首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Knowledge about the glacial refugia of the thermophilous European Castanea sativa Mill. (sweet chestnut) is still inadequate. Its original range of distribution has been masked by strong human impact. Moreover, under natural conditions the species was probably admixed with other taxa (such as Quercus, Fraxinus, Fagus, Tilia) and thus possibly represented by low percentages in pollen records. In this paper we try to overcome the difficulties related to the scarcity and irregularity of chestnut pollen records by considering 1471 sites and extending the palynological approach to develop a Castanea refugium probability index (IRP), aimed at detecting possible chestnut refugia where chestnuts survived during the last glaciation. The results are in close agreement with the current literature on the refugia of other thermophilous European trees. The few divergences are most probably due to the large amount of new data integrated in this study, rather than to fundamental disagreements about data and data interpretation. The main chestnut refugia are located in the Transcaucasian region, north-western Anatolia, the hinterland of the Tyrrhenian coast from Liguria to Lazio along the Apennine range, the region around Lago di Monticchio (Monte Vulture) in southern Italy, and the Cantabrian coast on the Iberian peninsula. Despite the high likelihood of Castanea refugia in the Balkan Peninsula and north-eastern Italy (Colli Euganei, Monti Berici, Emilia-Romagna) as suggested by the IRP, additional palaeobotanical investigations are needed to assess whether these regions effectively sheltered chestnut during the last glaciation. Other regions, such as the Isère Département in France, the region across north-west Portugal and Galicia, and the hilly region along the Mediterranean coast of Syria and Lebanon were classified as areas of medium refugium probability. Our results reveal an unexpected spatial richness of potential Castanea refugia. It is likely that other European trees had similar distribution ranges during the last glaciation. It is thus conceivable that shelter zones with favourable microclimates were probably more numerous and more widely dispersed across Europe than so far assumed. In the future, more attention should be paid to pollen traces of sporadic taxa thought to have disappeared from a given area during the last glacial and post-glacial period.Electronic Supplementary Material Supplementary material is available in the online version of this article at . A link in the frame on the left on that page takes you directly to the supplementary material.An erratum to this article can be found at  相似文献   

2.
Aim We examine several hypotheses emerging from biogeographical and fossil records regarding glacial refugia of a southern thermophilic plant species. Specifically, we investigated the glacial history and post‐glacial colonization of a forest understorey species, Trillium cuneatum. We focused on the following questions: (1) Did T. cuneatum survive the Last Glacial Maximum (LGM) in multiple refugia, and (if so) where were they located, and is the modern genetic structure congruent with the fossil record‐based reconstruction of refugia for mesic deciduous forests? (2) What are the post‐glacial colonization patterns in the present geographical range? Location South‐eastern North America. Methods We sampled 45 populations of T. cuneatum throughout its current range. We conducted phylogeographical analyses based on maternally inherited chloroplast DNA (cpDNA haplotypes) and used TCS software to reconstruct intraspecific phylogeny. Results We detected six cpDNA haplotypes, geographically highly structured into non‐overlapping areas. With one exception, none of the populations had mixed haplotype composition. TCS analysis resulted in two intraspecific cpDNA lineages, with one clade subdivided further by shallower diversification. Main conclusions Our investigation revealed that T. cuneatum survived the LGM in multiple refugia, belonging to two (western, eastern) genealogical lineages geographically structured across south‐eastern North America. The western clade is confined to the south‐western corner of T. cuneatum’s modern range along the Lower Mississippi Valley, where fossil records document a major refugium of mesic deciduous forest. For the eastern clade, modern patterns of cpDNA haplotype distribution suggest cryptic vicariance, in the form of forest contractions and subsequent expansions associated with Pleistocene glacial cycles, rather than simple southern survival and subsequent northward colonization. The north–south partitioning of cpDNA haplotypes was unexpected, suggesting that populations of this rather southern thermophilic species may have survived in more northern locations than initially expected based on LGM climate reconstruction, and that the Appalachian Mountains functioned as a barrier to the dispersal of propagules originating in more southern refugia. Furthermore, our results reveal south‐west to north‐east directionality in historical migration through the Valley and Ridge region of north‐west Georgia.  相似文献   

