共查询到20条相似文献,搜索用时 9 毫秒
1.
The bacteriophage lambda relies on interactions of the cI and cro repressors which self assemble and bind the two operators (O(R) and O(L)) of the phage genome to control the lysogenic to lytic switch. While the self assembly and O(R) binding of cI have been investigated in detail, a more complete understanding of gene regulation by phage lambda also requires detailed knowledge of the role of cro repressor as it dimerizes and binds at O(R) sites. Since dimerization and operator binding are coupled processes, a full elucidation of the regulatory energetics in this system requires that the equilibrium constants for dimerization and cooperative binding be determined. The dimerization constant for cro has been measured as a prelude to these binding studies. Here, the energetics of cro binding to O(R) are evaluated using quantitative DNaseI footprint titration techniques. Binding data for wild-type and modified O(R) site combinations have been simultaneously analyzed in concert with the dimerization energetics to obtain both the intrinsic and cooperative DNA binding energies for cro with the three O(R) sites. Binding of cro dimers is strongest to O(R)3, then O(R)1 and lastly, O(R)2. Adjacently bound repressors exhibit positive cooperativity ranging from -0.6 to -1.0 kcal/mol. Implications of these, newly resolved, energetics are discussed in the framework of a dynamic model for gene regulation. This characterization of the DNA-binding properties of cro repressor establishes the foundation on which the system can be explored for other, more complex, regulatory elements such as cI-cro cooperativity. 相似文献
2.
S J Lee M Shirakawa H Akutsu Y Kyogoku M Shiraishi M Kitano M Shin E Ohtsuka M Ikehara 《Nucleic acids symposium series》1985,(16):33-36
Cro repressor protein is known to interact with specific sites in the operator DNA. The cro protein of lambda phage was isolated and the mode of its interaction with three different DNA fragment, lambda-OR3 17mer, phi 80-OR2 19mer and CAP binding site 22-mer, were examined by the use of proton NMR. Some of the imino proton resonances of lambda-OR3 shifted and were broadened remarkably on addition of lambda-cro protein, which indicated the induction of conformational change with complexation. In the spectrum of phi 80-OR2 which has a six base pair sequence common to lambda-OR3 the signals of the common base pairs revealed slight shifts on addition of lambda-cro protein. The imino proton signals of the CAP site DNA, however, did not show any change at all on mixing with lambda-cro. Combining the data of photo CIDNP of lambda-cro, we could postulate the mode of interaction between lambda-cro repressor and operator DNA. 相似文献
3.
P Kolkhof D Teichmann B Kisters-Woike B von Wilcken-Bergmann B Müller-Hill 《The EMBO journal》1992,11(8):3031-3038
Lac repressor, lambda cro protein and their operator complexes are structurally, biochemically and genetically well analysed. Both proteins contain a helix-turn-helix (HTH) motif which they use to bind specifically to their operators. The DNA sequences 5'-GTGA-3' and 5'-TCAC-3' recognized in palindromic lac operator are the same as in lambda operator but their order is inverted form head to head to tail to tail. Different modes of aggregation of the monomers of the two proteins determine the different arrangements of the HTH motifs. Here we show that the HTH motif of lambda cro protein can replace the HTH motif of Lac repressor without changing its specificity. Such hybrid Lac repressor is unstable. It binds in vitro more weakly than Lac repressor but with the same specificity to ideal lac operator. It does not bind to consensus lambda operator. 相似文献
4.
The kinetics of coupling of protein dimerization and DNA binding have been investigated in the biotin repressor system. Two repressor monomers bind to the 40 base-pair biotin operator sequence. In previous analyses of equilibrium-binding data the weak dimerization of the repressor has justified using a model in which two protein monomers bind cooperatively to the operator site. Here, rapid kinetic methods have been used to directly determine the binding mechanism. Results of rapid-mixing DNaseI footprinting measurements of association of the repressor with operator indicate that the binding process involves at least two steps. Results of measurements of the unimolecular dissociation of the complex reveal a half-life of approximately 400 seconds. Analysis of the data using a combination of simulation and global non-linear least-squares analysis provides support for a binding model in which a preformed repressor dimer associates with the biotin operator. This kinetic model is consistent with the previously proposed model for regulation of the functional switch in the repressor from enzyme to site-specific DNA-binding protein. 相似文献
5.
