首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In thymine requiring auxotrophs of Escherichia coli the uridine phosphorylase enzyme (udp gene) can catalyze nonspecifically conversion of thymine to thymidine. By selection for effective utilization of exogenous thymine, it is possible to isolate forms with increased expression of the udp gene. Mutants with increased gene expression were isolated from the strain with transposon Tn10 within the metE gene closely linked to udp. Some mutants (designated udpPf) losing Tn10 but retaining the Met- phenotype are characterized by disturbance of recombination in the metE-udp region: they do not form Met+ transductants in P1 transduction with the wild-type donor strain. However, recovery of homology in the chromosomal metE-udp region takes place with low frequency in P1 transduction using the strain with Tn10 insertion in metE as a donor. Data obtained in transductional and conjugational experiments demonstrate that the udpPf1 mutant studied is an inversion extending about 3 min of the E. coli chromosome and including the region of chromosomal replication origin (oriC).  相似文献   

2.
3.
Two strains carrying metE::Tn10 insertions (upstream of the udp gene) were used to isolate mutants of Escherichia coli overexpressing udp. These strains differ in their gene order; one contains an inversion between the rrnD and rrnE rRNA operons. Selection was based on the ability of overexpressed Udp to complement thymine auxotrophy. Chromosomal rearrangements that connect the udp gene and promoters of different rrn operons were obtained by this selection. Seven of 14 independent mutants selected in one of the initial strains contained similar inversions of the metE-rrnD segment of the chromosome (about 12% of its length). Another mutant contained traces of a more complicated event, inversion between rrnB and rrnG operons, which was followed by reinversion of the segment between metE and the hybrid rrnG/B operon. Similar inversions (udp-rrn) in a strain already carrying an rrnE-rrnD inversion flip the chromosomal segment between metE and rrnD/E in the opposite direction. In this case, inversions are also accompanied by duplications of the chromosomal region between the rrnA and hybrid udp-rrnD/E operons. PCR amplification with a set of oligonucleotides from the rrn, Tn5, and met genes was used for more detailed mapping. Amplified fragments of the rearranged chromosomes connecting rrnD sequences and insertion elements were sequenced, and inversion endpoints were established.  相似文献   

4.
On the basis of Escherichia coli DNA and vectors pBR322, pUC19, hybrid plasmids restoring Udp+ phenotype in the E. coli deletion (delta udp) mutant have been obtained. The udp gene is carried by a 8 kb PstI fragment (on the pUD2) and by a smaller 2.87 kb PstI-SalGI fragment from the PstI fragment (pUD7). The uridine phosphorylase level was 30 times higher in the cells containing hybrid plasmid as compared to the strain with chromosomal location of the udp gene. On the other hand, the measurements of uridine phosphorylase activity in the cytR- and cya- background indicate that expression of the cloned udp gene escapes partially negative control of the CytR repressor and positive control of cAMP--CRP complex. These data suggest that the 2.87 kb PstI--SalGI-fragment contains the intact udp gene which is transcribed from its own promoter. Increase in the activity of beta-galactosidase encoded by udp-lacZ fusion has been observed in the presence of pUD2 or pUD7, which was suggested to be the consequence of titration of CytR repressor molecules in the operator region of the cloned udp.  相似文献   

5.
From an Escherichia coli K-12 strain lacking adenylate cyclase (cya) and cyclic AMP receptor protein (crp), two mutants were isolated that synthesize uridine phosphorylase constitutively. The mutations differ from one another and also from a wild type in the maximum rate of uridine phosphorylase synthesis. They have constitutive expression of the uridine phosphorylase gene (udp) in the presence of repressor protein coded by the cytR regulatory gene and decrease the sensitivity of the udp gene simultaneously with catabolite repression. Both mutations cause a high level of udp expression whether they are in a cya crp or in a cya+ crp+ background. Another mutation (udpP1) isolated previously alters the response of udp gene to the ctyR repressor and produces a higher constitutive level of uridine phosphorylase in a cytR+ than in a cytR background when bacteria are grown in glucose. The synthesis of uridine phosphorylase in this mutant is dependent on an intact cyclic AMP-cyclic AMP receptor protein complex. All mutations studied are cis-acting and extremely closely linked to the udp structural gene, and appear to affect the uridine phosphorylase promoter-operator region. The data obtained are in accordance with a suggestion that the cytR repressor protein normally asserts its function by preventing the positive action of cyclic AMP-cyclic AMP receptor protein complex.  相似文献   