3.
Aim  To generate maps of potential refugia for summer-green trees during the Last Glacial Maximum (LGM).
Locations  Southern Europe and south-western Asia.
Methods  Time-slice simulations of the atmospheric climate with the ECHAM3 model are used for the LGM. Limiting factors beyond which cool and warm groups of deciduous trees cannot grow (such as temperature in growing degree days, minimum monthly temperature and precipitation in summer) are chosen. A limited validation by fossil pollen and charcoal records from LGM sites was done.
Results  Two sets of maps extending from Europe to the Caspian region for cool and warm summer-green trees are presented. Three criteria are combined using contour lines to indicate confidence levels. Small areas within the three southern peninsulas of Europe (Spain, Italy and Greece) are highlighted as possible refugia for summer-green trees. Further, areas that have remained poorly known are now proposed as refugia, including the Sakarya–Kerempe region in northern Turkey, the east coast of the Black Sea and the area south of the Caspian Sea.
Main conclusions  The maps produced in this study could be used to facilitate better long-term management for the protection of European and south-western Asian biodiversity.  相似文献   

4.
A palaeobotanical analysis of the Pleistocene floras and vegetation in the Iberian Peninsula shows the existence of patched landscapes with Pinus woodlands, deciduous and mixed forests, parklands (savannah-like), shrublands, steppes and grasslands. Extinctions of Arctotertiary woody taxa are recorded during the Early and Middle Pleistocene, but glacial refugia facilitated the survival of a number of temperate, Mediterranean and Ibero-North African woody angiosperms. The responses of Iberian vegetation to climatic changes during the Pleistocene have been spatially and temporarily complex, including rapid changes of vegetation in parallel to orbital and suborbital variability, and situations of multi-centennial resilience or accommodation to climatic changes. Regional characteristics emerged as soon as for the Middle Pleistocene, if not earlier: Ericaceae in the Atlantic coast indicating wetter climate, thermo-mediterranean elements in the south as currently, and broad-leaf trees in the northeastern. Overall, steppe landscapes and open Pinus woodlands prevailed over many continental regions during the cold spells of the Late Pleistocene. The maintenance of a high phytodiversity during the glacials was linked to several refuge zones in the coastal shelves of the Mediterranean and intramountainous valleys. Northern Iberia, especially on coastal areas, was also patched with populations of tree species, and this is not only documented by palaeobotanical data (pollen and charcoal) but also postulated by phylogeographical models.  相似文献   

5.
Aim The southern European peninsulas (Iberian, Italian and Balkan) are considered to have been refugia for many European species of plants and animals during the climatic extremes of the Pleistocene ice ages. A number of recent studies (fossil and genetic), however, have provided evidence for full‐glacial survival of some species beyond these peninsulas. Here we explore the biogeographical traits of these species, and ask whether they possessed certain characteristics that enabled them to persist in more northerly refugia. Location Europe. Methods Fossil and genetic evidence for refugial localities of species that survived in Europe during the last full‐glacial was obtained from the literature (totalling 90 species: 34 woody plants and 56 vertebrates). Forty‐seven of these species (23 woody plants and 24 vertebrates) had fossil evidence, whereas the remaining 43 species (11 woody plants and 32 vertebrates) had only genetic evidence. All species were scored according to their present geographical distribution, habitat preference and life‐history traits. The species were classified on the basis of these traits using hierarchical cluster analysis. Analysis of similarities was used to examine differences in vertebrate and woody plant species groups that survived only in southerly refugia and those that also persisted in more northerly locations. Non‐metric multi‐dimensional scaling was used to examine patterns observed between and within groups. Results Results from our analysis of species with fossil and genetic evidence for survival in refugia reveal that species that survived only in southerly refugia were large‐seeded trees or thermophilous vertebrates. In contrast, species that had a full‐glacial distribution, including more northerly locations, were wind‐dispersed, habitat‐generalist trees with the ability to reproduce vegetatively, and habitat‐generalist mammals with present‐day northerly distributions. Main conclusions Analysis of the geographical distribution, habitat preference and life‐history traits of the species studied suggests that underlying biogeographical traits may have determined their response to Pleistocene glaciation. The traits most commonly found in present populations with a northerly distribution in Europe enabled the same species to exist much farther north than the southern European peninsulas during the full‐glacial. It is possible that many of these species are now in restricted populations, within the ‘warm‐stage’ refugia of the current interglacial. The northerly full‐glacial survival of a number of woody plants and vertebrate species has significant implications for understanding migration rates of these species in response to climate change. It also has important implications for understanding current patterns of genetic diversity of European species. We suggest that both fossil and genetic evidence should be used to identify and prioritize for conservation of refugial localities in southern and northern Europe.  相似文献   

