首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 91 毫秒
1.
Meiotic recombination requires pairing of homologous chromosomes, the mechanisms of which remain largely unknown. When pairing occurs during meiotic prophase in fission yeast, the nucleus oscillates between the cell poles driven by astral microtubules. During these oscillations, the telomeres are clustered at the spindle pole body (SPB), located at the leading edge of the moving nucleus and the rest of each chromosome dangles behind. Here, we show that the oscillatory nuclear movement of meiotic prophase is dependent on cytoplasmic dynein. We have cloned the gene encoding a cytoplasmic dynein heavy chain of fission yeast. Most of the cells disrupted for the gene show no gross defect during mitosis and complete meiosis to form four viable spores, but they lack the nuclear movements of meiotic prophase. Thus, the dynein heavy chain is required for these oscillatory movements. Consistent with its essential role in such nuclear movement, dynein heavy chain tagged with green fluorescent protein (GFP) is localized at astral microtubules and the SPB during the movements. In dynein-disrupted cells, meiotic recombination is significantly reduced, indicating that the dynein function is also required for efficient meiotic recombination. In accordance with the reduced recombination, which leads to reduced crossing over, chromosome missegregation is increased in the mutant. Moreover, both the formation of a single cluster of centromeres and the colocalization of homologous regions on a pair of homologous chromosomes are significantly inhibited in the mutant. These results strongly suggest that the dynein-driven nuclear movements of meiotic prophase are necessary for efficient pairing of homologous chromosomes in fission yeast, which in turn promotes efficient meiotic recombination.  相似文献   

2.
Mammalian cyclin A1 is prominently expressed in testis and essential for meiosis in the male mouse, however, it shows weak expression in ovary, especially during oocyte maturation. To understand why cyclin A1 behaves in this way in the oocyte, we investigated the effect of cyclin A1 overexpression on mouse oocyte meiotic maturation. Our results revealed that cyclin A1 overexpression triggered meiotic resumption even in the presence of germinal vesicle breakdown inhibitor, milrinone. Nevertheless, the cyclin A1-overexpressed oocytes failed to extrude the first polar body but were completely arrested at metaphase I. Consequently, cyclin A1 overexpression destroyed the spindle morphology and chromosome alignment by inducing premature separation of chromosomes and sister chromatids. Therefore, cyclin A1 overexpression will prevent oocyte maturation although it can promote meiotic resumption. All these results show that decreased expression of cyclin A1 in oocytes may have an evolutional significance to keep long-lasting prophase arrest and orderly chromosome separation during oocyte meiotic maturation.  相似文献   

3.
4.
5.
Several types of sex chromosome systems have been recorded among Gymnotiformes, including male and female heterogamety, simple and multiple sex chromosomes, and different mechanisms of origin and evolution. The X1X1X2X2/X1X2Y systems identified in three species of this order are considered homoplasic for the group. In the genus Brachyhypopomus, only B. gauderio presented this type of system. Herein we describe the karyotypes of Brachyhypopomus pinnicaudatus and B. n. sp. FLAV, which have an X1X1X2X2/X1X2Y sex chromosome system that evolved via fusion between an autosome and the Y chromosome. The morphology of the chromosomes and the meiotic pairing suggest that the sex chromosomes of B. gauderio and B. pinnicaudatus have a common origin, whereas in B . n. sp. FLAV the sex chromosome system evolved independently. However, we cannot discard the possibility of common origin followed by distinct processes of differentiation. The identification of two new karyotypes with an X1X1X2X2/X1X2Y sex chromosome system in Gymnotiformes makes it the most common among the karyotyped species of the group. Comparisons of these karyotypes and the evolutionary history of the taxa indicate independent origins for their sex chromosomes systems. The recurrent emergence of the X1X1X2X2/X1X2Y system may represent sex chromosomes turnover events in Gymnotiformes.  相似文献   

