首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial oxidation of 2-tridecanone to 1-undecanol   总被引:7,自引:6,他引:1       下载免费PDF全文
A study of the microbial utilization of long-chain methyl ketones was under-taken. In general, enrichment culture experiments revealed that soil microorganisms capable of utilizing these compounds as growth substrates are ubiquitous. Gram-negative, rod-shaped bacteria were the prominent organisms exhibiting this capability. In particular, a strain of Pseudomonas isolated from soil degraded 2-tridecanone into several products that were recovered from cell-free culture fluid. These products were identified by gas-liquid chromatography as 2-tridecanol, 1-undecanol, 1-decanol, and undecanoic acid. A large amount of the substrate was converted to 1-undecanol. This compound was characterized further by classical methods of organic analysis. Unequivocal identification of 1-undecanol has established that some unique mechanism that involves subterminal oxidation must exist to degrade 2-tridecanone. No such mechanism has been reported for the biological degradation of long-chain, aliphatic, methyl ketones. A pathway for utilization of 2-tridecanone was proposed that is consistent with, but not confirmed by, the data presented.  相似文献   

2.
Methane from acetate.   总被引:12,自引:7,他引:5       下载免费PDF全文
The general features are known for the pathway by which most methane is produced in nature. All acetate-utilizing methanogenic microorganisms contain CODH which catalyzes the cleavage of acetyl-CoA; however, the pathway differs from all other acetate-utilizing anaerobes in that the methyl group is reduced to methane with electrons derived from oxidation of the carbonyl group of acetyl-CoA to CO2. The current understanding of the methanogenic fermentation of acetate provides impressions of nature's novel solutions to problems of methyl transfer, electron transport, and energy conservation. The pathway is now at a level of understanding that will permit productive investigations of these and other interesting questions in the near future.  相似文献   

3.
Enzymology of one-carbon metabolism in methanogenic pathways   总被引:1,自引:0,他引:1  
Methanoarchaea, the largest and most phylogenetically diverse group in the Archaea domain, have evolved energy-yielding pathways marked by one-carbon biochemistry featuring novel cofactors and enzymes. All of the pathways have in common the two-electron reduction of methyl-coenzyme M to methane catalyzed by methyl-coenzyme M reductase but deviate in the source of the methyl group transferred to coenzyme M. Most of the methane produced in nature derives from acetate in a pathway where the activated substrate is cleaved by CO dehydrogenase/acetyl-CoA synthase and the methyl group is transferred to coenzyme M via methyltetrahydromethanopterin or methyltetrahydrosarcinapterin. Electrons for reductive demethylation of the methyl-coenzyme M originate from oxidation of the carbonyl group of acetate to carbon dioxide by the synthase. In the other major pathway, formate or H2 is oxidized to provide electrons for reduction of carbon dioxide to the methyl level and reduction of methyl-coenzyme to methane. Methane is also produced from the methyl groups of methanol and methylamines. In these pathways specialized methyltransferases transfer the methyl groups to coenzyme M. Electrons for reduction of the methyl-coenzyme M are supplied by oxidation of the methyl groups to carbon dioxide by a reversal of the carbon dioxide reduction pathway. Recent progress on the enzymology of one-carbon reactions in these pathways has raised the level of understanding with regard to the physiology and molecular biology of methanogenesis. These advances have also provided a foundation for future studies on the structure/function of these novel enzymes and exploitation of the recently completed sequences for the genomes from the methanoarchaea Methanobacterium thermoautotrophicum and Methanococcus jannaschii.  相似文献   

4.
5.
Abstract In order to validate unusual fatty acids as biomarkers for sulphate-reducing bacteria, selective conditions were arranged for the enrichment of a marine glutamate-fermenting bacterium which made hydrogen and acetate available for oxidation via the respiration of sulphate. Under these conditions the complete oxidation of glutamate via sulphate reduction accounted for 84% of the available electron equivalents. Fatty acid biomarkers for hydrogen-oxidizing Desulfovibrio sp. (iso 17:1w7c and branched monoenoics) and for acetate-oxidizing Desulfobacter (10 methyl 16:0) were detected in the enrichment. These biomarkers were demonstrated in pure cultures of Desulfovibrio sp. and Desulfobacter sp. obtained from the enrichment. The predominant glutamate-fermenting bacterium isolated from the consortium contained no branched ester-linked phospholipid fatty acids, and produced acetate and hydrogen. With energy limitation the enriched consortium produced increased amounts of extracellular polysaccharide and the endogenous storage lipid poly-beta-hydroxybutyrate as detected with Fourier transform/infra-red (FT-IR) spectroscopy.  相似文献   