6.
The southwestern Iberian Peninsula is an important biogeographic region, showing high biodiversity levels and hosting several putative glacial refugia for European flora. Here, we study the genetic diversity and structure of the Mediterranean, thermophilous plant Cheirolophus sempervirens (Asteraceae) across its whole distribution range in SW Iberia, as a tool to disentangle some of the general biogeographic patterns shaping this southern refugia hotspot. Null genetic diversity was observed in the cpDNA sequencing screening. Nonetheless, AFLP data revealed high levels of among-population genetic differentiation correlated to their geographic location. Our results suggest longer species persistence in southern Iberian refugia during glacial periods and subsequent founder effects northwards due to colonizations in warmer stages (i.e., the southern richness to northern purity pattern). Additionally, our phylogeographic analyses indicate the presence of two separate genetic lineages within Ch. sempervirens, supporting the hypothesis of multiple minor refugia for SW Iberia in agreement with the refugia within refugia model.  相似文献   

7.
Abstract.  This study presents pollen-analytical data from continental and offshore Iberian Peninsula sites that include pollen curves of Quercus suber , to provide information on the past distribution and ecology of the cork oak ( Q. suber ). Results centre on a new pollen record of Navarrés (Valencia, eastern Spain), which shows that the cork oak survived regionally during the Upper Pleistocene and was important during a mid-Holocene replacement of a local pine forest by Quercus -dominated communities. This phenomenon appears linked to the recurrence of fire and reinforces the value of the cork oak for reforestation programmes in fire-prone areas. In addition to Navarrés, other Late Quaternary pollen sequences (Sobrestany, Casablanca-Almenara, Padul, SU 8103, SU8113, 8057B) suggest last glacial survival of the cork oak in southern and coastal areas of the Peninsula and North Africa. Important developments also occur from the Late Glacial to the middle Holocene, not only in the west but also in the eastern Peninsula. It is suggested that, in the absence of human influence, Q. suber would develop in non-monospecific forests, sharing the arboreal stratum both with other sclerophyllous and deciduous Quercus and Pinus species.  相似文献   

8.
Pollen and plant macrofossil data from northern Eurasia were used to reconstruct the vegetation of the last glacial maximum (LGM: 18,000 ± 2000 14C yr bp ) using an objective quantitative method for interpreting pollen data in terms of the biomes they represent ( Prentice et al., 1996 ). The results confirm previous qualitative vegetation reconstructions at the LGM but provide a more comprehensive analysis of the data. Tundra dominated a large area of northern Eurasia (north of 57°N) to the west, south and east of the Scandinavian ice sheet at the LGM. Steppe‐like vegetation was reconstructed in the latitudinal band from western Ukraine, where temperate deciduous forests grow today, to western Siberia, where taiga and cold deciduous forests grow today. The reconstruction shows that steppe graded into tundra in Siberia, which is not the case today. Taiga grew on the northern coast of the Sea of Azov, about 1500 km south of its present limit in European Russia. In contrast, taiga was reconstructed only slightly south of its southern limit today in south‐western Siberia. Broadleaved trees were confined to small refuges, e.g. on the eastern coast of the Black Sea, where cool mixed forest was reconstructed from the LGM data. Cool conifer forests in western Georgia were reconstructed as growing more than 1000 m lower than they grow today. The few scattered sites with LGM data from the Tien‐Shan Mountains and from northern Mongolia yielded biome reconstructions of steppe and taiga, which are the biomes growing there today.  相似文献   