6.
7.
Addition of purines to the growth medium of Escherichia coli represses synthesis of cytosine deaminase (codA) and enzymes of purine de novo synthesis. After Tn10 mutagenesis, mutants displaying derepressed levels of cytosine deaminase in the presence of hypoxanthine were isolated. One of these had simultaneously acquired resistance to the hypoxanthine analog 6-mercaptopurine. The mutation purR6::Tn10 was shown to affect de novo synthesis of the purine enzymes glutamine phosphoribosylpyrophosphate amidotransferase (purF) and phosphoribosyl glycinamide synthetase (purD). The mutation was mapped by P1 transduction at 36 min on the E. coli linkage map. A plasmid containing the purR region was obtained by complementation of the purR6::Tn10 mutation. By comparing the restriction maps of the cloned fragment and the E. coli chromosome, the purR gene was found to be located very close to the lpp gene (36.3 min).  相似文献   

8.
M. Enomoto  Y. Komoda    A. Tominaga 《Genetics》1991,129(3):631-638
Strain 1485IN carries a chromosomal inversion which corresponds to 35% of the chromosome and includes proC, trp and his genes. The termini of the inversion lie between the lac and proC loci and between his and cdd of the normal strain. Using Tn10 and Tn5 in transduction crosses between the normal and inversion strains, the termini were mapped to sites located approximately 0.25 min and 1.6 min away from proC and his, respectively within a region of roughly 4 kb long. The crosses where the normal strains carrying Tn10 near the terminus are donors and the inversion strain is a recipient, yielded unusual Tetr His- recombinants, which arose from illegitimate recombination leading to the replacement of a chromosomal his+ region with a transducing fragment carrying proC. Another rearrangement was detected between the normal and inversion strains in a region outside the inverted segment near the cdd locus.  相似文献   

9.
W Ebel  G J Vaughn  H K Peters  rd    J E Trempy 《Journal of bacteriology》1997,179(21):6858-6861
Capsule gene (cps) expression, which normally occurs at low levels in Escherichia coli lon+ cells, increased 38-fold in lon+ cells carrying a Tn10::delta kan insertion mapping to 24 min on the E. coli chromosome. Null mutations in rcsA, rcsB, or rcsC abolished the effect of the Tn10::delta kan insertion. Sequencing of both sides of the Tn10::delta kan insertion localized the insertion to the previously reported mdoH gene, which encodes a protein involved in biosynthesis of membrane-derived oligosaccharides (MDOs). A model suggesting that the periplasmic levels of MDOs act to signal RcsC to activate cps expression is proposed.  相似文献   

10.
Spontaneous tetraoyoline-sensitive derivatives of a Tn10 insertion in the hisG gene of Salmonella typhimurium were isolated and subjected to genetic analysis. All 123 of the drug-sensitive derivatives characterized have undergone stable alterations in the Tn10 element itself; over half of the derivatives have also undergone major alterations of neighboring regions of the Salmonella chromosome. These chromosomal rearrangements are of two types: inversions and deletions. Any single inversion or deletion affects a contiguous stretch of chromosomal material extending from the site of the original Tn10 element either leftward or rightward.The genetic properties of deletion and inversion derivatives suggest that these chromosomal alterations are promoted by the Tn10 element itself. The role of translocatable elements in promoting chromosomal deletions is well documented; the ability of an element to promote inversions of chromosomal material has not previously been reported. Possible analogies between the 1400-base-pair inverted repetition at the end of Tn10 and the small insertion sequence IS1 predict particular structures for Tn10-promoted deletions. A structural explanation or model for Tn10-promoted inversions is presented. The observation that Tn10 promotes the formation of inversions suggests that such elements could play a previously unanticipated role in promoting chromosomal inversions during evolution of prokaryotic organisms. Generally applicable genetic methods for the identification and characterization of chromosomal inversions are described.  相似文献   