Comparison of the structures of cro and lambda repressor proteins from bacteriophage lambda 总被引:13,自引:0,他引:13
D H Ohlendorf W F Anderson M Lewis C O Pabo B W Matthews 《Journal of molecular biology》1983,169(3):757-769
The three-dimensional structures of cro repressor protein and of the amino-terminal domain of lambda repressor protein, both from bacteriophage lambda, are compared. The second and third alpha-helices, alpha 2 and alpha 3, are shown to have essentially identical conformations in the two proteins, confirming the significance of the amino acid sequence homology previously noted between these and other DNA binding proteins in the region corresponding to these helices. The correspondence between the two-helical units in cro and lambda repressor protein is better than the striking agreement noted previously between two-helical units in cro and catabolite gene-activator protein. Parts of the first alpha-helices of repressor and cro show a structural correspondence that suggests a revised sequence homology between the two proteins in their extreme amino-terminal regions. In particular, there is a short loop between the alpha 1 and alpha 2 helices of lambda repressor that is missing from cro. This structural difference may account for the observed differences found with different cros and repressors in the pattern of phosphates whose ethylation prevents the binding of these proteins to their specific recognition sites. Although the two proteins have strikingly similar alpha 2-alpha 3 helical units that are presumed to bind to DNA in an essentially similar manner, stereochemical restrictions prevent the alpha 2-alpha 3 units of the respective proteins aligning on the DNA in exactly the same way. 相似文献
6.
G V Gursky A N Surovaya A V Kurochkin B K Chernov S K Volkov M P Kirpichnikov 《Journal of biomolecular structure & dynamics》1992,10(1):15-33
In the present work, we employ a combination of CD spectroscopy and gel retardation technique to characterize thermodynamically the binding of lambda phage cro repressor to a 17 base pair operator OR3. We have found that three minor groove-binding antibiotics, distamycin A, netropsin and sibiromycin, compete effectively with the cro for binding to the operator OR3. Among these antibiotics, sibiromycin binds covalently to DNA in the minor groove at the NH2 of guanine, whereas distamycin A and netropsin interact preferentially with runs of AT base pairs and avoid DNA regions containing guanine bases in the two polynucleotide strands. Only subtle DNA conformation changes are known to take place upon binding of these antibiotics. Both the CD spectral profiles and the results of the gel retardation experiments indicate that distamycin A and netropsin can displace cro repressor from the operator OR3. The binding of cro repressor to the OR3 is accompanied by considerable changes in CD in the far-UV region which appear to be attributed to a DNA-dependent structural transition in the protein. Spectral changes are also induced in the wavelength region of 270-290 nm. The CD spectral profile of the cro-OR3 mixture in the presence of distamycin A can be represented as a sum of the CD spectrum of the repressor-operator complex and spectrum of distamycin-DNA complex at the appropriate molar ratio of the bound antibiotic to the operator DNA (r). When r tends to the saturation level of binding the CD spectrum in the region of 270-360 nm approaches a CD pattern typical of complexes of the antibiotic with the free DNA oligomer. This suggests that simultaneous binding of cro repressor and distamycin A to the same DNA oligomer is not possible and that distamycin A and netropsin can be used to determine the equilibrium affinity constant of cro repressor to the synthetic operator from competition-type experiments. The binding constant of cro repressor to the OR3 is found to be (6 +/- 1).10(6)M-1 at 20 degrees C in 10 mM sodium cacodylate buffer (pH 7.0) in the presence of 0.1 M NH4F. 相似文献
7.
Recognition of specific DNA sequences by proteins is essential for regulation of gene expression. To fully understand the recognition mechanism, it is necessary to understand not only the structure of the specific protein-DNA interactions but also the energetics. We therefore performed a computer analysis in which a phage DNA-binding protein, lambda repressor, was used to examine the changes in binding free energy (DeltaDeltaG) and its energy components caused by single base mutations. We then determined which of the calculated energy components best correlated with the experimental data. The experimental DeltaDeltaG values were well reproduced by the calculations. Component analysis revealed that the electrostatic and hydrogen bond energies were most strongly correlated with the experimental data. Among the 51 single base-substitution mutants examined, positive DeltaDeltaG values, corresponding to weakened binding, were caused by the loss of favorable electrostatic interactions and hydrogen bonds, the introduction of steric collisions and electrostatic repulsion, the loss of favorable interactions with a thymine methyl group, and the increase of unfavorable hydration energy from isolated DNA. This analysis also showed distinct patterns of recognition at A-T and G-C positions, as different combinations of energy components were involved in DeltaDeltaG caused by the two substitution types. We have thus been able to identify the energy components that most strongly correlate with sequence-dependent DeltaDeltaG and determine their contribution to the specificity of DNA sequence recognition by the lambda repressor. Application of this method to other systems should provide additional insight into the molecular mechanism of protein-DNA recognition. 相似文献
8.