9.
A new core taken from a site in the Sierra de Courel range of mountains in the northwest Iberian peninsula, Spain, enables a palaeoenvironmental reconstruction to be made of the biological events resulting from climatic changes and human activities during the last 17,000 years in the area. The sequence begins with a phase characterised by the dominance of Gramineae (Poaceae) and Pinus. A markedly arid period with prevalence of Artemisia pollen occurred between 17,5000 and 15,500 uncal. B.P. Subsequently, a succession of woodlands with Betula, Pinus and other mesophilous and thermophilous trees was recognised during the period 15,500-13,500 uncal. B.P. Between 13,500 and 10,300 uncal. B.P. herbaceous vegetation formations indicating moister conditions dominated the pollen record, although a maximum of Gramineae has been dated during the period 11,300-10,300 uncal. B.P. Comparison with other pollen data from neighbouring mountains allows an interpretation of the vegetation changes during the glacial/interglacial transition in the mountains of northwest Iberia. The Holocene pollen record from the site does not differ markedly from other records in the area, tree expansion occurring before 10,000 uncal. B.P. and high values of deciduous Quercus mixed with other trees and shrubs persisting until 3500 uncal. B.P., when increased human activities are shown by a fall of the tree pollen percentages. Received July 7, 1999 / Accepted May 22, 2000  相似文献   

10.
This paper presents an analysis of the distributional patterns of blenniids (Pisces: Blenniidae) in the north‐eastern Atlantic. Two peaks of species diversity were found, both in terms of number of species and number of endemics: one in the tropical African coast and another in the Mediterranean Sea. A cluster analysis of similarity values (Jaccard coefficient) among the eastern Atlantic zoogeographical areas, revealed the following groups: a north temperate group, a tropical group formed by the tropical African coast and Mauritania, another group formed by the islands of Cape Verde, a south temperate group (South Africa), and a southern Atlantic group formed by the islands of Ascension and St Helena. Within the north temperate group, the subgroups with higher similarities were: Azores and Madeira, Canary Islands and Morocco, and the Mediterranean and the Atlantic coast of the Iberian Peninsula. Based on affinity indices, the probable directions of faunal flows were inferred. The tropical coast of Africa and the Mediterranean emerged from this analysis as probable speciation centres of the north‐eastern Atlantic blenniid fauna. The Mediterranean may have also acted as a refuge during glacial periods.  相似文献   

11.
The major climatic oscillations that characterized the Quaternary had a great influence on the evolution and distribution of several species. During cold periods, the distribution of temperate‐adapted species became fragmented with many surviving in southern refugia (Iberian, Italian, and Balkan Peninsulas). Red deer was one of the species that contracted its original range to southern refugia. Currently, two main lineages have been described for the species: western and eastern. We have analyzed fossils pre‐dating the last glacial maximum (LGM) from Liñares cave (NW Spain) that belongs to the peripheral range of the western clade, and fossils from the Danish Holocene belonging to the central part of the same clade. Phylogenetic analyses place our samples in the western clade. However, some specimens from Liñares represent an early split in the tree along with other pre‐LGM western samples from previous studies. Despite low bootstrap values in the Bayesian phylogenies, haplotype networks connect these foreign haplotypes to the eastern clade. We suggest a mixed phylogeographical model to explain this pattern with range expansions from the east during the expansion phase after the cold periods in marine isotope stage 3. We find slight isolation by distance in post‐LGM populations that could be a consequence of the recolonization from southern refugia after the LGM.  相似文献   

