首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have derived a comprehensive structure–activity relationship (SAR) picture for a new series of natural acetylcholinesterase inhibitors isolated from Sarcococca saligna. A set of 32 previously isolated and tested pregnane-type steroidal alkaloids inhibitors were investigated with respect to their IC50 values (pIC50) against the AChE enzyme in order to derive CoMFA models using atom-based alignment. A highly significant CoMFA model was obtained with r2 value of 0.974. The q2 (cross validation r2) value also confirms the statistical significance of our model.  相似文献   

2.
The three-dimensional quantitative structure–activity relationships of 57 2-[(aminopropyl)amino]-4(1H)-quinolinone analogues as Staphylococcus aureus methionyl-tRNA synthetase (MetRS) inhibitors with excellent antibacterial profile were investigated and docking studies were performed. The CoMFA analysis provided a model with a q2 value of 0.579 and an r2 value of 0.970, in which the good correlation between the MetRS inhibitory activities (IC50) and the steric and electrostatic molecular fields around the analogues was examined. Two inhibitors (1 and 17) were docked into the binding pocket of Escherichia coli MetRS imported from the X-ray crystal structure of the MetRS-methionine complex, and the details of their interaction with the amino acids of the active site are discussed.  相似文献   

3.
4.
5-Lipoxygenase inhibitors are of current interest for asthma therapy and inflammatory diseases. In order to identify the essential structural and physicochemical requirements in terms of common biophoric sites (pharmacophore) and secondary sites for binding and interacting with 5-lipoxygenase, a series of 51 compounds of chalcones has been used for the development of 3D-QSAR models on APEX-3D expert system. Among several models, the two models have been identified with the statistical criteria R2>0.75, Chance <0.001 and Match >0.7. Both the models (nos 1 and 2) with three biophoric sites and four secondary sites, showed very good correlation (r>0.9) between the observed and calculated or predicted activities.  相似文献   

5.
Twenty-one derivatives of taxchinin A (1) and brevifoliol (2) were synthesized and evaluated for cytotoxicity against human non-small lung cancer (A549) cell line. Nine derivatives showed potent activity with IC50 values from 0.48 to 6.22 μM. 5-Oxo-13-TBDMS-taxchinin A (11) and 5-oxo-13,15-epoxy-13-epi-taxchinin A (15) are the most potent derivatives, with IC50 at 0.48 and 0.75 μM, respectively. The structure–activity relationship (SAR) of these compounds established that exocyclic unsaturated ketone at ring C is the key structural element for the activity, while the ,β-unsaturated ketone positioned at ring A has no effect for the activity. The significant cytotoxicity of derivatives 11 and 15 may be due to the conformational change in the taxane rings. The 3D-QSAR study was conducted on this series of compounds, which provided optimal predictive comparative molecular field (CoMFA) model with cross-validated r2 (q2) value of 0.64.  相似文献   

6.
7.
Integration of viral DNA into the host cell genome is a critical step in the life cycle of HIV. This essential reaction is catalyzed by integrase (IN) through two steps, 3'-processing and DNA strand transfer. Integrase is an attractive target for drug design because there is no known cellular analogue and integration is essential for successful replication of HIV. A computational three-dimensional (3-D) database search was used to identify novel HIV-1 integrase inhibitors. Starting from the previously identified Y3 (4-acetylamino-5-hydroxynaphthalene-2,7-disulfonic acid) binding site on the avian sarcoma virus integrase (ASV IN), a preliminary search of all compounds in the nonproprietary, open part of the National Cancer Institute 3-D database yielded a collection of 3100 compounds. A more rigorous scoring method was used to rescreen the 3100 compounds against both ASV IN and HIV-1 IN. Twenty-two of those compounds were selected for inhibition assays against HIV-1 IN. Thirteen of the 22 showed inhibitory activity against HIV-1 IN at concentrations less than 200 microM and three of them showed antiviral activities in HIV-1 infected CEM cells with effective concentrations (EC50) ranging from 0.8 to 200 microM. Analysis of the computer-generated binding modes of the active compounds to HIV-1 IN showed that simultaneous interaction with the Y3 site and the catalytic site is possible. In addition, interactions between the active compounds and the flexible loop involved in the binding of DNA by IN are indicated to occur. The structural details and the unique binding motif between the HIV-1 IN and its inhibitors identified in the present work may contribute to the future development of IN inhibitors.  相似文献   

8.
9.
We propose a two-metal binding model as a potential mechanism of chelating inhibitors against HIV integrase (HIV IN) represented by 2-hydroxy-3-heteroaryl acrylic acids (HHAAs). Potential inhibitors would bind to two metal ions in the active site of HIV IN to prevent human DNA from undergoing the integration reaction. Correlation of the results of metal (Mg2+ and Mn2+) titration studies with HIV IN inhibition for a series of active and inactive compounds provides support for the model. Results suggest Mg2+ is an essential cofactor for chelating inhibitors.  相似文献   

