首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Nahm MY  Kim SW  Yun D  Lee SY  Cho MJ  Bahk JD 《Plant & cell physiology》2003,44(12):1341-1349
Rab7 is a small GTP-binding protein important in early to late endosome/lysosome vesicular transport in mammalian cells. We have isolated a Rab7 cDNA clone, OsRab7, from a cold-treated rice cDNA library by the subtraction screening method. The cDNA encodes a polypeptide of 206 amino acids with a calculated molecular mass of about 23 kDa. Its predicted amino acid sequence shows significantly high identity with the sequences of other Rab7 proteins. His-tagged OsRab7 bound to radiolabeled GTPgammaS in a specific and stoichiometric manner. Biochemical and structural properties of the Rab7 wild type (WT) protein were compared to those of Q67L and T22N mutants. The detergent 3-([3-cholamidopropyl]dimethylammonio)-1-propane sulfonate (CHAPS) increased the guanine nucleotide binding and hydrolysis activities of Rab7WT. The OsRab7Q67L mutant showed much lower GTPase activity compared to the WT protein untreated with CHAPS, and the T22N mutant showed no GTP binding activity at all. The OsRab7Q67L mutant was constitutively active for guanine nucleotide binding while the T22N mutant (dominant negative) showed no guanine nucleotide binding activity. When bound to GTP, the Rab7WT and the Q67L mutants were protected from tryptic proteolysis. The cleavage pattern of the Rab7T22N mutant, however, was not affected by GTP addition. Northern and Western blot analyses suggested that OsRab7 is distributed in various tissues of rice. Furthermore, expression of a rice Rab7 gene was differentially regulated by various environmental stimuli such as cold, NaCl, dehydration, and ABA. In addition, subcellular localization of OsRab7 was investigated in the Arabidopsis protoplasts by a double-labeling experiment using GFP-fused OsRab7 and FM4-64. GFP-OsRab7 is localized to the vacuolar membrane, suggesting that OsRab7 is implicated in a vesicular transport to the vacuole in plant cells.  相似文献   

4.
A purified bovine lung cGMP-binding cGMP-specific phosphodiesterase (cG-BPDE) was rapidly phosphorylated by purified bovine lung cGMP-dependent protein kinase (cGK). Within a physiological concentration range, cGK catalyzed phosphorylation of cG-BPDE at a rate approximately 10 times greater than did equimolar concentrations of purified catalytic subunit of cAMP-dependent protein kinase (cAK). cG-BPDE was a poor substrate for either purified protein kinase C or Ca2+/calmodulin-dependent protein kinase II. Binding of cGMP to the cG-BPDE binding site was required for phosphorylation since (a) phosphorylation of cG-BPDE by the catalytic subunit of cAK was cGMP-dependent, (b) phosphorylation of cG-BPDE in the presence of a cGMP analog specific for activation of cGK was cGMP-dependent, and (c) occupation of the cG-BPDE hydrolytic site with competitive inhibitors did not produce the cGMP-dependent effect. cGMP-dependent phosphorylation of cG-BPDE by both cGK and cAK occurred at serine. Proteolytic digestion of cG-BPDE phosphorylated by either cGK or cAK revealed the same phosphopeptide pattern, suggesting that phosphorylation by the two kinases occurred at the same or adjacent site(s). Tryptic digestion of cG-BPDE phosphorylated by cGK and [gamma-32P]ATP produced a single major phosphopeptide of approximately 2 kDa with the following amino-terminal sequence: Lys-Ile-Ser-Ala-Ser-Glu-Phe-Asp-Arg-Pro-Leu-Arg- Radioactivity was released during the third cycle of Edman degradation. cG-BPDE is one of few specific in vitro cGK substrates of known function to be identified. Elevation of intracellular cGMP may cause phosphorylation of cG-BPDE by modulating the substrate site availability as well as by activating cGK. Such regulation would greatly increase the selectivity of the phosphorylation of cG-BPDE and would represent a unique mechanism of action of a cyclic nucleotide or other second messenger.  相似文献   