12.
Increasing temperatures are predicted to have profound effects on montane ecosystems. In tropical forests, biotic attrition may reduce lowland diversity if losses of species due to upslope range shifts are not matched by influxes of warmer‐adapted species, either because there are none or their dispersal is impeded. Australian rainforests consist of a north–south chain of patches, broken by dry corridors that are barriers to the dispersal of rainforest species. These rainforests have repeatedly contracted and expanded during Quaternary glacial cycles. Many lowland rainforests are expansions since the Last Glacial Maximum and may, therefore, show a signal of historical biotic attrition. We surveyed ants from replicated sites along three rainforest elevational transects in eastern Australia spanning 200 to 1200 m a.s.l. and nearly 14° of latitude. We examined elevational patterns of ant diversity and if there was possible evidence of lowland biotic attrition. Each transect was in a different biogeographic region; the Australian Wet Tropics (16.3°S), the central Queensland coast (21.1°S) and subtropical south‐eastern Queensland (28.1°S). We calculated ant species density (mean species per site) and species richness (estimated number of species by incorporating site‐to‐site species turnover) within elevational bands. Ant species density showed no signal of lowland attrition and was high at low and mid‐elevations and declined only at high elevations at all transects. Similarly, estimated species richness showed no evidence of lowland attrition in the Wet Tropics and subtropical south‐east Queensland; species richness peaked at low elevations and declined monotonically with increasing elevation. Persistence of lowland rainforest refugia in the Wet Tropics during the Last Glacial Maximum and latitudinal range shifts of ants in subtropical rainforests during the Holocene climatic optimum may have counteracted lowland biotic attrition. In central Queensland, however, estimated richness was similar in the lowlands and mid‐elevations, and few ant species were indicative of lower elevations. This may reflect historical biotic attrition due perhaps to a lack of lowland glacial refugia and the isolation of this region by a dry forest barrier to the north.  相似文献   

13.
Aim To understand the impact of glacial refugia and migration pathways on the modern genetic diversity of Pinus sylvestris. Location The study was carried out throughout Europe. Methods An extended set of data of pollen and macrofossil remains was used to locate the glacial refugia and reconstruct the migrating routes of P. sylvestris throughout Europe. A vegetation model was used to simulate the extent of the potential refugia during the last glacial period. At the same time a genetic survey was carried out on this species. Results The simulated distribution of P. sylvestris during the last glacial period is coherent with the observed fossil data, which showed a patchy distribution of the refugia between c. 40° N and 50° N. Several migrational fronts were detected within the Iberian and the Italian peninsulas, and outside the Hungarian plain and around the Alps. The modern mitochondrial DNA depicted three different haplotypes for P. sylvestris. Two distinct haplotypes were restricted to northern Spain and Italy, and the third haplotype dominated most of the present‐day remaining distribution range of P. sylvestris in Europe. Main conclusions During the last glacial period P. sylvestris was constrained under severe climatic conditions to survive in scattered and restricted refugial areas. Combining palaeoenvironmental data, vegetation modelling and the genetic data, we have shown that the long‐term isolation in the glacial refugia and the migrational process during the Holocene have played a major role in shaping the modern genetic diversity of P. sylvestris in Europe.  相似文献   

14.
Aim  A multiple glacial refugia hypothesis for Mediterranean plant species was tested with the evergreen Quercus complex ( Quercus suber L., Quercus ilex L. and Quercus coccifera L.) from the Iberian Peninsula, using molecular and palaeobotanical data.
Location  The Iberian Peninsula, which is an ecologically and physiographically complex area located on the western edge of the Mediterranean Basin.
Methods  We sampled 1522 individuals from 164 populations of Q. suber , Q. ilex and Q. coccifera . A review of the recent literature on fossil pollen and charcoal records and a nested clade analysis on chloroplast DNA polymerase chain reaction-restriction fragment length polymorphism was carried out to infer demographic and historical processes.
Results  The analysis indicates at least one glacial refugium for Q. suber in south-western Iberia. Extensive introgression of Q. suber with Q. ilex indicates several potential refugia in eastern Iberia. Past fragmentation was followed by a restricted range flow/range expansion, suggesting multiple refugia for Q. ilex–Q. coccifera elsewhere in central and northern Iberia and multiple areas of secondary contact. This finding is consistent with fossil records.
Main conclusions  The predicted multiple refugia during glacial periods indicates the existence of secondary post-glaciation contact areas. These areas contained complex diversity patterns resulting mainly from range expansions followed by isolation by distance. To a lesser degree, traces of restricted and long-distance dispersal were also found.  相似文献   