6.
Metabolism of homoacetogens   总被引:1,自引:0,他引:1  
Homoacetogenic bacteria are strictly anaerobic microorganisms that catalyze the formation of acetate from C1 units in their energy metabolism. Most of these organisms are able to grow at the expense of hydrogen plus CO2 as the sole energy source. Hydrogen then serves as the electron donor for CO2 reduction to acetate. The methyl group of acetate is formed from CO2 via formate and reduced C1 intermediates bound to tetrahydrofolate. The carboxyl group is derived from carbon monoxide, which is synthesized from CO2 by carbon monoxide dehydrogenase. The latter enzyme also catalyzes the formation of acetyl-CoA from the methyl group plus CO. Acetyl-CoA is then converted either to acetate in the catabolism or to cell carbon in the anabolism of the bacteria. The homoacetogens are very versatile anaerobes, which convert a variety of different substrates to acetate as the major end product.  相似文献   

7.
Microbial metabolism of furanic compounds, especially furfural and 5-hydroxymethylfurfural (HMF), is rapidly gaining interest in the scientific community. This interest can largely be attributed to the occurrence of toxic furanic aldehydes in lignocellulosic hydrolysates. However, these compounds are also widespread in nature and in human processed foods, and are produced in industry. Although several microorganisms are known to degrade furanic compounds, the variety of species is limited mostly to Gram-negative aerobic bacteria, with a few notable exceptions. Furanic aldehydes are highly toxic to microorganisms, which have evolved a wide variety of defense mechanisms, such as the oxidation and/or reduction to the furanic alcohol and acid forms. These oxidation/reduction reactions constitute the initial steps of the biological pathways for furfural and HMF degradation. Furfural degradation proceeds via 2-furoic acid, which is metabolized to the primary intermediate 2-oxoglutarate. HMF is converted, via 2,5-furandicarboxylic acid, into 2-furoic acid. The enzymes in these HMF/furfural degradation pathways are encoded by eight hmf genes, organized in two distinct clusters in Cupriavidus basilensis HMF14. The organization of the five genes of the furfural degradation cluster is highly conserved among microorganisms capable of degrading furfural, while the three genes constituting the initial HMF degradation route are organized in a highly diverse manner. The genetic and biochemical characterization of the microbial metabolism of furanic compounds holds great promises for industrial applications such as the biodetoxifcation of lignocellulosic hydrolysates and the production of value-added compounds such as 2,5-furandicarboxylic acid.  相似文献   

8.
Rice field soils contain a thermophilic microbial community. Incubation of Italian rice field soil at 50°C resulted in transient accumulation of acetate, but the microorganisms responsible for methane production from acetate are unknown. Without addition of exogenous acetate, the δ(13)C of CH(4) and CO(2) indicated that CH(4) was exclusively produced by hydrogenotrophic methanogenesis. When exogenous acetate was added, acetoclastic methanogenesis apparently also operated. Nevertheless, addition of [2-(13)C]acetate (99% (13)C) resulted in the production not only of (13)C-labelled CH(4) but also of CO(2), which contained up to 27% (13)C, demonstrating that the methyl group of acetate was also oxidized. Part of the (13)C-labelled acetate was also converted to propionate which contained up to 14% (13)C. The microorganisms capable of assimilating acetate at 50°C were targeted by stable isotope probing (SIP) of ribosomal RNA and rRNA genes using [U-(13)C] acetate. Using quantitative PCR, (13)C-labelled bacterial ribosomal RNA and DNA was detected after 21 and 32 days of incubation with [U-(13)C]acetate respectively. In the heavy fractions of the (13)C treatment, terminal restriction fragments (T-RFs) of 140, 120 and 171 bp length predominated. Cloning and sequencing of 16S rRNA showed that these T-RFs were affiliated with the bacterial genera Thermacetogenium and Symbiobacterium and with members of the Thermoanaerobacteriaceae. Similar experiments targeting archaeal RNA and DNA showed that Methanocellales were the dominant methanogens being consistent with the operation of syntrophic bacterial acetate oxidation coupled to hydrogenotrophic methanogenesis. After 17 days, however, Methanosarcinacea increasingly contributed to the synthesis of rRNA from [U-(13)C]acetate indicating that acetoclastic methanogens were also active in methanogenic Italian rice field soil under thermal conditions.  相似文献   