Eight derivatives of recombinant plasmid pBRcro434, that consists of pBR322 and fragment of immunity region of phage lambda imm434 have been constructed and characterised. These derivatives contain the deletions in the region adjacent to OR3 operator and in the structural gene of cro-repressor of lambda imm434. The deletions have been produced by the treatment of pBRcro434 with exonuclease III of Escherichia coli and S1 nuclease of Aspergillus orizae and precisely mapped. The unique EcoRI-restriction sites have been reconstructed with the aim of using this deletion plasmids as a vectors for cloning. 相似文献
9.
The histones H3 and H2a from calf thymus are homologous to the repressor and cro repressor proteins of bacteriophage lambda in a 22-residue segment that has been implicated by mutational and model-building studies in DNA binding. In the lambda proteins this segment is folded into a helix-turn-helix unit of supersecondary structure, and we propose that the homologous regions in the histones possess the same fold. Homology was quantified with a unified procedure based on criteria of identity of key residues, primary structural homology and similarity of secondary structural potential. It has previously been shown that a set of other prokaryotic DNA-binding proteins have primary structural homology with the two lambda proteins. Homologies detected between the histones H4 and H2b and members of this set suggest that these histones also contain the putative DNA-binding fold. 相似文献
10.
Syr-yaung Lin Arthur D. Riggs 《Biochemical and biophysical research communications》1975,62(3):704-710
We have compared the operator and nonoperator DNA binding activities of the lac repressor with respect to inactivation or inhibition by trypsin, heat, actinomycin, and isopropylthiogal-actoside. The two DNA binding activities were found to differ only in their sensitivity to the inducing ligand isopropylthiogal-actoside. Repressor binding to poly(dT-dT-dG)·poly(dC-dA-dA) was shown not to be affected by isopropylthiogalactoside. 相似文献
11.
Proton-linked contributions to site-specific interactions of lambda cI repressor and OR 总被引:1,自引:0,他引:1
The effects of proton activity on the site-specific interactions of cI repressors with operator sites OR were studied by using DNase I footprint titration. Individual-site binding isotherms were obtained for the binding of repressor to each site of wild-type OR and of mutant operators in which binding to some sites is eliminated. The Gibbs energies for binding and for cooperativity (in every operator configuration) were determined at each pH (range 5-8). The proton-linked effects clearly account for a significant fraction of the difference in affinities for the three operator sites. The most dramatic effects on the repressor-operator binding interactions are at acid pH, and therefore do not involve the basic groups in the repressor N-terminal arm known to contact the DNA. Also, the proton-linked effects are different at the three operator sites as indicated by significantly different derivative relationships, partial derivative of ln k versus partial derivative of ln aH = net proton absorption (delta nu bar(H)). These results implicate ionizable repressor groups which may not contact the DNA and conformational differences between the three repressor-operator site complexes as being important components to the mechanism of site specificity. The extensive data base generated by these studies was also used to reevaluate the traditional models used to describe cooperativity in this system. The results confirm the lack of significant cooperative interaction between OR1 and OR3 at all conditions. However, the data for some experimental conditions are clearly inconsistent with the (selection) rule, that cooperative interaction between OR2 and OR3 is eliminated by ligation at OR1. 相似文献
12.
13.
The structures of operator DNA unbound and in complex with lambda repressor protein are compared. The conformation of the left 10 base pairs of a lambda right regulatory operator DNA sequence has been previously determined in solution using nuclear magnetic resonance techniques and the structure of a homologous left regulatory operator DNA bound to lambda repressor N-terminal domain had been previously solved using X-ray crystallography. The DNA adopts an overall linear B-form DNA both in the absence and presence of lambda repressor. Superimpositioning of the DNA structures reveals small differences between them that are due to the binding of protein and not to the different techniques used for their determination. 相似文献
14.
Sequence-specific binding of arc repressor to DNA. Effects of operator mutations and modifications 总被引:5,自引:0,他引:5
A set of arc operators with transition and/or transversion mutations at each operator base pair has been constructed. By determining the ability of Arc to bind these variant operators, the importance of each base pair for Arc recognition has been assessed. Methylation protection experiments have also been used to probe points of close contact between Arc and most of the mutant operators. These data, together with phosphate interference results obtained previously for the wild type operator, provide information about the operator surface that is contacted when Arc binds. 相似文献
15.
16.
