functioning in many ecosystems. Here, we report an empirical study comparing long‐term change in bryophyte and vascular plant communities in two sites with contrasting long‐term warming trends, using “legacy” botanical records as a baseline for comparison with contemporary resurveys. We hypothesized that ecological changes would be greater in sites with a stronger warming trend and that vascular plant communities, with narrower climatic niches, would be more sensitive than bryophyte communities to climate warming. For each taxonomic group in each site, we quantified the magnitude of changes in species'' distributions along the elevation gradient, species richness, and community composition. We found contrasted temporal changes in bryophyte vs. vascular plant communities, which only partially supported the warming hypothesis. In the area with a stronger warming trend, we found a significant increase in local diversity and dissimilarity (β‐diversity) for vascular plants, but not for bryophytes. Presence–absence data did not provide sufficient power to detect elevational shifts in species distributions. The patterns observed for bryophytes are in accordance with recent literature showing that local diversity can remain unchanged despite strong changes in composition. Regardless of whether one taxon is systematically more or less sensitive to environmental change than another, our results suggest that vascular plants cannot be used as a surrogate for bryophytes in terms of predicting the nature and magnitude of responses to warming. Thus, to assess overall biodiversity responses to global change, abundance data from different taxonomic groups and different community properties need to be synthesized. 相似文献