9.
A new intermediate was identified in the 2-tridecanone pathway of Pseudomonas multivorans, formerly designated pseudomonad 4G-9. This intermediate, undecyl acetate, was isolated directly from growing cultures of the organism; the structure of the intermediate was determined by infrared spectroscopy and by gas-liquid chromatographic identification of its hydrolytic products. An amended pathway is presented that accounts for the conversion of 2-tridecanone to provide carbon and energy for growth. It was shown that all early intermediates in the pathway arise biologically and sequentially from their precursors. Studies with P. aeruginosa showed that this organism also degrades 2-tridecanone by the pathway characteristic of P. multivorans. Biochemical mechanisms of the pathway are discussed. Discovery of undecyl acetate confirms our earlier contention that the primary attack on methyl ketones by bacteria can be by subterminal oxidation.  相似文献   

10.
Urticating hairs of the brown-tail moth (Euproctis chrysorrhoea L.) are detectable in the air using apparatus designed for the collection of airborne microorganisms and pollen research studies. The hairs are produced by caterpillars and are distributed by air currents or via moths. They were collected in Bordeaux. In the laboratory a nycthemeral cycle of hair emission is observed and is correlated with the biological activities of these species.  相似文献   

11.
Methyl fluoride (fluoromethane [CH(inf3)F]) has been used as a selective inhibitor of CH(inf4) oxidation by aerobic methanotrophic bacteria in studies of CH(inf4) emission from natural systems. In such studies, CH(inf3)F also diffuses into the anaerobic zones where CH(inf4) is produced. The effects of CH(inf3)F on pure and defined mixed cultures of anaerobic microorganisms were investigated. About 1 kPa of CH(inf3)F, similar to the amounts used in inhibition experiments, inhibited growth of and CH(inf4) production by pure cultures of aceticlastic methanogens (Methanosaeta spp. and Methanosarcina spp.) and by a methanogenic mixed culture of anaerobic microorganisms in which acetate was produced as an intermediate. With greater quantities of CH(inf3)F, hydrogenotrophic methanogens were also inhibited. At a partial pressure of CH(inf3)F of 1 kPa, homoacetogenic, sulfate-reducing, and fermentative bacteria and a methanogenic mixed culture of anaerobic microorganisms based on hydrogen syntrophy were not inhibited. The inhibition by CH(inf3)F of the growth and CH(inf4) production of Methanosarcina mazei growing on acetate was reversible. CH(inf3)F inhibited only acetate utilization by Methanosarcina barkeri, which is able to use acetate and hydrogen simultaneously, when both acetate and hydrogen were present. These findings suggest that the use of CH(inf3)F as a selective inhibitor of aerobic CH(inf4) oxidation in undefined systems must be interpreted with great care. However, by a careful choice of concentrations, CH(inf3)F may be useful for the rapid determination of the role of acetate as a CH(inf4) precursor.  相似文献   

12.
13.
Metabolism of methanogens   总被引:5,自引:0,他引:5  
Methanogenic archaea convert a few simple compounds such as H2 + CO2, formate, methanol, methylamines, and acetate to methane. Methanogenesis from all these substrates requires a number of unique coenzymes, some of which are exclusively found in methanogens. H2-dependent CO2 reduction proceeds via carrier-bound C1 intermediates which become stepwise reduced to methane. Methane formation from methanol and methylamines involves the disproportionation of the methyl groups. Part of the methyl groups are oxidized to CO2, and the reducing equivalents thereby gained are subsequently used to reduce other methyl groups to methane. This process involves the same C1 intermediates that are formed during methanogenesis from CO2. Conversion of acetate to methane and carbon dioxide is preceeded by its activation to acetyl-CoA. Cleavage of the latter compound yields a coenzyme-bound methyl moiety and an enzyme-bound carbonyl group. The reducing equivalents gained by oxidation of the carbonyl group to carbon dioxide are subsequently used to reduce the methyl moiety to methane. All these processes lead to the generation of transmembrane ion gradients which fuel ATP synthesis via one or two types of ATP synthases. The synthesis of cellular building blocks starts with the central anabolic intermediate acetyl-CoA which, in autotrophic methanogens, is synthesized from two molecules of CO2 in a linear pathway.  相似文献   

