首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 350 毫秒
1.
Human coronavirus OC43 (HCoV‐OC43) is one of the causes of the “common cold” in human during seasons of cold weather. The primary function of the HCoV‐OC43 nucleocapsid protein (N protein) is to recognize viral genomic RNA, which leads to ribonucleocapsid formation. Here, we characterized the stability and identified the functional regions of the recombinant HCoV‐OC43 N protein. Circular dichroism and fluorescence measurements revealed that the HCoV‐OC43 N protein is more highly ordered and stabler than the SARS‐CoV N protein previously studied. Surface plasmon resonance (SPR) experiments showed that the affinity of HCoV‐OC43 N protein for RNA was approximately fivefold higher than that of N protein for DNA. Moreover, we found that the HCoV‐OC43 N protein contains three RNA‐binding regions in its N‐terminal region (residues 1–173) and central‐linker region (residues 174–232 and 233–300). The binding affinities of the truncated N proteins and RNA follow the order: residues 1–173–residues 233–300 > residues 174–232. SPR experiments demonstrated that the C‐terminal region (residues 301–448) of HCoV‐OC43 N protein lacks RNA‐binding activity, while crosslinking and gel filtration analyses revealed that the C‐terminal region is mainly involved in the oligomerization of the HCoV‐OC43 N protein. This study may benefit the understanding of the mechanism of HCoV‐OC43 nucleocapsid formation.  相似文献   

2.
Human coronaviruses (HCoV) are respiratory pathogens that may be associated with the development of neurological diseases, in view of their neuroinvasive and neurotropic properties. The viral spike (S) glycoprotein is a major virulence factor for several coronavirus species, including the OC43 strain of HCoV (HCoV-OC43). In an attempt to study the role of this protein in virus spread within the central nervous system (CNS) and neurovirulence, as well as to identify amino acid residues important for such functions, we compared the sequence of the S gene found in the laboratory reference strain HCoV-OC43 ATCC VR-759 to S sequences of viruses detected in clinical isolates from the human respiratory tract. We identified one predominant mutation at amino acid 758 (from RRSR↓ G 758 to RRSR↓R 758), which introduces a putative furin-like cleavage (↓) site. Using a molecular cDNA infectious clone to generate a corresponding recombinant virus, we show for the first time that such point mutation in the HCoV-OC43 S glycoprotein creates a functional cleavage site between the S1 and S2 portions of the S protein. While the corresponding recombinant virus retained its neuroinvasive properties, this mutation led to decreased neurovirulence while potentially modifying the mode of virus spread, likely leading to a limited dissemination within the CNS. Taken together, these results are consistent with the adaptation of HCoV-OC43 to the CNS environment, resulting from the selection of quasi-species harboring mutations that lead to amino acid changes in viral genes, like the S gene in HCoV-OC43, which may contribute to a more efficient establishment of a less pathogenic but persistent CNS infection. This adaptative mechanism could potentially be associated with human encephalitis or other neurological degenerative pathologies.  相似文献   

3.
Multiple sclerosis (MS) is a demyelinating disease of unknown origin that affects the central nervous system of an estimated 400,000 Americans. GBV-C or hepatitis G is a flavivirus that is found in the serum of 1-2% of blood donors. It was originally associated with hepatitis, but is now believed to be a relatively non-pathogenic lymphotropic virus. Fifty frozen specimens from the brains of deceased persons affected by MS were obtained along with 15 normal control brain specimens. RNA was extracted and ribosomal RNAs were depleted before sequencing on the Illumina GAII. These 36 bp reads were compared with a non-redundant database derived from the 600,000+ viral sequences in GenBank organized into 4080 taxa. An individual read successfully aligned to the viral database was considered to be a "hit". Normalized MS specimen hit rates for each viral taxon were compared to the distribution of hits in the normal controls. Seventeen MS and 11 control brain extracts were sequenced, yielding 4-10 million sequences ("reads") each. Over-representation of sequence from at least one of 12 viral taxa was observed in 7 of the 17 MS samples. Sequences resembling other viruses previously implicated in the pathogenesis of MS were not significantly enriched in any of the diseased brain specimens. Sequences from GB virus C (GBV-C), a flavivirus not previously isolated from brain, were enriched in one of the MS samples. GBV-C in this brain specimen was confirmed by specific amplification in this single MS brain specimen, but not in the 30 other MS brain samples available. The entire 9.4 kb sequence of this GBV-C isolate is reported here. This study shows the feasibility of deep sequencing for the detection of occult viral infections in the brains of deceased persons with MS. The first isolation of GBV-C from human brain is reported here.  相似文献   

