首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oligodeoxynucleotides covalently linked to cellulose were used as probes of the DNA-binding domains of mouse steroid holoreceptors. With uterine cytosol estrogen receptor (E2R) the relative binding order, in prior studies, was oligo(dG) > oligo(dT) ≧ oligo(dC) > > oligo(dA) > oligo(dI). The binding reactions were salt-sensitive with an optimal KCl concentration of 0.1–0.2 M. There was no enhancement of binding by activation, either temperature- or salt-induced. In the present study, using the oligomer ligands at a lower concentration, oligo(dT) binding was greater than that to oligo(dC). Quantitative differences in oligodeoxynucleotide binding were elicited by a number of inhibitors. These differences are again seen by exposure of E2R to chaotropic salts such as SCN?, ClO4? and NO3? as well as to putative modifiers of receptor amino acids, ie, iodoacetamide, 1,2 cyclohexanedione, and Rose Bengal. These results, and the quantitative differences following heat and purification, led to a designation of two types of subsites within the DNA-binding domain of uterine E2R. These are stable G sites, which interact with oligo(dG); and labile N sites, which bind to oligo(dT), oligo(dC) and oligo(dA). Stimulation of binding to N sites and stabilization of the holoreceptor was effected by histones H2A and H2B. However, the differential response to incubation at 37°C was not altered by addition of H2B. Treatment of uterine E2R by limited proteolysis also eliminated the stimulatory response to H2B. The above data, as well as prior studies, indicate that steroid holoreceptors can discriminate between the structural features of deoxynucleotide bases and this recognition process can be modulated by accessory proteins.  相似文献   

2.
3.
One, two or four copies of the 'helix-hairpin-helix' (HhH) DNA-binding motif are predicted to occur in 14 homologous families of proteins. The predicted DNA-binding function of this motif is shown to be consistent with the crystallographic structure of rat polymerase beta, complexed with DNA template-primer [Pelletier, H., Sawaya, M.R., Kumar, A., Wilson, S.H. and Kraut, J. (1994) Science 264, 1891-1903] and with biochemical data. Five crystal structures of predicted HhH motifs are currently known: two from rat pol beta and one each in endonuclease III, AlkA and the 5' nuclease domain of Taq pol I. These motifs are more structurally similar to each other than to any other structure in current databases, including helix-turn-helix motifs. The clustering of the five HhH structures separately from other bi-helical structures in searches indicates that all members of the 14 families of proteins described herein possess similar HhH structures. By analogy with the rat pol beta structure, it is suggested that each of these HhH motifs bind DNA in a non-sequence-specific manner, via the formation of hydrogen bonds between protein backbone nitrogens and DNA phosphate groups. This type of interaction contrasts with the sequence-specific interactions of other motifs, including helix-turn-helix structures. Additional evidence is provided that alphaherpesvirus virion host shutoff proteins are members of the polymerase I 5'-nuclease and FEN1-like endonuclease gene family, and that a novel HhH-containing DNA-binding domain occurs in the kinesin-like molecule nod, and in other proteins such as cnjB, emb-5 and SPT6.  相似文献   

4.
The Escherichia coli 3-methyladenine DNA glycosylase I (TAG) is a DNA repair enzyme that excises 3-methyladenine in DNA and is the smallest member of the helix-hairpin-helix (HhH) superfamily of DNA glycosylases. Despite many studies over the last 25 years, there has been no suggestion that TAG was a metalloprotein. However, here we establish by heteronuclear NMR and other spectroscopic methods that TAG binds 1 eq of Zn2+ extremely tightly. A family of refined NMR structures shows that 4 conserved residues contributed from the amino- and carboxyl-terminal regions of TAG (Cys4, His17, His175, and Cys179) form a Zn2+ binding site. The Zn2+ ion serves to tether the otherwise unstructured amino- and carboxyl-terminal regions of TAG. We propose that this unexpected "zinc snap" motif in the TAG family (CX(12-17)HX(approximately 150)HX(3)C) serves to stabilize the HhH domain thereby mimicking the functional role of protein-protein interactions in larger HhH superfamily members.  相似文献   

5.
6.
A filter assay for steroid hormone receptors   总被引:10,自引:0,他引:10  
  相似文献   

7.
Chromosomal proteins that form essential architectural components of chromatin bind and bend DNA with an intrinsic low degree of sequence preference. Comparisons made between two recently determined structures of high mobility group (HMG) protein-DNA complexes and other nonsequence-specific protein-DNA complexes reveal the structural basis of this important mode of DNA binding.  相似文献   

8.
9.
In the present study, a novel structural motif that can be represented as a combination of the known βαβ-unit and ψ-motif is described and analyzed. In theory, there are four possible combinations of the motifs since each of them can exist in two forms, left-handed and right-handed. For this study, we have selected 140 nonhomologous proteins in which 158 combinations of such types have been found. The combination of the right-handed ψ-motif and the right-handed βαβ-unit has been shown to occur most often (87 cases out of 158) and the combination of the left-handed βαβ-unit and the left-handed ψ-motif does not occur at all. Three novel structural trees in which the commonly occurring combinations are taken as the root structures have been constructed.  相似文献   