6.
Male mice lacking cyclin A1 protein are sterile. Their sterility results from an arrest in the meiotic cell cycle of spermatocytes, which we now identify as occurring at late diplotene, immediately before diakinesis. The stage of arrest in cyclin A1-deficient mice is distinct from the arrest seen in spermatocytes that are deficient in its putative catalytic partner Cdk2, which occurs much earlier in pachytene. The arrest in cyclin A1-deficient spermatocytes is also accompanied by an unusual clustering of centromeric heterochromatin. Consistent with a possible defect in the centromeric region, immunofluorescent staining of cyclin A1 protein shows localization in the region of the centromere. Phosphorylation of histone H3 at serine 10 in pericentromeric heterochromatin, which normally occurs in late diplotene, is reduced in spermatocytes from heterozygous Ccna1(+/-) testes and completely absent in spermatocytes with no cyclin A1 protein. Concomitantly, the levels of pericentromeric aurora B kinase, known to phosphorylate histone H3 during meiosis, are partially reduced in spermatocytes from testes of heterozygous mice and further reduced in homozygous null spermatocytes. These data suggest a critical and concentration-dependent function for cyclin A1 in the pericentromeric region in late diplotene of meiosis, perhaps in assembly or function of the passenger protein complex.  相似文献   

7.
The zinc cluster proteins Sut1 and Sut2 play a role in sterol uptake and filamentous growth in the budding yeast Saccharomyces cerevisiae. In this study, we show that they are also involved in mating. Cells that lack both SUT1 and SUT2 were defective in mating. The expression of the genes NCE102 and PRR2 was increased in the sut1 sut2 double deletion mutant suggesting that Sut1 and Sut2 both repress the expression of NCE102 and PRR2. Consistent with these data, overexpression of either SUT1 or SUT2 led to lower expression of NCE102 and PRR2. Furthermore, expression levels of NCE102, PRR2 and RHO5, another target gene of Sut1 and Sut2, decreased in response to pheromone. Prr2 has been identified as a mating inhibitor before. Here we show that overexpression of NCE102 and RHO5 also reduced mating. Our results suggest that Sut1 and Sut2 positively regulate mating by repressing the expression of the mating inhibitors NCE102, PRR2 and RHO5 in response to pheromone.  相似文献   

8.
The biochemical properties and regulation of several plant CAX (CAtion eXchanger)-type vacuolar Ca2+/H+ exchangers have been extensively analysed in yeast expression assays. In the present study, we compare and contrast the phenotypes of yeast cells expressing the CAX1 cDNA and open reading frame (ORF). We report that the CAX1 ORF, but not the cDNA containing the 3′-untranslated region (UTR), was able to confer Ca2+ tolerance when expressed in a Ca2+-sensitive yeast mutant. Additionally, only yeasts expressing the N-terminal truncated CAX1 ORF were able to grow on high Mn2+ media, suggesting that removal of the 3′-UTR altered activity. However, removal of the 3′-UTR from another CAX did not alter the yeast phenotypes. Expression studies demonstrated that expressing the CAX1 ORF in yeast elevates CAX1 RNA and protein levels. Our results suggest that the 3′-UTR modulates expression of CAX1 in yeast.  相似文献   

9.
In eukaryotes, entry into mitosis is induced by cyclin B-bound Cdk1, which is held in check by the protein kinase, Wee1. In budding yeast, Swe1 (Wee1 ortholog) is targeted to the bud neck through Hsl1 (Nim1-related kinase) and its adaptor Hsl7, and is hyperphosphorylated prior to ubiquitin-mediated degradation. Here, we show that Hsl1 and Hsl7 are required for proper localization of Cdc5 (Polo-like kinase homolog) to the bud neck and Cdc5-dependent Swe1 phosphorylation. Mitotic cyclin (Clb2)-bound Cdc28 (Cdk1 homolog) directly phosphorylated Swe1 and this modification served as a priming step to promote subsequent Cdc5-dependent Swe1 hyperphosphorylation and degradation. Clb2-Cdc28 also facilitated Cdc5 localization to the bud neck through the enhanced interaction between the Clb2-Cdc28-phosphorylated Swe1 and the polo-box domain of Cdc5. We propose that the concerted action of Cdc28/Cdk1 and Cdc5/Polo on their common substrates is an evolutionarily conserved mechanism that is crucial for effectively triggering mitotic entry and other critical mitotic events.  相似文献   

10.
11.
We have previously shown that the RAD50, RAD52, MRE11, XRS2, and HDF1 genes of Saccharomyces cervisiae are involved in the formation of deletions by illegitimate recombination on a monocentric plasmid. In this study, we investigated the effects of mutations of these genes on formation of deletions of a dicentric plasmid, in which DNA double-strand breaks are expected to occur frequently because the two centromeres are pulled to opposite poles in mitosis. We transformed yeast cells with a dicentric plasmid, and after incubation for a few division cycles, cells carrying deleted plasmids were detected using negative selection markers. Deletions occurred at a higher frequency than on the monocentric plasmid and there were short regions of homology at the recombination junctions as observed on the monocentric plasmid. In rad50, mre11, xrs2, and hdf1 mutants, the frequency of occurrence of deletions was reduced by about 50-fold, while in the rad52 mutant, it was comparable to that in the wild-type strain. The end-joining functions of Rad50, Mre11, Xrs2, and Hdf1, suggest that these proteins play important roles in the joining of DNA ends produced on the dicentric plasmid during mitosis. Received: 30 October 1996 / Accepted: 28 February 1997  相似文献   