4.
The levels of a glycoprotein reactive with monoclonal antibody (MAb) 44D10 in white and gray matter from brains of victims of several neurological diseases, including Multiple Sclerosis, Alzheimer's, Parkinson's and Huntington's diseases, were compared to that of normal individuals. The concentration of antigen reactive with MAb 44D10 was elevated in both gray and white matter of all MS brains examined, but not in brains with other neurological diseases. The increase in the concentration of antigen varied amongst the MS brains, such that the levels of antigen were only slightly increased in 2 of the 6 MS brains whereas 2 to 4 fold higher levels were found in the other 4 brains. Increased levels of antigen were detected in gray matter of MS brains, whereas this antigen was either not detected or present in very low levels in gray matter homogenates prepared from agematched normal brains. MAb Leu 1, which reacts with T lymphocytes, was not absorbed by normal and MS brain tissue suggesting the increase in antigen reactive with MAb 44D10 in MS brain homogenates was not associated with non-specific infiltration by T lymphocytes. Comparison of the purified antigen from MS gray matter and normal white matter by gel electrophoresis demonstrated that MAb 44D10 was reacting with a similar protein in both tissues with an apparent molecular weight of 80K. We have named this molecule P-80 glycoprotein.  相似文献   

5.
Calculation of infectious viral titers represents a basic and essential experimental approach for virologists. Classical plaque assays cannot be used for viruses that do not cause significant cytopathic effects, which is the case for strains 229E and OC43 of human coronavirus (HCoV). An alternative indirect immunoperoxidase assay (IPA) is herein described for the detection and titration of these viruses. Susceptible cells are inoculated with serial logarithmic dilutions of samples in a 96-well plate. After viral growth, viral detection by IPA yields the infectious virus titer, expressed as "Tissue Culture Infectious Dose" (TCID50). This represents the dilution of a virus-containing sample at which half of a series of laboratory wells contain replicating virus. This technique is a reliable method for the titration of HCoV in biological samples (cells, tissues or fluids).Download video file.(92M, mov)  相似文献   

6.
Non-structural protein 9 (Nsp9) of coronaviruses is believed to bind single-stranded RNA in the viral replication complex. The crystal structure of Nsp9 of human coronavirus (HCoV) 229E reveals a novel disulfide-linked homodimer, which is very different from the previously reported Nsp9 dimer of SARS coronavirus. In contrast, the structure of the Cys69Ala mutant of HCoV-229E Nsp9 shows the same dimer organization as the SARS-CoV protein. In the crystal, the wild-type HCoV-229E protein forms a trimer of dimers, whereas the mutant and SARS-CoV Nsp9 are organized in rod-like polymers. Chemical cross-linking suggests similar modes of aggregation in solution. In zone-interference gel electrophoresis assays and surface plasmon resonance experiments, the HCoV-229E wild-type protein is found to bind oligonucleotides with relatively high affinity, whereas binding by the Cys69Ala and Cys69Ser mutants is observed only for the longest oligonucleotides. The corresponding mutations in SARS-CoV Nsp9 do not hamper nucleic acid binding. From the crystal structures, a model for single-stranded RNA binding by Nsp9 is deduced. We propose that both forms of the Nsp9 dimer are biologically relevant; the occurrence of the disulfide-bonded form may be correlated with oxidative stress induced in the host cell by the viral infection.  相似文献   

7.
8.
9.
10.
Two coronaviruses (SK and SD), isolated from fresh autopsy brain tissue from two multiple sclerosis patients, were compared with known human and murine coronaviruses. In plaque neutralization assays, antisera prepared against multiple sclerosis isolates SK and SD demonstrated significant cross-reactivity to each other and to murine coronavirus A59, weak cross-reactivity to murine coronavirus JHM, but no cross-reactivity to the human coronavirus 229E. Antiserum to SK or SD failed to inhibit hemagglutination of chicken erythrocytes by the human coronavirus OC43. However, OC43 antiserum neutralized both SD and SK. Specific coronavirus polypeptides were identified and compared by immunoprecipitation and polyacrylamide gel electrophoresis. Infected and mock-infected 17Cl-1 cells were pretreated with actinomycin D and labeled with [35S]methionine. Polypeptides in Nonidet P-40 cytoplasmic extracts were immunoprecipitated with homologous and heterologous antisera. Identical polypeptides were precipitated from A59-, SD-, or SK-infected cell extracts by SD, SK, OC43, or A59 antisera. The polypeptides of human virus 229E were antigenically distinct, with the exception of weak recognition of a polypeptide of 50,000 molecular weight. We conclude that the two multiple sclerosis virus isolates SK and SD are closely related serologically to the murine coronavirus A59 and the human coronavirus OC43.  相似文献   