5.
The guanosine 3′,5′-bisdiphosphate (ppGpp) signaling system is shared by bacteria and plant chloroplasts, but its role in plants has remained unclear. Here we show that guanylate kinase (GK), a key enzyme in guanine nucleotide biosynthesis that catalyzes the conversion of GMP to GDP, is a target of regulation by ppGpp in chloroplasts of rice, pea, and Arabidopsis. Plants have two distinct types of GK that are localized to organelles (GKpm) or to the cytosol (GKc), with both enzymes being essential for growth and development. We found that the activity of rice GKpm in vitro was inhibited by ppGpp with a Ki of 2.8 μm relative to the substrate GMP, whereas the Km of this enzyme for GMP was 73 μm. The IC50 of ppGpp for GKpm was ∼10 μm. In contrast, the activity of rice GKc was insensitive to ppGpp, as was that of GK from bakers'' yeast, which is also a cytosolic enzyme. These observations suggest that ppGpp plays a pivotal role in the regulation of GTP biosynthesis in chloroplasts through specific inhibition of GKpm activity, with the regulation of GTP biosynthesis in chloroplasts thus being independent of that in the cytosol. We also found that GKs of Escherichia coli and Synechococcus elongatus PCC 7942 are insensitive to ppGpp, in contrast to the ppGpp sensitivity of the Bacillus subtilis enzyme. Our biochemical characterization of GK enzymes has thus revealed a novel target of ppGpp in chloroplasts and has uncovered diversity among bacterial GKs with regard to regulation by ppGpp.  相似文献   

6.
Leaf senescence is a complex and highly organized process resulting in numerous changes of gene expression and metabolic procedures. However, the exact mechanisms underlying these changes are not well understood. In this study, we reported a rice (Oryza sativa) T-DNA insertion mutant impaired in an Abc1 kinase family gene with a dwarf and pale-green phenotype. The mutant showed reduced pigment content and photosynthetic efficiency and increased superoxide dismutase activity in leaves. The mutated gene, designated OsABC1-2, is expressed primarily in green tissues and/or organs and encodes a protein localized in chloroplast envelope. Expression of the gene was drastically suppressed by dark treatment. Overexpression of the gene in rice enhanced tolerance to prolonged dark-induced stress. Phylogenetic analysis revealed that the plant Abc1 proteins could be divided into three subgroups and OsAbc1-2 resides in a subgroup with potential chloroplast origin. Our results suggest that divergence has occurred among plant Abc1 family and chloroplast Abc1 kinases play potential roles in regulating dark-induced senescence of plants.  相似文献   

7.
8.
Differentiation from proplastids into chloroplasts is a light- and energy-dependent process. How this process is regulated is still poorly understood at the molecular level. We herein report a new putative plastidial adenine nucleotide transporter, BRITTLE1-3 (referred to as OsBT1-3), encoded by the rice (Oryza sativa) White Stripe Leaf 2 (WSL2) gene. Loss of OsBT1-3 function results in defective chloroplast biogenesis, severely reduced photosynthetic efficiency, and finally a white stripe leaf phenotype in the first four leaves. The expression levels of genes related to chlorophyll biosynthesis and photosynthesis are drastically reduced, accompanied with over accumulation of reactive oxygen species (ROS) in the wsl2 mutant. OsBT1-3 is targeted to the chloroplasts and it expresses in almost all tissues in plants, especially in young leaves. OsBT1-3 consists of 419 amino acids and exhibits features of all mitochondrial carrier proteins, including a typical transmembrane-spanning domain and a highly conserved sequence motif designated as the ‘mitochondrial energy transfer signatures’. Phylogenetic analysis shows that OsBT1-3 is a putative plastidial adenine nucleotide transporter and is most closely related to ZmBT1-2. Together, these observations suggest that the new putative adenine nucleotide transporter, OsBT1-3, plays an essential role in regulating chloroplast biogenesis and maintenance of ROS homeostasis during rice seedling de-etiolation.  相似文献   