11.
The Escherichia coli structural gene for DNA polymerase I was inserted into Salmonella typhimurium chromosome by conjugal transfer. The genetic analysis of P1-mediated transduction of obtained hybrid showed that polA gene is located in it between metE and rha loci and is cotransduced with metE (about 50%) and rha (12%). The phenotypic properties of polA1 hybrid E. coliXS. typhimurium concerning UV-MMS-NG and gamma-ray sensitivity are similar to the polA1 mutants of E. coli.  相似文献   

12.
The Escherichia coli udp gene encodes uridine phosphorylase (UP), which catalyzes the reversible phosphorolysis of uridine to uracil and ribose-1-phosphate. The X-ray structure of E. coli UP resolved by two different groups produced conflicting results. In order to cast some light on the E. coli UP catalytic site, we mutagenized several residues in UP and measured by RP-HPLC the phosphorolytic activity of the mutant UP proteins in vitro. Mutations Thr94Ala, Phe162Ala, and Tyr195Gly caused a drastic decrease in UP activity. These three residues were suggested to be involved in the nucleoside binding site. However, surprisingly, Tyr195Ala caused a relative increase in enzymatic activity. Both Met197Ala and Met197Ser conserved low activity, suggesting a minor role for this residue in the UP active site. Glu196Ala completely lost UP activity, whereas the more conservative Glu196Asp mutation was still partially active, confirming the importance of maintaining the correct charge in the surroundings of this position. Glu198 was mutated to either Gly, Asp and Gln. All three substitutions caused complete loss of enzymatic activity suggesting an important role of Glu198 both in ribose binding and in interaction with phosphate ions. Arg30Ala and Arg91Ala eliminated UP activity, whereas Arg30Lys and Arg91Lys presented a very low activity, confirming that these residues might interact with and stabilize the phosphate ions. Ile69Ala did not decrease UP activity, whereas His8Ala lowered the activity to about 20%. Both amino acids were suggested to take part in subunit interactions. Our results confirm the structural similarity between E. coli UP and E. coli purine nucleoside phosphorylase (PNP).  相似文献   

13.
Summary Strains of Escherichia coli have been selected, which contain mutations in the udk gene, encoding uridine kinase. The gene has been located on the chromosome as cotransducible with the his gene and shown to be responsible for both uridine and cytidine kinase activities in the cell.An additional mutation in the cdd gene (encoding cytidine deaminase) has been introduced, thus rendering the cells unable to metabolize cytidine. In these mutants exogenously added cytidine acts as inducer of nucleoside catabolizing enzymes indicating that cytidine per se is the actual inducer.When the udk, cdd mutants are grown on minimal medium the enzyme levels are considerably higher than in wild type cells. Evidence is presented indicating that the high levels are due to intracellular accumulation of cytidine, which acts as endogenous inducer.Abbreviations and Symbols FU 5-fluorouracil - FUR 5-fluorouridine - FUdR 5-fluoro-2'deoxyuridine - FCR 5-fluorocytidine - FCdR 5-fluorodeoxycytidine - THUR 3, 4, 5, 6-tetrahydrouridine - UMP uridine monophosphate - CMP cytidine monophosphate - dUMP deoxyuridine monophosphate. Genes coding for: cytidine deaminase - edd uridine phosphorylase - udp thymidine phosphorylase - tpp purmnucleoside phosphorylase - pup uridine kinase (=cytidine kinase) - udk UMP-pyrophosphorylase - upp. CytR regulatory gene for cdd, udp, dra, tpp, drm and pup Enzymes EC 2.4.2.1 Purine nucleoside phosphorylase or purine nucleoside: orthophosphate (deoxy)-ribosyltransferase - EC 2.4.2.4 thymidine phosphorylase or thymidine: orthophosphate deoxyribosyltransferase - EC 2.4.2.3 uridine phosphorylase or uridine: orthophosphate ribosyltransferase - EC 3.5.4.5 cytidine deaminase or (deoxy)cytidine aminohydrolase - EC 4.1.2.4 deoxyriboaldolase or 2-deoxy-D-ribose-5-phosphate: acetaldehydelyase - EC 2.4.2.9 UMP-pyrophosphorylase or UMP: pyrophosphate phosphoribosyltransferase - EC 2.7.1.48 uridine kinase or ATP: uridine 5-phosphotransferase  相似文献   