15.
Several studies have reported glacial refugia and migration pathways for different pine species in the Iberian Peninsula, all of them based on a single‐species approach. In this paper, chloroplast microsatellites (cpSSRs) are used to compare population genetic structure and diversity estimates for interspecific pairs of populations located along a cline from southwestern (latitude 36°32′ N, longitude 5°17′ W) to northeastern Spain (latitude 42°14′ N, longitude 2°47′ E) in two widely distributed Mediterranean pines, Pinus halepensis Mill. and Pinus pinaster Ait. Some cpSSRs were shared between species, facilitating comparison of levels of gene diversity at the species level and inferences about within and among species differentiation. P. pinaster showed a much higher number of variants (29) and haplotypes (69) than P. halepensis (20 and 21, respectively). Moreover, genetic diversity estimates for interspecific pairs of populations along the cline were negatively correlated. Three main causes may explain the differences between species in the present‐day distribution of genetic diversity: (1) the distribution of genetic variability before the Quaternary glaciations, with an earlier presence of P. pinaster in the Iberian Peninsula and a late spread of P. halepensis from eastern and central Europe, (2) the location of the Holocene glacial refugia and the migration pathways from these refugia to the present‐day range (from northeast to southwest in P. halepensis and from southwest to northeast and northwest in P. pinaster) and (3) the interactions between species during the postglacial spread.  相似文献   

16.
The role of glacial refugia in shaping contemporary species distribution is a long-standing question in phylogeography and evolutionary ecology. Recent studies are questioning previous paradigms on glacial refugia and postglacial recolonization pathways in Europe, and more flexible phylogeographic scenarios have been proposed. We used the widespread common vole Microtus arvalis as a model to investigate the origin, locations of glacial refugia, and dispersal pathways, in the group of “Continental” species in Europe. We used a Bayesian spatiotemporal diffusion analysis (relaxed random walk model) of cytochrome b sequences across the species range, including newly collected individuals from 10 Iberian localities and published sequences from 68 localities across 22 European countries. Our data suggest that the species originated in Central Europe, and we revealed the location of multiple refugia (in both southern peninsulas and continental regions) for this continental model species. Our results confirm the monophyly of Iberian voles and the pre-LGM divergence between Iberian and European voles. We found evidence of restricted postglacial dispersal from refugia in Mediterranean peninsulas. We inferred a complex evolutionary and demographic history of M. arvalis in Europe over the last 50,000 years that does not adequately fit previous glacial refugial scenarios. The phylogeography of M. arvalis provides a paradigm of ice-age survival of a temperate continental species in western and eastern Mediterranean peninsulas (sources of endemism) and multiple continental regions (sources of postglacial spread). Our findings also provide support for a major role of large European river systems in shaping geographic boundaries of M. arvalis in Europe.  相似文献   

17.
The population genetic structure of many high‐latitude species in North America was affected by the last glaciation, and current structure reflects isolation in refugia and colonisation patterns. Large ice‐free areas, both south of the ice sheets and in the north‐west, supported numerous flora and fauna throughout this period. Fossil evidence suggests additional western glacial refugia existed both on Haida Gwaii (the Queen Charlotte Islands) and in northern Idaho. The chestnut‐backed chickadee Poecile rufescens is a songbird found along the western edge of Canada and the United States, with a linear distribution along the coast, and an isolated interior population. Mitochondrial DNA sequence data (control region and ATPase 6–8) from 10 populations (n = 122) were used to test for population genetic structure. The data supported a general north/south separation. Haida Gwaii was found to be genetically distinct from the rest of the populations, and the two northern British Columbia populations separated from all but Alaska. The interior population showed evidence of both historical isolation and secondary colonisation by birds from coastal populations. Neutrality tests suggested a past population expansion in all populations from previously glaciated areas, and a stable population in areas believed to be unglaciated. This pattern supports the use of multiple glacial refugia by the chestnut‐backed chickadee. We could not reject the use of Haida Gwaii or the interior (i.e. Clearwater Basin) as glacial refugia.  相似文献   