12.
利用荧光原位杂交技术分析了两个小麦-外源种杂种花粉母细胞中1BL/1RS 小麦-黑麦易位染色体和外源染色体包括中间偃麦草(Thinopyrum intermedium (Host) Barkworth & DR Dewey)、簇毛麦(Haynaldia villosa (L.) Schur)染色体的减数分裂行为. 我们首次发现:在减数分裂后期, 1BL/1RS 小麦-黑麦易位染色体发生错分裂,形成两个易位染色单体. 这种错分裂导致易位染色单体在末期Ⅰ分配到两个正在形成的细胞核内,错分裂的易位染色单体进一步形成微核,并在四分体期观察到黑麦的微核出现.从贵农22×遗4095 的F2代植株中检测到一个2n=41的植株,其含有一对1BL/1RS 小麦-黑麦易位染色体,核型分析表明,其中一条黑麦染色体臂比另一条的黑麦染色体臂短1/3左右.在遗4212×遗4095的F2代中检测到一个具有中间偃麦草染色体小片段易位到小麦染色体端粒部分的小麦-中间偃麦草易位植株.这可能是由于在减数分裂过程中发生非均等分裂导致小麦-黑麦1BL/1RS易位染色体的黑麦染色体段臂缺失1/3及小麦-中间偃麦草非罗伯逊易位.在两个杂种F2植株中,中间偃麦草染色体分布频率为39.6%, 簇毛麦染色体分布频率为43.4%, 1BL/1RS 小麦-黑麦易位染色体分布频率分别为51.8%和56.6%.实验结果表明,1BL/1RS 小麦-黑麦易位染色体与外源染色体包括中间偃麦草、簇毛麦染色体在减数分裂过程中没有相互作用.小麦-黑麦1BL/1RS易位染色体在减数分裂过程中可以发生错分裂,并导致杂种后代黑麦染色体臂发生缺失.这对于培育以小麦为背景含有不同长度的黑麦1R染色体短臂的种质及小麦-外源染色体非罗伯逊易位的小片段易位系具有指导意义.  相似文献   

13.
14.
15.
16.
17.
Nidogen 1 and 2 are ubiquitous basement membrane (BM) components. They show a divergent expression pattern in certain adult tissues with a prominent localization of nidogen 2 in blood vessel BMs. Deletion of either nidogen 1 or 2 in mice had no effect on BM formation, suggesting complementary functions. However, studies in these mice revealed isoform-specific functions with nidogen 1-deficient mice showing neurological abnormalities and wound-healing defects not seen in the absence of nidogen 2. To investigate this further nidogen 1- or 2-deficient mice were intravenously injected with B16 murine melanoma cells, and lung metastasis was analyzed. The authors could show that loss of nidogen 2, but not of nidogen 1, significantly promotes lung metastasis of melanoma cells. Histological and ultrastructural analysis of nidogen 1- and 2-deficient lungs did not reveal differences in morphology and ultrastructure of BMs, including vessel BMs. Furthermore, deposition and distribution of the major BM components were indistinguishable between the two mouse strains. Taken together, these results suggest that absence of nidogen 2 might result in subtle changes of endothelial BMs in the lung, which would allow faster passage of tumor cells through these BMs, leading to a higher metastasis rate and more larger tumors.  相似文献   