10.
Phosphate is one of the most frequently exploited chemical moieties in nature, present in a wide range of naturally occurring and critically important small molecules. Several phosphate group recognition motifs have been found for a few narrow groups of proteins, but for many protein families and folds the mode of phosphate recognition remains unclear. Here, we have analyzed the structures of all fold-representative protein-ligand complexes listed in the FSSP database, regardless of whether the bound ligand included a phosphate group. Based on a phosphate-binding motif that we identified in pyridoxal phosphate binding proteins, we have identified a new anion-binding structural motif, CalphaNN, common to 104 fold-representative protein structures that belong to 62 different folds, of which 86% of the fold-representative structures (51 folds) bind phosphate or lone sulfate ions. This motif leads to a precise mode for phosphate group recognition forming a structure where atoms of the phosphate group occupy the most favorable stabilizing positions. The anion-binding CalphaNN motif is based only on main-chain atoms from three adjacent residues, has a conservative betaalphaalpha or betaalphabeta geometry, and recognizes the free phosphate (sulfate) ion as well as one or more phosphate groups in nucleotides and in a variety of cofactors. Moreover, the CalphaNN motif is positioned in functionally important regions of protein structures and often residues of the motif directly participate in the function of the protein.  相似文献   

11.
12.
Clostridium botulinum C3 exoenzyme inactivates the small GTP-binding protein family Rho by ADP-ribosylating asparagine 41, which depolymerizes the actin cytoskeleton. C3 thus represents a major family of the bacterial toxins that transfer the ADP-ribose moiety of NAD to specific amino acids in acceptor proteins to modify key biological activities in eukaryotic cells, including protein synthesis, differentiation, transformation, and intracellular signaling. The 1.7 A resolution C3 exoenzyme structure establishes the conserved features of the core NAD-binding beta-sandwich fold with other ADP-ribosylating toxins despite little sequence conservation. Importantly, the central core of the C3 exoenzyme structure is distinguished by the absence of an active site loop observed in many other ADP-ribosylating toxins. Unlike the ADP-ribosylating toxins that possess the active site loop near the central core, the C3 exoenzyme replaces the active site loop with an alpha-helix, alpha3. Moreover, structural and sequence similarities with the catalytic domain of vegetative insecticidal protein 2 (VIP2), an actin ADP-ribosyltransferase, unexpectedly implicates two adjacent, protruding turns, which join beta5 and beta6 of the toxin core fold, as a novel recognition specificity motif for this newly defined toxin family. Turn 1 evidently positions the solvent-exposed, aromatic side-chain of Phe209 to interact with the hydrophobic region of Rho adjacent to its GTP-binding site. Turn 2 evidently both places the Gln212 side-chain for hydrogen bonding to recognize Rho Asn41 for nucleophilic attack on the anomeric carbon of NAD ribose and holds the key Glu214 catalytic side-chain in the adjacent catalytic pocket. This proposed bipartite ADP-ribosylating toxin turn-turn (ARTT) motif places the VIP2 and C3 toxin classes into a single ARTT family characterized by analogous target protein recognition via turn 1 aromatic and turn 2 hydrogen-bonding side-chain moieties. Turn 2 centrally anchors the catalytic Glu214 within the ARTT motif, and furthermore distinguishes the C3 toxin class by a conserved turn 2 Gln and the VIP2 binary toxin class by a conserved turn 2 Glu for appropriate target side-chain hydrogen-bonding recognition. Taken together, these structural results provide a molecular basis for understanding the coupled activity and recognition specificity for C3 and for the newly defined ARTT toxin family, which acts in the depolymerization of the actin cytoskeleton. This beta5 to beta6 region of the toxin fold represents an experimentally testable and potentially general recognition motif region for other ADP-ribosylating toxins that have a similar beta-structure framework.  相似文献   

13.
Gene 4 of bacteriophage T7 encodes two proteins, a 63 kDa and a colinear 56 kDa protein. The coding sequence of the 56 kDa protein begins at the residues encoding an internal methionine located 64 amino acids from the N-terminus of the 63 kDa protein. The 56 kDa gene 4 protein is a helicase and the 63 kDa gene 4 protein is a helicase and a primase. The unique 7 kDa N-terminus of the 63 kDa gene 4 protein is essential for primer synthesis and contains sequences with homology to a Cys4 metal binding motif, Cys-X2-Cys-X17-Cys-X2-Cys. The zinc content of the 63 kDa gene 4 protein is 1.1 g-atom/mol protein, while the zinc content of the 56 kDa gene 4 protein is < 0.01, as determined by atomic absorption spectrometry. A bacteriophage deleted for gene 4, T7 delta 4-1, is incapable of growing on Escherichia coli strains that contain plasmids expressing gene 4 proteins with single amino acid substitutions of Ser at each of the four conserved Cys residues (efficiency of plating, 10(-7)). Primase containing a substitution of the third Cys for Ser has been overexpressed in E. coli and purified to homogeneity. This mutant primase cannot catalyze template-directed synthesis of oligoribonucleotides although it is able to catalyze the synthesis of random diribonucleotides in a template-independent fashion. The mutant primase has reduced helicase activity although it catalyzes single-stranded DNA-dependent hydrolysis of dTTP at rates comparable with wild type primase. The zinc content of the mutant primase is 0.5 g-atom/mol protein.  相似文献   