18.
Many European tree species survived Pleistocene glaciations in Mediterranean refugia and rapidly recolonized temperate Europe afterwards. Inter‐ and postglacial migration processes are assumed to have catalized evolutionary optimizations of dispersal‐related traits, but up to now empirical evidence is lacking in vertebrate‐dispersed plants. We investigated if south Iberian glacial relict and central European “colonizer” populations of the bird‐dispersed tree Frangula alnus have experienced differentiations of dispersal‐related traits which increase the mobility of northern populations. A comparison of lifetime reproductive strategy, disperser guilds, ripening phenology, and fruit design revealed considerable differences. Compared to south Iberian conspecifics, central European plants were considerably smaller and experienced a highly accelerated generation turnover. In south Iberian populations seed dispersal was carried out almost completely by resident birds which occurred in constant abundances throughout the ripening season. In contrast, central European seeds were dispersed by migrants whose abundances changed considerably during the ripening season. Several bird species were involved in both study areas but rendered different importance for seed dispersal. The fruit ripening pattern was highly asynchronous throughout the ripening season in south Iberia, while central European trees showed a complex ripening sequence which resulted in a significant correlation between fruit abundance and changing disperser availability. Central European fruits were smaller and showed a considerably smaller seed load than south Iberian fruits, thus presumably being more attractive for their small‐sized main dispersers (Sylvia warblers). Chemical analyses revealed significant differences in contents of water, glucose, fructose, proteins, ash. and phenolic compounds. The extensive differentiation of dispersal‐related traits in F. alnus suggests that even weak selective pressures by frugivores may induce evolutionary adjustments of dispersal traits over large time scales. We suggest that the differences we observe today evolved during the species' distribution shifts in the Quaternary.  相似文献   

19.
In East Asia, temperate forests are predicted to have retracted southward to c. 30° N during the last glacial maximum (LGM) based on fossil pollen data, whereas phylogeographic studies have often suggested glacial in situ survival of cool‐temperate deciduous trees in their modern northern ranges. Here we report a study of the genetic diversity and structure of 29 natural Mongolian oak (Quercus mongolica) populations using 19 nuclear simple sequence repeat (nSSR) loci and four chloroplast DNA fragments. Bayesian clustering analysis with nSSRs revealed five groups, which were inferred by approximate Bayesian computation (ABC) to have diverged in multiple refugia through multiple glacial–interglacial cycles. Analysis of chloroplast DNA variation revealed four lineages that were largely but incompletely geographically disjunct. Ecological niche modelling (ENMs) indicated a southward range shift of the oak's distribution at the LGM, although high suitability scores were also evident in the Changbai Mts. (Northeast China), the Korean Peninsula, areas surrounding the Bohai Sea, and along the coast of the Russian Far East. In addition, endemic chloroplast DNA haplotypes and nuclear lineages occurred in high‐latitude northern areas where the ENM predicted no suitable habitat. The combined evidence from nuclear and chloroplast DNA, and the results of the ENM clearly demonstrate that multiple northern refugia, including cryptic ones, were maintained across the current distributional range of the Mongolian oak during the LGM or earlier glacial periods. Though spatially limited, postglacial expansions from these refugia have led to a pattern of decreased genetic diversity with increasing latitude.  相似文献   

20.
A phylogeographical analysis of Ranunculus platanifolius, a typical European subalpine tall‐herb species, indicates the existence of two main genetic lineages based on amplified fragment length polymorphism (AFLP) markers. One group comprises populations from the Balkan Peninsula and the south‐eastern Carpathians and the other includes the remaining part of the range of the species, encompassing the western Carpathians, Sudetes, Alps, Pyrenees and Scandinavia. The main phylogeographical break observed in this species runs across the Carpathians and separates the main parts of this range (western and south‐eastern Carpathians), supporting a distinct glacial history of populations in these areas. The high genetic similarity of the Balkan Peninsula and south‐eastern Carpathian populations could indicate a common glacial refugium for these contemporarily isolated areas of species distribution. The western and northern part of the species range displays an additional weak differentiation into regional phylogeographical groups, which could have been shaped by isolation in glacial refugia or even by a postglacial isolation. The observed weak phylogeographical structure could also be linked with ecological requirements, allowing survival along streams in relatively low, forested mountain ranges. © 2013 The Linnean Society of London  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号