18.
The protein phosphatases PP2A and PP1 are major regulators of a variety of cellular processes in yeast and other eukaryotes. Here, we reveal that both enzymes are direct targets of glucose sensing. Addition of glucose to glucose-deprived yeast cells triggered rapid posttranslational activation of both PP2A and PP1. Glucose activation of PP2A is controlled by regulatory subunits Rts1, Cdc55, Rrd1 and Rrd2. It is associated with rapid carboxymethylation of the catalytic subunits, which is necessary but not sufficient for activation. Glucose activation of PP1 was fully dependent on regulatory subunits Reg1 and Shp1. Absence of Gac1, Glc8, Reg2 or Red1 partially reduced activation while Pig1 and Pig2 inhibited activation. Full activation of PP2A and PP1 was also dependent on subunits classically considered to belong to the other phosphatase. PP2A activation was dependent on PP1 subunits Reg1 and Shp1 while PP1 activation was dependent on PP2A subunit Rts1. Rts1 interacted with both Pph21 and Glc7 under different conditions and these interactions were Reg1 dependent. Reg1-Glc7 interaction is responsible for PP1 involvement in the main glucose repression pathway and we show that deletion of Shp1 also causes strong derepression of the invertase gene SUC2. Deletion of the PP2A subunits Pph21 and Pph22, Rrd1 and Rrd2, specifically enhanced the derepression level of SUC2, indicating that PP2A counteracts SUC2 derepression. Interestingly, the effect of the regulatory subunit Rts1 was consistent with its role as a subunit of both PP2A and PP1, affecting derepression and repression of SUC2, respectively. We also show that abolished phosphatase activation, except by reg1Δ, does not completely block Snf1 dephosphorylation after addition of glucose. Finally, we show that glucose activation of the cAMP-PKA (protein kinase A) pathway is required for glucose activation of both PP2A and PP1. Our results provide novel insight into the complex regulatory role of these two major protein phosphatases in glucose regulation.  相似文献   

19.
Objective: Recent studies suggest that ischemic preconditioning (IPC) inhibits myocardial apoptosis after ischemia and reperfusion. This study aimed first, to examine whether short mechanical stretch with acute pressure overload (MPC), which has been shown to reduce infarct size after ischemia/reperfusion, mimics IPC in attenuating myocardial apoptosis and second, to evaluate whether induced cardioprotection involves modulation of the expression of the Bcl-2 family proteins and phosphorylation of prosurvival kinases. Methods and Results: A model of anaesthetized rabbit was used and the preconditioning protocol included one cycle of short ischemia/reperfusion, or short mechanical stretch with acute pressure overload. Preconditioning stimuli were equally effective in reducing the infarct size, determined after 4 h reperfusion. However, IPC but not MPC attenuated myocardial apoptosis. IPC restored the decreased expression of Bcl-2 and Bcl-xL observed in hearts subjected to ischemia and reperfusion only. Bax levels were not different among the groups. ERK1/2 were activated during reperfusion in both IPC and MPC groups. Conclusions: The data provide further evidence that apoptosis and necrosis contribute independently to infarct size after ischemia and reperfusion. Inhibition of the myocardial apoptotic processes by IPC may involve modulation of the expression of anti-apoptotic proteins, Bcl-2 and Bcl-xL. ERK1/2 may be involved in the inhibition of both apoptosis and necrosis.  相似文献   

20.
The eukaryotic recombinases RAD51 and DMC1 are essential for DNA strand-exchange between homologous chromosomes during meiosis. RAD51 is also expressed during mitosis, and mediates homologous recombination (HR) between sister chromatids. It has been suggested that DMC1 might be involved in the switch from intersister chromatid recombination in somatic cells to interhomolog meiotic recombination. At meiosis, the Arabidopsis Atrad51 null mutant fails to synapse and has extensive chromosome fragmentation. The Atdmc1 null mutant is also asynaptic, but in this case chromosome fragmentation is absent. Thus in plants, AtDMC1 appears to be indispensable for interhomolog homologous recombination, whereas AtRAD51 seems to be more involved in intersister recombination. In this work, we have studied a new AtRAD51 knock-down mutant, Atrad51-2, which expresses only a small quantity of RAD51 protein. Atrad51-2 mutant plants are sterile and hypersensitive to DNA double-strand break induction, but their vegetative development is apparently normal. The meiotic phenotype of the mutant consists of partial synapsis, an elevated frequency of univalents, a low incidence of chromosome fragmentation and multivalent chromosome associations. Surprisingly, non-homologous chromosomes are involved in 51% of bivalents. The depletion of AtDMC1 in the Atrad51-2 background results in the loss of bivalents and in an increase of chromosome fragmentation. Our results suggest that a critical level of AtRAD51 is required to ensure the fidelity of HR during interchromosomal exchanges. Assuming the existence of asymmetrical DNA strand invasion during the initial steps of recombination, we have developed a working model in which the initial step of strand invasion is mediated by AtDMC1, with AtRAD51 required to check the fidelity of this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号