9.
Green-revertible albino is a novel type of chlorophyll deficiency in rice (Oryza sativa L.), which is helpful for further research in chlorophyll synthesis and chloroplast development to illuminate their molecular mechanism. In the previous study, we had reported a single recessive gene, gra(t), controlling this trait on the long arm of chromosome 2. In this paper, we mapped the gra(t) gene using 1,936 recessive individuals with albino phenotype in the F2 population derived from the cross between themo-photoperiod-sensitive genic male-sterile (T/PGMS) line Pei'ai 64S and the spontaneous mutant Qiufeng M. Eventually, it was located to a confined region of 42.4 kb flanked by two microsatellite markers RM2-97 and RM13553. Based on the annotation results of RiceGAAS system, 11 open reading frames (ORFs) were predicted in this region. Among them, ORF6 was the most possible gene related to chloroplast development, which encoded the chloroplast protein synthesis elongation factor Tu in rice. Therefore, we designated it as the candidate gene of gra(t). Sequence analysis indicated that only one base substitution C to T occurred in the coding region, which caused a missense mutation (Thr to Ile) in gra(t) mutant. These results are very valuable for further study on gra(t) gene.  相似文献   

10.
Guanylate kinase is an essential enzyme in the nucleotide biosynthetic pathway, catalyzing the reversible transfer of the terminal phospharyl group of ATP to GMP or dGMP. This enzyme has been well studied from several organisms and many structural and functional details have been characterized. Animal GMP kinases have also been implicated in signal transduction pathways. However, the corresponding role by plant derived GMP kinases remains to be elucidated. Full-length cDNA clones encoding enzymatically active guanylate kinases were isolated from cDNA libraries of lily and tobacco. Lily cDNA is predicted to encode a 392-amino acid protein with a molecular mass of 43.1 kDa and carries amino- and carboxy- terminal extensions of the guanylate kinase (GK)-like domain. But tobacco cDNA is predicted to encode a smaller protein of 297-amino acids with a molecular mass of 32.7 kDa. The amino acid residues known to participate in the catalytic activity of functionally characterized GMP kinases, are also conserved in GK domains of LGK-1 and NGK-1. The GK domains of NGK-1, LGK-1 and previously characterized AGK-1 from Arabidopsis exhibit 74–84% identity, whereas their N- and C-terminal domains are more divergent with amino acid conservation in the order of 48-55%. Phylogenetic analysis on the deduced amino acid sequences reveals that NGK-1 and LGK-1 form one distinct subgroup along with AGK-1 and AGK-2 homologues from Arabidopsis. Isolation of GMP kinases from diverse plant species like lily and tobacco adds a new dimension in understanding their role in cell signaling pathways that are associated with plant growth and development.  相似文献   

11.
12.
Diabetes mellitus is a major risk factor in the development of atherosclerosis and cardiovascular disease conditions, involving intimal injury and enhanced vascular smooth muscle cell (VSMC) migration. We report a mechanistic basis for divergences between insulin's inhibitory effects on migration of aortic VSMC from control Wistar Kyoto (WKY) rats versus Goto-Kakizaki (GK) diabetic rats. In normal WKY VSMC, insulin increased MAPK phosphatase-1 (MKP-1) expression as well as MKP-1 phosphorylation, which stabilizes it, and inhibited PDGF-mediated MAPK phosphorylation and cell migration. In contrast, basal migration was elevated in GK diabetic VSMCs, and all of insulin's effects on MKP-1 expression and phosphorylation, MAPK phosphorylation, and PDGF-stimulated migration were markedly inhibited. The critical importance of MKP-1 in insulin inhibition of VSMC migration was evident from several observations. MKP-1 small interfering RNA inhibited MKP-1 expression and abolished insulin inhibition of PDGF-induced VSMC migration. Conversely, adenoviral expression of MKP-1 decreased MAPK phosphorylation and basal migration rate and restored insulin's ability to inhibit PDGF-directed migration in GK diabetic VSMCs. Also, the proteasomal inhibitors lactacystin and MG132 partially restored MKP-1 protein levels in GK diabetic VSMCs and inhibited their migration. Furthermore, GK diabetic aortic VSMCs had reduced cGMP-dependent protein kinase Ialpha (cGK Ialpha) levels as well as insulin-dependent, but not sodium nitroprusside-dependent, stimulation of cGMP. Adenoviral expression of cGK Ialpha enhanced MKP-1 inhibition of MAPK phosphorylation and VSMC migration. We conclude that enhanced VSMC migration in GK diabetic rats is due at least in part to a failure of insulin-stimulated cGMP/cGK Ialpha signaling, MKP-1 expression, and stabilization and thus MAPK inactivation.  相似文献   

