首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Rap1 small GTPase has been implicated in regulation of integrin-mediated leukocyte adhesion downstream of various chemokines and cytokines in many aspects of inflammatory and immune responses. However, the mechanism for Rap1 regulation in the adhesion signaling remains unclear. RA-GEF-2 is a member of the multiple-member family of guanine nucleotide exchange factors (GEFs) for Rap1 and characterized by the possession of a Ras/Rap1-associating domain, interacting with M-Ras-GTP as an effector, in addition to the GEF catalytic domain. Here, we show that RA-GEF-2 is specifically responsible for the activation of Rap1 that mediates tumor necrosis factor-alpha (TNF-alpha)-triggered integrin activation. In BAF3 hematopoietic cells, activated M-Ras potently induced lymphocyte function-associated antigen 1 (LFA-1)-mediated cell aggregation. This activation was totally abrogated by knockdown of RA-GEF-2 or Rap1. TNF-alpha treatment activated LFA-1 in a manner dependent on M-Ras, RA-GEF-2, and Rap1 and induced activation of M-Ras and Rap1 in the plasma membrane, which was accompanied by recruitment of RA-GEF-2. Finally, we demonstrated that M-Ras and RA-GEF-2 were indeed involved in TNF-alpha-stimulated and Rap1-mediated LFA-1 activation in splenocytes by using mice deficient in RA-GEF-2. These findings proved a crucial role of the cross-talk between two Ras-family GTPases M-Ras and Rap1, mediated by RA-GEF-2, in adhesion signaling.  相似文献   

2.
We previously identified RA-GEF-1, a novel guanine nucleotide exchange factor (GEF) for Rap1 with the ability to associate with Rap1.GTP at its Ras/Rap1-associating (RA) domain. Because it possesses a PSD-95/DlgA/ZO-1 (PDZ) domain, it was also named PDZ-GEF. In this report, we have examined the role of the RA domain of this protein in Rap1-mediated cellular responses. A mutant of RA-GEF-1 (RA-GEF-1DeltaRA) carrying a 21-residue deletion at its RA domain fully retains the in vitro GEF activity toward Rap1 but completely loses the Rap1 binding activity. In contrast, RA-GEF-1DeltaRA, expressed in COS-7 cells, exhibits a 3-fold reduction in its in vivo GEF activity toward Rap1 compared with wild-type RA-GEF-1 as examined by the Rap1 pull-down assay. Correspondingly, when coexpressed with wild-type Rap1, RA-GEF-1DeltaRA is unable to further activate B-Raf, whereas RA-GEF-1 stimulates B-Raf as efficiently as activated Rap1. Consistent with these observations, coexpression of activated Rap1 induces translocation of RA-GEF-1, which is otherwise located in the cytoplasm, to the perinuclear compartment, where Rap1 is also predominantly localized. This localization almost coincides with that of the Golgi apparatus, which was detected by anti-trans-Golgi-network 38 antibody. RA-GEF-1DeltaRA fails to show the translocation. These results indicate that RA-GEF-1 defines a novel category of GEF that is translocated to a particular subcellular compartment by association with the GTP-bound form of a small GTPase and catalyzes activation of the GDP-bound form present in the compartment, thereby causing an amplification of cellular responses induced by the small GTPase.  相似文献   

3.
Although the Ras subfamily of GTPases consists of approximately 20 members, only a limited number of guanine nucleotide exchange factors (GEFs) that couple extracellular stimuli to Ras protein activation have been identified. Furthermore, no novel downstream effectors have been identified for the M-Ras/R-Ras3 GTPase. Here we report the identification and characterization of three Ras family GEFs that are most abundantly expressed in brain. Two of these GEFs, MR-GEF (M-Ras-regulated GEF, KIAA0277) and PDZ-GEF (KIAA0313) bound specifically to nucleotide-free Rap1 and Rap1/Rap2, respectively. Both proteins functioned as Rap1 GEFs in vivo. A third GEF, GRP3 (KIAA0846), activated both Ras and Rap1 and shared significant sequence homology with the calcium- and diacylglycerol-activated GEFs, GRP1 and GRP2. Similarly to previously identified Rap GEFs, C3G and Smg GDS, each of the newly identified exchange factors promoted the activation of Elk-1 in the LNCaP prostate tumor cell line where B-Raf can couple Rap1 to the extracellular receptor-activated kinase cascade. MR-GEF and PDZ-GEF both contain a region immediately N-terminal to their catalytic domains that share sequence homology with Ras-associating or RalGDS/AF6 homology (RA) domains. By searching for in vitro interaction with Ras-GTP proteins, PDZ-GEF specifically bound to Rap1A- and Rap2B-GTP, whereas MR-GEF bound to M-Ras-GTP. C-terminally truncated MR-GEF, lacking the GEF catalytic domain, retained its ability to bind M-Ras-GTP, suggesting that the RA domain is important for this interaction. Co-immunoprecipitation studies confirmed the interaction of M-Ras-GTP with MR-GEF in vivo. In addition, a constitutively active M-Ras(71L) mutant inhibited the ability of MR-GEF to promote Rap1A activation in a dose-dependent manner. These data suggest that M-Ras may inhibit Rap1 in order to elicit its biological effects.  相似文献   