14.
Symbioses with gut microorganisms provides a means by which terrestrial herbivores are able to obtain energy. These microorganisms ferment cell wall materials of plants to short-chain fatty acids (SCFA), which are then absorbed and used by the host animal. Many marine herbivorous fishes contain SCFA (predominantly acetate) in their hindgut, indicative of gut microbial activity, but rates of SCFA production have not been measured. Such information is an important prerequisite to understanding the contribution that gut microorganisms make in satisfying the energy needs of the fish. We have estimated the rates of acetate production in the gut of three species of temperate marine herbivorous fish from northeastern New Zealand: Kyphosus sydneyanus (family Kyphosidae), Odax pullus (family Odacidae), and Aplodactylus arctidens (family Aplodactylidae). Ex vivo preparations of freshly caught fish were maintained with their respiratory and circulatory systems intact, radiolabeled acetate was injected into ligated hindgut sections, and gut fluid was sampled at 20-min intervals for 2 h. Ranges for acetate turnover in the hindguts of the studied species were determined from the slope of plots as the log of the specific radioactivity of acetate versus time and pool size, expressed on a nanomole per milliliter per minute basis. Values were 450 to 570 (K. sydneyanus), 373 to 551 (O. pullus), and 130 to 312 (A. arctidens). These rates are comparable to those found in the guts of herbivorous reptiles and mammals. To determine the contribution of metabolic pathways to the fate of acetate, rates of sulfate reduction and methanogenesis were measured in the fore-, mid-, and hindgut sections of the three fish species. Both rates increased from the distal to proximal end of the hindgut, where sulfate reduction accounted for only a small proportion (<5%) of acetate methyl group transformed to CO(2), and exceeded methanogenesis from acetate by >50-fold. When gut size was taken into account, acetate uptake from the hindgut of the fish species, determined on a millimole per day per kilogram of body weight basis, was 70 (K. sydneyanus), 18 (O. pullus), and 10 (A. arctidens).  相似文献   

15.
Biochemistry of methanogenesis.   总被引:9,自引:0,他引:9  
Methane is a product of the energy-yielding pathways of the largest and most phylogenetically diverse group in the Archaea. These organisms have evolved three pathways that entail a novel and remarkable biochemistry. All of the pathways have in common a reduction of the methyl group of methyl-coenzyme M (CH3-S-CoM) to CH4. Seminal studies on the CO2-reduction pathway have revealed new cofactors and enzymes that catalyze the reduction of CO2 to the methyl level (CH3-S-CoM) with electrons from H2 or formate. Most of the methane produced in nature originates from the methyl group of acetate. CO dehydrogenase is a key enzyme catalyzing the decarbonylation of acetyl-CoA; the resulting methyl group is transferred to CH3-S-CoM, followed by reduction to methane using electrons derived from oxidation of the carbonyl group to CO2 by the CO dehydrogenase. Some organisms transfer the methyl group of methanol and methylamines to CH3-S-CoM; electrons for reduction of CH3-S-CoM to CH4 are provided by the oxidation of methyl groups to CO2.  相似文献   

16.
Oxidation of n-Tetradecane and 1-Tetradecene by Fungi   总被引:1,自引:0,他引:1  
Cunninghamella blakesleeana (minus strain) and a Penicillium species were grown in a mineral-salts medium containing either n-tetradecane or 1-tetradecene as substrate, and ether extracts of the mycelial mats were analyzed for oxidation products. Extracts from Cunninghamella revealed tetradecanoic acid and 13-tetradecenoic acid from the oxidation of n-tetradecane and 1-tetradecene, respectively, thereby indicating that these hydrocarbons were subject to methyl group oxidation. In contrast to Cunninghamella, the Penicillium oxidized the two substrates by subterminal attacks on methylene rather than methyl groups. This was evidenced by tentative identifications of the following alcohols and ketones from oxidation of the hydrocarbons: tetradecan-2-ol, dodecan-1-ol, tetradecan-2-one, and tetradecan-4-one from n-tetradecane, and tetradecen-4-ol, 13-tetradecen-4-ol, tetradecen-3-ol, 13-tetradecen-4-one, and tetradecen-3-one from 1-tetradecene. A pathway for hydrocarbon oxidation is proposed for subterminal oxidation at the methylene alpha to the methyl group.  相似文献   