11.
We evaluated the ability of human coronaviruses to infect primary cultures of human neural cells. Double immunofluorescence with antibodies to virus and cell markers showed infection of fetal astrocytes and of adult microglia and astrocytes by strain OC43. RNA amplification revealed infection of fetal astrocytes, adult microglia, and a mixed culture of adult oligodendrocytes and astrocytes by strain 229E. Infectious virus was released only from fetal astrocytes, with higher titers for OC43. Human coronaviruses have the capacity to infect some cells of the central nervous system, although infection of adult cells appears abortive.  相似文献   

12.
Our previous results revealed that Igs in lesions and single chain variable fragment Abs (scFv-Abs) generated from clonal B cells in the cerebrospinal fluid (CSF) from patients with multiple sclerosis (MS) bind to axons in MS brains. To study the axonal Ags involved in MS, we identified the glycolytic enzymes, triosephosphate isomerase (TPI) and GAPDH, using Igs from the CSF and scFv-Abs generated from clonal B cells in the CSF and in lesions from MS patients. Elevated levels of CSF-Abs to TPI were observed in patients with MS (46%), clinically isolated syndrome (CIS) suggestive of MS (40%), other inflammatory neurological diseases (OIND; 29%), and other noninflammatory neurological diseases (ONIND; 31%). Levels of GAPDH-reactive Abs were elevated in MS patients (60%), in patients with CIS (10%), OIND (14%), and ONIND (8%). The coexistence of both autoantibodies was detected in 10 MS patients (29%), and 1 CIS patient (3%), but not in patients with OIND/ONIND. Two scFv-Abs generated from the CSF and from lesions of a MS brain showed immunoreactivity to TPI and GAPDH, respectively. The findings suggest that TPI and GAPDH may be candidate Ags for an autoimmune response to neurons and axons in MS.  相似文献   

13.
Detection of Coronavirus 229E Antibody by Indirect Hemagglutination   总被引:2,自引:0,他引:2       下载免费PDF全文
Tannic-acid treated sheep erythrocytes (fresh or glutaraldehyde preserved) were sensitized with 229E antigens from human embryonic lung (RU-1) cell cultures. Indirect hemagglutination (IHA) antigen titers in 229E-infected cell cultures paralleled virus infectivity and complement fixation (CF) antigen titers. The identity of the IHA antigen was confirmed by testing extracts from inoculated and control cell cultures for ability to inhibit IHA. Also, significant increases in IHA antibody were demonstrated with acute and convalescent serum pairs from patients with proven 229E infections. A comparison of IHA, neutralization and CF titers for 229E antibodies was made on human sera drawn from different populations. The IHA and neutralization results were in agreement on 93% of the 129 sera found to be positive by at least one of three tests. The number of antibody titers detected by the CF test was insufficient to permit comparison. Hyperimmune sera from animals immunized with OC 43 did not react with 229E by IHA. Also no increase in IHA antibody was demonstrated with acute and convalescent serum pairs from patients with seroconversions to OC 43. These findings suggest that the IHA test provides (i) a rapid and sensitive method for serodiagnosis of 229E infections and (ii) a simple and inexpensive method for seroepidemiological studies.  相似文献   