Influence of supercoiling and sequence context on operator DNA binding with lac repressor 总被引:9,自引:0,他引:9
P A Whitson W T Hsieh R D Wells K S Matthews 《The Journal of biological chemistry》1987,262(30):14592-14599
The dissociation of the repressor-operator complex from a series of negatively supercoiled plasmid DNAs was examined as a function of the sequence context, orientation, and spacing. The plasmids were grouped into four classes, each with common sequence context. The highest dissociation rate constants were observed for the plasmids containing only a single operator (or pseudooperator) sequence, while approximately 10-fold lower rate constants were measured for plasmids with the I gene pseudooperator in conjunction with either the Z gene pseudooperator or the primary operator. Comparison of the behavior of these two classes of plasmids demonstrated the importance of two operator sequences and supported a model of DNA loop formation to stabilize the repressor-operator complex (Whitson, P. A., and Matthews, K. S. (1986) Biochemistry 25, 3845-3852; Whitson, P. A., Olson, J. S., and Matthews, K. S. (1986) Biochemistry 25, 3852-3858; Whitson, P. A., Hsieh, W. T., Wells, R. D., and Matthews, K. S. (1987) J. Biol. Chem. 262, 4943-4946; Kr?mer, H., Niem?ller, M., Amouyal, M., Revet, B., von Wilcken-Bergmann, B., and Müller-Hill, B. (1987) EMBO J. 6, 1481-1491). The third class, with intermediate dissociation rate constants, was comprised of plasmids which contained the primary operator and the higher affinity pseudooperator normally located in the Z gene. Neither the additional presence of the I gene pseudooperator nor the orientation of the primary operator relative to the Z gene pseudooperator significantly affected the dissociation rate constants. The binding characteristics of this group of plasmids demonstrated the essential role of the Z gene pseudooperator in the formation of intramolecular ternary complex and suggested an in vivo function for this pseudooperator. Plasmids containing two primary operator sequences were the class with lowest dissociation rate constants from lac repressor, and minimal effects of salt or spacing on dissociation of this class were observed. These data are consistent with formation of an intramolecular complex with a looped DNA segment stabilized by the combination of increased local concentration of binding sites and torsional stresses on the DNA which favor binding in supercoiled DNA. 相似文献
17.
18.
19.
Raman spectroscopic studies of the DNA cro binding site conformation, free and bound to cro protein.
Raman spectra of the DNA binding site for cro repressor protein were obtained in the presence and absence of bound cro protein. The 17 base pair fragment is a consensus sequence of the six cro binding sites in phage lambda, except that the second base to the right of the center of pseudosymmetry is altered. Analysis of the spectrum of the free DNA indicates that the molecule exists in a B-like conformation with deviations from the usual B form occurring mainly in the bands assigned to A-T vibrations. The spectrum of the bound DNA was obtained by subtracting the spectrum of free cro from the spectrum of the complex which was estimated to be 90% bound. The DNA undergoes significant structural changes upon binding to the protein; most notable of these changes is a destacking of the G-C bases reflected by increases in the 1240, 1262, and 1320 cm-1 bands. A decrease in the 1361 cm-1 band that occurs has also been assigned to a destacking in guanine bases. The appearance of a 705 cm-1 band and the decrease and downshift of the 670 cm-1 band are consistent with the appearance of A-like character in the A-T region of the binding site when the protein binds; however, the spectra indicate that the entire binding site remains in a distorted B-like conformation. We use the 705 cm-1 band to estimate A-like character because the 800-850 cm-1 region is obscured by interference from strong protein bands. Other shifts in both intensity and position cannot be assigned to characteristic changes in conformation and therefore must be attributed to the protein influencing the structure in a novel way. 相似文献
20.
The effects of cysteine modification and variations in pH on the equilibrium parameters for inducer and operator binding to the lactose repressor protein were examined. Operator binding affinity was minimally affected by increasing the pH from 7.5 to 9.2, whereas inducer binding was decreased for both the unliganded protein and the repressor-operator complex over the same range. Inducer binding to the repressor became more cooperative at high pH. The midpoint for the change in inducer affinity and cooperativity was pH 8.3; this value correlates well with cysteine ionization. The differential between repressor-operator affinity in the presence and absence of inducer was significantly decreased by modification of the protein with methyl methanethiosulfonate (MMTS). In contrast to unreacted protein, the inducer binding parameters for MMTS-modified repressor were largely unaffected by pH variation. The free energy for formation of the completely liganded protein was calculated for two pathways; the delta G values for these two independent routes were equivalent only for stoichiometries of four inducers and two operators per repressor molecule. All of the binding data were analyzed quantitatively by using a Monod-Wyman-Changeux two-state model for allosteric regulation. The observed dependences of the isopropyl beta-D-thiogalactoside binding curves on pH, DNA concentration, and MMTS modification were fitted by varying only the equilibrium constant between the two conformational states of the protein. With this analysis, high pH favors the T (high operator/low inducer affinity) state, while modification of cysteine-281 with MMTS elicits a shift into the R (high inducer/low operator affinity) state.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献