10.
11.
Existing AIDS therapies are out of reach for most HIV-infected people in developing countries and, where available, they are limited by their toxicity and their cost. New anti-HIV agents are needed urgently to combat emerging viral resistance and reduce the side effects associated with currently available drugs. Toward this end, LeapFrog, a de novo drug design program was used to design novel, potent, and selective inhibitors of HIV-1 integrase. The designed compounds were synthesized and tested for in vitro inhibition of HIV-1 integrase. Out of the 25 compounds that were designed, and synthesized, four molecules (compounds 23, 26, 43, and 59) showed moderate to low inhibition of HIV-1 integrase for 3'-processing and 3'-strand transfer activities. Nonetheless, these compounds possess structural features not seen in known HIV-1 integrase inhibitors and thus can serve as excellent leads for further optimization of anti-HIV-1 integrase activity.  相似文献   

12.
13.
14.
We have recently reported the development of a 3-D QSAR model for estrogen receptor ligands showing a significant correlation between calculated molecular interaction fields and experimentally measured binding affinity. The ligand alignment obtained from docking simulations was taken as basis for a comparative field analysis applying the GRID/GOLPE program. Using the interaction field derived with a water probe and applying the smart region definition (SRD) variable selection procedure, a significant and robust model was obtained (q2LOO=0.921, SDEP=0.345). To further analyze the robustness and the predictivity of the established model several recently developed estrogen receptor ligands were selected as external test set. An excellent agreement between predicted and experimental binding data was obtained indicated by an external SDEP of 0.531. Two other traditionally used prediction techniques were applied in order to check the performance of the receptor-based 3-D QSAR procedure. The interaction energies calculated on the basis of receptor–ligand complexes were correlated with experimentally observed affinities. Also ligand-based 3-D QSAR models were generated using program FlexS. The interaction energy-based model, as well as the ligand-based 3-D QSAR models yielded models with lower predictivity. The comparison with the interaction energy-based model and with the ligand-based 3-D QSAR models, respectively, indicates that the combination of receptor-based and 3-D QSAR methods is able to improve the quality of prediction.  相似文献   

15.
16.
17.
Three-dimensional quantitative structure-activity relationship (QSAR) studies were conducted on two classes of recently explored compounds with known YopH inhibitory activities. Docking studies were employed to position the inhibitors into the YopH active site to determine the probable binding conformation. Good correlations between the predicated binding free energies and the inhibitory activities were found for two subsets of phosphate mimetics: alpha-ketocarboxylic acid and squaric acid (R2=0.70 and 0.68, respectively). The docking results also provided a reliable conformational alignment scheme for 3D-QSAR modeling. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed based on the docking conformations, giving q2 of 0.734 and 0.754 for CoMFA and CoMSIA models, respectively. The 3D-QSAR models were significantly improved after removal of an outlier (q2=0.829 for CoMFA and q2=0.837 for CoMSIA). The predictive ability of the models was validated using a set of compounds that were not included in the training set. Mapping the 3D-QSAR models to the active site of YopH provides new insight into the protein-inhibitor interactions for this enzyme. These results should be applicable to the prediction of the activities of new YopH inhibitors, as well as providing structural implications for designing potent and selective YopH inhibitors as antiplague agents.  相似文献   

18.
19.
Caffeoyl naphthalenesulfonamide derivatives as HIV integrase inhibitors   总被引:3,自引:0,他引:3  
HIV-1 integrase (IN) is an essential enzyme for retroviral replication and a rational target for the design of anti-AIDS drugs. In the present study, we have designed, synthesized and tested a series of caffeoyl naphthalenesulfonamide derivatives as HIV integrase inhibitors. Among these compounds, we found that HIV integrase inhibitory activities of compounds III-3 and III-4 were more potent than L-chicoric acid (IC(50)=11.8 microg/mL) and others were comparable to L-chicoric acid. Furthermore, the structure-activity relationships of these compounds were studied. The information gathered from this paper will be useful in the development and design of HIV-1 integrase inhibitors in the future.  相似文献   

20.
Signature HIV-1 integrase mutations associated with clinical raltegravir resistance involve 1 of 3 primary genetic pathways, Y143C/R, Q148H/K/R and N155H, the latter 2 of which confer cross-resistance to elvitegravir. In accord with clinical findings, in vitro drug resistance profiling studies with wild-type and site-directed integrase mutant viruses have shown significant fold increases in raltegravir and elvitegravir resistance for the specified viral mutants relative to wild-type HIV-1. Dolutegravir, in contrast, has demonstrated clinical efficacy in subjects failing raltegravir therapy due to integrase mutations at Y143, Q148 or N155, which is consistent with its distinct in vitro resistance profile as dolutegravir’s antiviral activity against these viral mutants is equivalent to its activity against wild-type HIV-1. Kinetic studies of inhibitor dissociation from wild-type and mutant integrase-viral DNA complexes have shown that dolutegravir also has a distinct off-rate profile with dissociative half-lives substantially longer than those of raltegravir and elvitegravir, suggesting that dolutegravir’s prolonged binding may be an important contributing factor to its distinct resistance profile. To provide a structural rationale for these observations, we constructed several molecular models of wild-type and clinically relevant mutant HIV-1 integrase enzymes in complex with viral DNA and dolutegravir, raltegravir or elvitegravir. Here, we discuss our structural models and the posited effects that the integrase mutations and the structural and electronic properties of the integrase inhibitors may have on the catalytic pocket and inhibitor binding and, consequently, on antiviral potency in vitro and in the clinic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号