13.
14.
cGMP- and cAMP-dependent protein kinases (cGK I, cGK II, and cAK) are important mediators of many signaling pathways that increase cyclic nucleotide concentrations and ultimately phosphorylation of substrates vital to cellular functions. Here we demonstrate a novel mRNA splice isoform of cGK II arising from alternative 5' splicing within exon 11. The novel splice variant encodes a protein (cGK II Delta(441-469)) lacking 29 amino acids of the cGK II Mg-ATP-binding/catalytic domain, including the conserved glycine-rich loop consensus motif Gly-x-Gly-x-x-Gly-x-Val which interacts with ATP in the protein kinase family of enzymes. cGK II Delta(441-469) has no intrinsic enzymatic activity itself, however, it antagonizes cGK II and cGK I, but not cAK. Thus, the activation and cellular functions of cGK II may be determined not only by intracellular cGMP levels but also by alternative splicing which may regulate the balance of expression of cGK II versus its own inhibitor, cGK II Delta(441-469).  相似文献   

15.
16.
The fully sequenced chloroplast genomes of maize (subfamily Panicoideae), rice (subfamily Bambusoideae), and wheat (subfamily Pooideae) provide the unique opportunity to investigate the evolution of chloroplast genes and genomes in the grass family (Poaceae) by whole-genome comparison. Analyses of nucleotide sequence variations in 106 cereal chloroplast genes with tobacco sequences as the outgroup suggested that (1) most of the genic regions of the chloroplast genomes of maize, rice, and wheat have evolved at similar rates; (2) RNA genes have highly conservative evolutionary rates relative to the other genes; (3) photosynthetic genes have been under strong purifying selection; (4) between the three cereals, 14 genes which account for about 28% of the genic region have evolved with heterogeneous nucleotide substitution rates; and (5) rice genes tend to have evolved more slowly than the others at loci where rate heterogeneity exists. Although the mechanism that underlies chloroplast gene diversification is complex, our analyses identified variation in nonsynonymous substitution rates as a genetic force that generates heterogeneity, which is evidence of selection in chloroplast gene diversification at the intrafamilial level. Phylogenetic trees constructed with the variable nucleotide sites of the chloroplast genes place maize basal to the rice-wheat clade, revealing a close relationship between the Bambusoideae and Pooideae.  相似文献   

17.
18.
19.
K E Rushlow  A H Deutch  C J Smith 《Gene》1985,39(1):109-112
A 1.75-kb DNA fragment containing the entire Escherichia coli proB+ gene has been sequenced. The proB locus encodes the structural gene for gamma-glutamyl kinase (GK), the enzyme responsible for the first step in proline biosynthesis, and the primary regulatory point of the pathway. We have previously reported the nucleotide (nt) sequence of a mutant proB gene isolated from an E. coli strain resistant to the toxic analog of proline, 3,4-dehydro-DL-proline (DHP). This mutant gene encodes a GK which is refractory to allosteric feedback inhibition by proline (DHPR). Comparison of the proB+ and DHPR proB sequences revealed a single base difference, an A-T to C-G transversion localized at nt position 428 within the amino acid (aa) coding region of proB. This mutation predicts an aa change from glutamic acid in the wild-type (wt) enzyme to alanine in the DHPR enzyme.  相似文献   

20.
Glycerol kinase (GK) is a key enzyme in glycerol metabolism with two alternatively spliced forms-one with an 87bp insertion corresponding to exon 18 (GK+EX18), and one lacking exon 18 (GK-EX18). We report the expression of GK+/-EX18 in various tissues and cell lines, as well as their enzymatic characteristics and subcellular localization. RT-PCR revealed differential expression in tissues and cell lines. Northern blot analysis revealed that both forms of the murine ortholog, Gyk, were highly expressed in murine heart and increased during embryonic development. K(m) values for glycerol for GK+/-EX18 were not significantly different, although GK-EX18 had a higher V(max) for glycerol. GK-EX18 had a lower K(m) and V(max) for ATP than GK+EX18. Immunofluorescence experiments showed that GK+EX18 co-localized to the mitochondria and the perinuclear region while GK-EX18 had a diffuse expression pattern. These data suggest specific and divergent roles for GK+EX18 and GK-EX18 in cellular metabolism and development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号