14.
The complete genome sequences of the human coronavirus OC43 (HCoV-OC43) laboratory strain from the American Type Culture Collection (ATCC), and a HCoV-OC43 clinical isolate, designated Paris, were obtained. Both genomes are 30,713 nucleotides long, excluding the poly(A) tail, and only differ by 6 nucleotides. These six mutations are scattered throughout the genome and give rise to only two amino acid substitutions: one in the spike protein gene (I958F) and the other in the nucleocapsid protein gene (V81A). Furthermore, the two variants were shown to reach the central nervous system (CNS) after intranasal inoculation in BALB/c mice, demonstrating neuroinvasive properties. Even though the ATCC strain could penetrate the CNS more effectively than the Paris 2001 isolate, these results suggest that intrinsic neuroinvasive properties already existed for the HCoV-OC43 ATCC human respiratory isolate from the 1960s before it was propagated in newborn mouse brains. It also demonstrates that the molecular structure of HCoV-OC43 is very stable in the environment (the two variants were isolated ca. 40 years apart) despite virus shedding and chances of persistence in the host. The genomes of the two HCoV-OC43 variants display 71, 53.1, and 51.2% identity with those of mouse hepatitis virus A59, severe acute respiratory syndrome human coronavirus Tor2 strain (SARS-HCoV Tor2), and human coronavirus 229E (HCoV-229E), respectively. HCoV-OC43 also possesses well-conserved motifs with regard to the genome sequence of the SARS-HCoV Tor2, especially in open reading frame 1b. These results suggest that HCoV-OC43 and SARS-HCoV may share several important functional properties and that HCoV-OC43 may be used as a model to study the biology of SARS-HCoV without the need for level three biological facilities.  相似文献   

15.
BackgroundQingwenjiere Mixture (QJM) is a traditional Chinese medicine (TCM) that has been shown to have remarkable clinical efficacy against COVID-19. However, little is known about the antiviral and anti-inflammatory activities of QJM against a wider range of human coronavirus (HCoV) strains.PurposeThe study aims to investigate the antiviral and anti-inflammatory activities of QJM, as well as the underlying mechanisms against HCoV infections.MethodsThe chemical compositions from QJM were analyzed by LC-MS. The inhibitory effect of QJM on infections of HCoV-OC43, HCoV-229E, HCoV-NL63, and SARS-CoV-2 was evaluated in HRT-18 cells, Huh7 cells, LLC-MK2 cells, and Vero-E6 cells, respectively, by using cytopathic effect (CPE) inhibition assay or RT-qPCR detection of viral n, s, or RdRp/Hel genes. The expression of pro-inflammatory cytokines induced by HCoV-OC43, HCoV-229E, and SARS-CoV-2, as well as the host ace2 gene was also determined by RT-qPCR assay. Furthermore, the expression of key molecules in the NF-κB/MAPKs signaling pathways was determined by western blot.ResultsIn alcohol-extraction groups of QJM and reference decoction pieces, 53 similar ion peaks were identified, the majority of which were phenylpropanoids, iridoids, and flavonoids. In addition, QJM reduced CPE caused by HCoVs and the expression of viral n genes or N protein. Pretreatment with QJM also exerted inhibitory effect on viral n gene expression. QJM also inhibited the expression of RdRp/Hel and s genes of SARS-CoV-2, as well as the host ace2 gene. Besides, QJM markedly reduced virus-induced mRNA expression of a panel of pro-inflammatory cytokines, such as IL-6, CXCL-8/IL-8, CXCL-10/IP-10, CCL-5/RANTES, TNF-α, IFN-α, CCL-2/MCP-1, CXCL-9/MIG, and IL1-α. We further showed that QJM inhibited the phosphorylation of NF-κB p65, and JNK, ERK 1/2, and p38 MAPKs in HCoV-OC43-infected HRT-18 cells.ConclusionsQJM has broad antiviral and anti-inflammatory activity against both common and newly emerged HCoVs possibly by inhibiting the activation of key components in NF-κB/MAPKs signaling pathway. QJM also has a prevention effect against HCoV infections and inhibits the host receptor required for virus entry. These results indicate that QJM may have the therapeutic potential in the treatment of diseases caused by a broad range of HCoVs.  相似文献   

16.
Wang K  Deubel V 《PloS one》2011,6(9):e24744

Background

Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus that causes public health problems in Asian countries. Only a limited number of JEV-infected individuals show symptoms and develop severe encephalitis, indicating host-dependent susceptibilities.