14.
Interaction of negative (CytR) and positive (cAMP-CRP) control in the promoter region of the uridine phosphorylase (udp) gene of Escherichia coli has been studied by using udp-lac operon fusions in which the structural lacZ gene is expressed from the wild type promoter udpP+ or from mutant promoters udpP1 and udpP18. The specific activity of beta-galactosidase was examined in these fusions in cytR+ and cytR- backgrounds after introduction of specific mutations in crp locus, crp* and crp(a) altering interaction of CRP protein with catabolite-sensitive promoters. The data obtained using crp* mutation confirm the proposed model of the udp gene regulation, according to which CytR repressor protein interferes with CRP binding site in the promoter-operator region of the udp gene and thereby prevents the positive action of cAMP-CRP complex on the udp expression. Additional data in favor of this model were obtained using crp(a) mutation which most probably alters the structure of CRP protein in such a way that it exhibits more high affinity to the udp promoter, as compared to the CytR repressor protein. Indeed, taken by itself, the crp(a) mutation did not lead to any increase in the expression of udpP+-lac fusion under the conditions of cAMP limitation (on glucose-grown cells), in spite of whether or not the CytR repressor was present. However, when combined with the ptsG mutation or when cells were grown on succinate medium, complete constitutive expression of udpP+-lac fusion is observed, even in the presence of the cytR gene product. The effect of the crp(a) mutation was virtually the same in strains harboring udpP1-lac fusion. These data are in accordance with suggestion that udpP1 is a mutation in the site of the promoter-operator region that responds to the cytR gene product, while the corresponding binding site for CRP protein is still unaltered in this mutant. On the other hand, the crp(a) mutation causes only slight alteration in the expression of udpP18-lac fusion, providing additional evidence that udpP18 mutation seems to comprise a modification of the promoter-operator region, where binding sites for CRP and CytR proteins overlap.  相似文献   

15.
We present a collection of 182 isogenic strains containing genetically linked antibiotic resistance elements located at approximately 1-min intervals around the Escherichia coli chromosome. At most positions both Tn10 (Tetr) and TN10kan (Kanr) elements are available, so that the collection contains a linked set of alternating antibiotic resistance markers. The map position of each insertion has been aligned to the E. coli genetic map as well as to the Kohara ordered clone bank. These strains are designed to be used in a rapid two-step mapping system in E. coli. In the first step, the mutation is localized to a 5- to 15-min region of the chromosome by Hfr mapping with a set of Hfr strains containing either Tn10 or Tn10kan elements located 20 min from their respective origins of transfer. In the second step, the mutation is localized to a 1-min region by P1 transduction, with a collection of isogenic insertion strains as donors. We discuss the uses of this collection of strains to map and eventually to clone a variety of mutations in E. coli.  相似文献   

16.
Mutations which affect the activity of polynucleotide phosphorylase (PNPase) map near 69 min on the bacterial chromosome. This region of the chromosome has been cloned by inserting the kanamycin-resistant transposon Tn5 near the argG and mtr loci at 68.5 min. Large SalI fragments of chromosomal DNA containing the Tn5 element were inserted into pBR322, and selection was made for kanamycin-resistant recombinant plasmids. Two of these plasmids were found to produce high levels of PNPase activity in both wild-type and host strains lacking PNPase activity. The pnp gene was further localized and subcloned on a 4.8 kilobase HindIII-EcoRI fragment. This fragment was shown to encode an 84,000-molecular weight protein which comigrated with purified PNPase during sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The orientation of the pnp gene was determined by insertion of Tn5 into the 4.8 kilobase fragment cloned in pBR322. Some of the insertions had lost the ability to elevate the level of PNPase activity in the host bacterium. Restriction mapping of the positions of the Tn5 insertions and analysis of plasmid-encoded polypeptides in UV-irradiated maxi-cells indicated that the pnp gene is oriented in the counterclockwise direction on the bacterial chromosome.  相似文献   