14.
Development of an accurate protein–DNA recognition code that can predict DNA specificity from protein sequence is a central problem in biology. C2H2 zinc fingers constitute by far the largest family of DNA binding domains and their binding specificity has been studied intensively. However, despite decades of research, accurate prediction of DNA specificity remains elusive. A major obstacle is thought to be the inability of current methods to account for the influence of neighbouring domains. Here we show that this problem can be addressed using a structural approach: we build structural models for all C2H2-ZF–DNA complexes with known binding motifs and find six distinct binding modes. Each mode changes the orientation of specificity residues with respect to the DNA, thereby modulating base preference. Most importantly, the structural analysis shows that residues at the domain interface strongly and predictably influence the binding mode, and hence specificity. Accounting for predicted binding mode significantly improves prediction accuracy of predicted motifs. This new insight into the fundamental behaviour of C2H2-ZFs has implications for both improving the prediction of natural zinc finger-binding sites, and for prioritizing further experiments to complete the code. It also provides a new design feature for zinc finger engineering.  相似文献   

15.
The J-binding protein 1 (JBP1) is essential for biosynthesis and maintenance of DNA base-J (β-d-glucosyl-hydroxymethyluracil). Base-J and JBP1 are confined to some pathogenic protozoa and are absent from higher eukaryotes, prokaryotes and viruses. We show that JBP1 recognizes J-containing DNA (J-DNA) through a 160-residue domain, DB-JBP1, with 10 000-fold preference over normal DNA. The crystal structure of DB-JBP1 revealed a helix-turn-helix variant fold, a ‘helical bouquet’ with a ‘ribbon’ helix encompassing the amino acids responsible for DNA binding. Mutation of a single residue (Asp525) in the ribbon helix abrogates specificity toward J-DNA. The same mutation renders JBP1 unable to rescue the targeted deletion of endogenous JBP1 genes in Leishmania and changes its distribution in the nucleus. Based on mutational analysis and hydrogen/deuterium-exchange mass-spectrometry data, a model of JBP1 bound to J-DNA was constructed and validated by small-angle X-ray scattering data. Our results open new possibilities for targeted prevention of J-DNA recognition as a therapeutic intervention for parasitic diseases.  相似文献   

16.
17.
18.
19.
DNA in a single-stranded form (ssDNA) exists transiently within the cell and comprises the telomeres of linear chromosomes and the genomes of some DNA viruses. As with RNA, in the single-stranded state, some DNA sequences are able to fold into complex secondary and tertiary structures that may be recognized by proteins and participate in gene regulation. To better understand how such DNA elements might fold and interact with proteins, and to compare recognition features to those of a structured RNA, we used in vitro selection to identify ssDNAs that bind an RNA-binding peptide from the HIV Rev protein with high affinity and specificity. The large majority of selected binders contain a non-Watson-Crick G.T base-pair and an adjacent C:G base-pair and both are essential for binding. This GT motif can be presented in different DNA contexts, including a nearly perfect duplex and a branched three-helix structure, and appears to be recognized in large part by arginine residues separated by one turn of an alpha-helix. Interestingly, a very similar GT motif is necessary also for protein binding and function of a well-characterized model ssDNA regulatory element from the proenkephalin promoter.  相似文献   

20.
The helix-turn-helix (HTH) motif features frequently in protein DNA-binding assemblies. Viral pac site-targeting small terminase proteins possess an unusual architecture in which the HTH motifs are displayed in a ring, distinct from the classical HTH dimer. Here we investigate how such a circular array of HTH motifs enables specific recognition of the viral genome for initiation of DNA packaging during virus assembly. We found, by surface plasmon resonance and analytical ultracentrifugation, that individual HTH motifs of the Bacillus phage SF6 small terminase bind the packaging regions of SF6 and related SPP1 genome weakly, with little local sequence specificity. Nuclear magnetic resonance chemical shift perturbation studies with an arbitrary single-site substrate suggest that the HTH motif contacts DNA similarly to how certain HTH proteins contact DNA non-specifically. Our observations support a model where specificity is generated through conformational selection of an intrinsically bent DNA segment by a ring of HTHs which bind weakly but cooperatively. Such a system would enable viral gene regulation and control of the viral life cycle, with a minimal genome, conferring a major evolutionary advantage for SPP1-like viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号