17.
Methyl ketones present a group of highly reduced platform chemicals industrially produced from petroleum-derived hydrocarbons. They find applications in the fragrance, flavor, pharmacological, and agrochemical industries, and are further discussed as biodiesel blends. In recent years, intense research has been carried out to achieve sustainable production of these molecules by re-arranging the fatty acid metabolism of various microbes. One challenge in the development of a highly productive microbe is the high demand for reducing power. Here, we engineered Pseudomonas taiwanensis VLB120 for methyl ketone production as this microbe has been shown to sustain exceptionally high NAD(P)H regeneration rates. The implementation of published strategies resulted in 2.1 g Laq−1 methyl ketones in fed-batch fermentation. We further increased the production by eliminating competing reactions suggested by metabolic analyses. These efforts resulted in the production of 9.8 g Laq−1 methyl ketones (corresponding to 69.3 g Lorg−1 in the in situ extraction phase) at 53% of the maximum theoretical yield. This represents a 4-fold improvement in product titer compared to the initial production strain and the highest titer of recombinantly produced methyl ketones reported to date. Accordingly, this study underlines the high potential of P. taiwanensis VLB120 to produce methyl ketones and emphasizes model-driven metabolic engineering to rationalize and accelerate strain optimization efforts.  相似文献   

18.
1. The 14C-labelling of the fatty acids and the methyl ketones in steam-distillates of milk fat from a lactating cow that had been injected intravenously with [1-14C]acetate was determined. 2. The labelling patterns of the C6–C16 fatty acids and the corresponding methyl ketones with one fewer carbon atoms were similar, particularly so for the C5–C10 compounds at 9 and 22hr. after the injection of [1-14C]acetate. The isolation of 14C-labelled methyl ketones in the range C3–C15 is evidence that the β-oxo acid precursors, which are glyceride-bound in the milk fat, are synthesized in the mammary gland from acetate. The absence of heptadecan-2-one in steam-distillates and the extremely low specific radioactivity of stearic acid are further evidence for this biosynthetic pathway. 3. The specific radioactivities of the C5–C15 methyl ketones were higher (with the exception of C9 methyl ketone in the second milking) than the specific activities of the corresponding fatty acids with one more carbon atom. This is consistent with the methyl ketone precursors' being formed during the biosynthesis of fatty acids rather than being products of β-oxidation of fatty acids.  相似文献   

19.
To clarify the biological mechanism of anaerobic methane oxidation, experiments were performed with samples of the Black Sea anaerobic sediments and with the aerobic methane-oxidizing bacterium Methylomonas methanica strain 12. The inhibition-stimulation analysis did not allow an unambiguous conclusion to be made about direct and independent role of either methanogenic or sulfate-reducing microorganisms in the biogeochemical process of anaerobic methane oxidation. Enrichment cultures obtained from samples of water and reduced sediments oxidized methane under anaerobic conditions, primarily in the presence of acetate or formate or of a mixture of acetate, formate, and lactate. However, this ability was retained by the cultures for no more than two transfers on corresponding media. Experiments showed that the aerobic methanotroph Mm. methanica strain 12 is incapable of anaerobic methane oxidation at the expense of the reduction of amorphous FeOOH.  相似文献   

20.
Biodegradation of volatile organic compounds by five fungal species   总被引:4,自引:0,他引:4  
Five fungal species, Cladosporium resinae (ATCC 34066), Cladosporium sphaerospermum (ATCC 200384), Exophiala lecanii-corni (CBS 102400), Mucor rouxii (ATCC 44260), and Phanerochaete chrysosporium (ATCC 24725), were tested for their ability to degrade nine compounds commonly found in industrial off-gas emissions. Fungal cultures inoculated on ceramic support media were provided with volatile organic compounds (VOCs) via the vapor phase as their sole carbon and energy sources. Compounds tested included aromatic hydrocarbons (benzene, ethylbenzene, toluene, and styrene), ketones (methyl ethyl ketone, methyl isobutyl ketone, and methyl propyl ketone), and organic acids ( n-butyl acetate, ethyl 3-ethoxypropionate). Experiments were conducted using three pH values ranging from 3.5 to 6.5. Fungal ability to degrade each VOC was determined by observing the presence or absence of visible growth on the ceramic support medium during a 30-day test period. Results indicate that E. lecanii-corni and C. sphaerospermum can readily utilize each of the nine VOCs as a sole carbon and energy source. P. chrysosporium was able to degrade all VOCs tested except for styrene under the conditions imposed. C. resinae was able to degrade both organic acids, all of the ketones, and some of the aromatic compounds (ethylbenzene and toluene); however, it was not able to grow utilizing benzene or styrene under the conditions tested. With the VOCs tested, M. rouxiiproduced visible growth only when supplied with n-butyl acetate or ethyl 3-ethoxypropionate. Maximum growth for most fungi was observed at a pH of approximately 5.0. The experimental protocol utilized in these studies is a useful tool for assessing the ability of different fungal species to degrade gas-phase VOCs under conditions expected in a biofilter application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号