17.
A lambda phage (lambdaNK55) carrying the translocatable element Tn10, conferring tetracycline resistance (Tetr), has been utilized to isolate glutamine auxotrophs of Escherichia coli K-12. Such strains lack uridylyltransferase as a result of an insertion of the TN10 element in the glnD gene. The glnD::Tn10 insertion has been mapped at min 4 on the E. coli chromosome and 98% contransducible by phage P1 with dapD. A lambda transducing phage carrying the glnD gene has been identified. A glnD::Tn10 strain synthesizes highly adenylylated glutamine synthetase under all conditions of growth and fails to accumulate high levels of glutamine synthetase in response to nitrogen limitation. However, this strain, under nitrogen-limiting conditions, allows synthesis of 10 to 20 milliunits of biosynthetically active glutamine synthetase per mg of protein, which is sufficient to allow slow growth in the absence of glutamine. The GlnD phenotype in E. coli can be suppressed by the presence of mutations which increase the quantity of biosynthetically active glutamine synthetase.  相似文献   

18.
H S Houng  K F Noon  J T Ou    L S Baron 《Journal of bacteriology》1992,174(18):5910-5915
The Vi antigen in Salmonella typhi is stably expressed and may act to protect the strain against the defensive system of the host. Citrobacter freundii, not usually a common human pathogen, also expresses the Vi antigen but expresses it unstably, exhibiting a reversible transition between the Vi+ and Vi- states. Two widely separated chromosomal regions, ViaA and ViaB, are needed for Vi synthesis. Escherichia coli K-12 harboring a functional ViaB plasmid can also express Vi antigen, but the cloned ViaB sequence can only be stably maintained and expressed in recA hosts. Vi- derivatives arise either through IS1-like insertional events occurring in ViaB sequences or by chromosomal mutations at the ViaA region. P1vir mapping indicates that the ViaA mutations are located at min 47.75 on the E. coli chromosome. All the spontaneous viaA mutants isolated from E. coli and S. typhi were identified as rcsB mutants by complementation tests using plasmid pJB100. Introduction of rcsA::Tn10 into E. coli harboring functional ViaB sequences eliminates the expression of Vi antigen. These results indicate that Vi antigen synthesis is regulated by the same regulatory proteins involved in colanic acid synthesis in E. coli.  相似文献   

19.
20.
Plasmid pJMC21 contains Escherichia coli chromosomal DNA encoding Lon protease, HU-beta (HU-1), and an unidentified 67,000-dalton protein. A kanamycin resistance cassette was used in the construction of insertion and deletion mutations in hupB, the gene encoding HU-beta on plasmid pJMC21. The reconstructed plasmids were linearized and used to introduce hupB chromosomal mutations into JC7623 (recBC sbcBC). These mutations, as expected, mapped in the 9.8-min region of the E. coli chromosome by P1 transduction (16% linkage to proC+). Southern blot hybridization of chromosomal fragments verified that hupB+ was replaced by the mutant allele, with no indication of gene duplication. All the mutant strains had growth rates identical to that of wild-type E. coli, were resistant to UV irradiation and nitrofurantoin, and supported the in vivo transposition-replication of bacteriophage Mu, Mu lysogenization, Tn10 transposition from lambda 1098, and lambda replication-lysogenization. The only observable phenotypic variation was a reduced Mu plaque size on the hupB mutant strains; however, the yield of bacteriophage Mu in liquid lysates prepared from the mutant strains was indistinguishable from the yield for the wild type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号