Methodology/Principal Findings

C3H/HeN and DBA/2 mice, which exhibit different mortalities when infected by intraperitoneal inoculation with JEV, were used as experimental models to compare viral pathogenesis and host responses. One hundred infectious virus particles killed 95% of C3H/HeN mice whereas only 40% of DBA/2 mice died. JEV RNA was detected with similar low levels in peripheral lymphoid organs and in the sera of both mouse strains. High levels of viral and cytokine RNA were observed simultaneously in the brains of C3H/HeN and DBA/2 mice starting on days 6 and 9 post-infection, respectively. The kinetics of the cytokines in sera correlated with the viral replication in the brain. Significantly earlier and higher titers of neutralizing antibodies were detected in the DBA/2 strain. Primary embryonic fibroblasts, bone marrow-derived dendritic cells and macrophages from the two mouse strains were cultured. Fibroblasts displayed similar JEV replication abilities, whereas DBA/2-derived myeloid antigen-presenting cells had lower viral infectivity and production compared to the C3H/HeN–derived cells.

Conclusions/Significance

Mice with different susceptibilities to JEV neuroinvasion did not show changes in viral tropism and host innate immune responses prior to viral entry into the central nervous system. However, early and high neutralizing antibody responses may be crucial for preventing viral neuroinvasion and host fatality. In addition, low permissiveness of myeloid dendritic cells and macrophages to JEV infection in vitro may be elements associated with late and decreased mouse neuroinvasion.  相似文献   

17.
Simian acquired immune deficiency syndrome (SAIDS) in rhesus macaques (Macaca mulatta) at the California Primate Research Center is caused by a type D retrovirus designated SAIDS retrovirus serotype 1 (SRV-1). This syndrome is characterized by profound immunosuppression and death associated with opportunistic infections. Neurologic signs and lesions have not been described as part of this syndrome. The distribution of SRV-1 in the salivary glands, lymph nodes, spleens, thymuses, and brains of eight virus-infected rhesus macaques was examined by immunohistochemistry. Electron microscopy, in situ RNA hybridization, and Southern blot hybridization were also performed on selected tissues to detect viral particles, RNA, and DNA, respectively. In seven of eight SRV-1-infected animals, the transmembrane envelope glycoprotein (gp20) of SRV-1 was present in three or more tissues, but never in the brain. In the remaining animal, no viral antigen was detected in any tissue. In this same group of animals, viral nucleic acid was detected in the lymph nodes of six of six animals by Southern blot hybridization, in the salivary glands of two of five animals by both Southern blot and in situ hybridizations, and, surprisingly, in the brains of three of three animals by Southern blot and of three of five animals by in situ hybridization, including the one animal in which viral gp20 was undetectable. None of these animals had neurologic signs or lesions. The detection of viral nucleic acid in the absence of viral antigen in the brain suggests latent SRV-1 infection of the central nervous system.  相似文献   

18.
19.
Hepatitis C Virus Neuroinvasion: Identification of Infected Cells   总被引:1,自引:0,他引:1       下载免费PDF全文
Hepatitis C virus (HCV) infection often is associated with cognitive dysfunction and depression. HCV sequences and replicative forms were detected in autopsy brain tissue and cerebrospinal fluid from infected patients, suggesting direct neuroinvasion. However, the phenotype of cells harboring HCV in brain remains unclear. We studied autopsy brain tissue from 12 HCV-infected patients, 6 of whom were coinfected with human immunodeficiency virus. Cryostat sections of frontal cortex and subcortical white matter were stained with monoclonal antibodies specific for microglia/macrophages (CD68), oligodendrocytes (2′,3′-cyclic nucleotide 3′-phosphodiesterase), astrocytes (glial fibrillary acidic protein [GFAP]), and neurons (neuronal-specific nuclear protein); separated by laser capture microscopy (LCM); and tested for the presence of positive- and negative-strand HCV RNA. Sections also were stained with antibodies to viral nonstructural protein 3 (NS3), separated by LCM, and phenotyped by real-time PCR. Finally, sections were double stained with antibodies specific for the cell phenotype and HCV NS3. HCV RNA was detected in CD68-positive cells in eight patients, and negative-strand HCV RNA, which is a viral replicative form, was found in three of these patients. HCV RNA also was found in astrocytes from three patients, but negative-strand RNA was not detected in these cells. In double immunostaining, 83 to 95% of cells positive for HCV NS3 also were CD68 positive, while 4 to 29% were GFAP positive. NS3-positive cells were negative for neuron and oligodendrocyte phenotypic markers. In conclusion, HCV infects brain microglia/macrophages and, to a lesser extent, astrocytes. Our findings could explain the biological basis of neurocognitive abnormalities in HCV infection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号