4.
5.
CalDAG-GEFIII activation of Ras, R-ras, and Rap1   总被引:10,自引:0,他引:10  
We characterized a novel guanine nucleotide exchange factor (GEF) for Ras family G proteins that is highly homologous to CalDAG-GEFI, a GEF for Rap1 and R-Ras, and to RasGRP/CalDAG-GEFII, a GEF for Ras and R-Ras. This novel GEF, referred to as CalDAG-GEFIII, increased the GTP/GDP ratio of Ha-Ras, R-Ras, and Rap1 in 293T cells. CalDAG-GEFIII promoted the guanine nucleotide exchange of Ha-Ras, R-Ras, and Rap1 in vitro also, indicating that CalDAG-GEFIII exhibited the widest substrate specificity among the known GEFs for Ras family G proteins. Expression of CalDAG-GEFIII was detected in the glial cells of the brain and the glomerular mesangial cells of the kidney by in situ hybridization. CalDAG-GEFIII activated ERK/MAPK most efficiently, followed by CalDAG-GEFII and CalDAG-GEFI in 293T cells. JNK activation was most prominent in cells expressing CalDAG-GEFII, followed by CalDAG-GEFIII and CalDAG-GEFI. Expression of CalDAG-GEFIII induced neuronal differentiation of PC12 cells and anchorage-independent growth of Rat1A cells less efficiently than did CalDAG-GEFII. Thus, co-activation of Rap1 by CalDAG-GEFIII apparently attenuated Ras-MAPK-dependent neuronal differentiation and cellular transformation. Altogether, CalDAG-GEFIII activated a broad range of Ras family G proteins and exhibited a biological activity different from that of either CalDAG-GEFI or CalDAG-GEFII.  相似文献   

6.
A yeast two-hybrid screening for Ras-binding proteins in nematode Caenorhabditis elegans has identified a guanine nucleotide exchange factor (GEF) containing a Ras/Rap1A-associating (RA) domain, termed Ce-RA-GEF. Both Ce-RA-GEF and its human counterpart Hs-RA-GEF possessed a PSD-95/DlgA/ZO-1 (PDZ) domain and a Ras exchanger motif (REM) domain in addition to the RA and GEF domains. They also contained a region homologous to a cyclic nucleotide monophosphate-binding domain, which turned out to be incapable of binding cAMP or cGMP. Although the REM and GEF domains are conserved with other GEFs acting on Ras family small GTP-binding proteins, the RA and PDZ domains are unseen in any of them. Hs-RA-GEF exhibited not only a GTP-dependent binding activity to Rap1A at its RA domain but also an activity to stimulate GDP/GTP exchange of Rap1A both in vitro and in vivo at the segment containing its REM and GEF domains. However, it did not exhibit any binding or GEF activity toward Ras. On the other hand, Ce-RA-GEF associated with and stimulated GDP/GTP exchange of both Ras and Rap1A. These results indicate that Ce-RA-GEF and Hs-RA-GEF define a novel class of Rap1A GEF molecules, which are conserved through evolution.  相似文献   

7.
Epidermal growth factor (EGF) activates Ras and Rap1 at distinct intracellular regions. Here, we explored the mechanism underlying this phenomenon. We originally noticed that in cells expressing Epac, a cAMP-dependent Rap1 GEF (guanine nucleotide exchange factor), cAMP activated Rap1 at the perinuclear region, as did EGF. However, in cells expressing e-GRF, a recombinant cAMP-responsive Ras GEF, cAMP activated Ras at the peripheral plasma membrane. Based on the uniform cytoplasmic expression of Epac and e-GRF, GEF did not appear to account for the non-uniform increase in the activities of Ras and Rap1. In contrast, when we used probes with reduced sensitivity to GTPase-activating proteins (GAPs), both Ras and Rap1 appeared to be activated uniformly in the EGF-stimulated cells. Furthermore, we calculated the local rate constants of GEFs and GAPs from the video images of Ras activation and found that GAP activity was higher at the central plasma membrane than the periphery. Thus we propose that GAP primarily dictates the spatial regulation of Ras family G proteins, whereas GEF primarily determines the timing of Ras activation.  相似文献   

8.
PDZ-GEF1 (RA-GEF/nRapGEP/CNrasGEF) is a guanine nucleotide exchange factor (GEF) characterised by the presence of a PSD-95/DlgA/ZO-1 (PDZ) domain, a Ras-association (RA) domain and a region related to a cyclic nucleotide binding domain (RCBD). These domains are in addition to a Ras exchange motif (REM) and GEF domain characteristic for GEFs for Ras-like small GTPases. PDZ-GEF1 efficiently exchanges nucleotides of both Rap1 and Rap2, but has also been implicated in mediating cAMP-induced Ras activation through binding of cAMP to the RCBD. Here we describe a new family member, PDZ-GEF2, of which we isolated two splice variants (PDZ-GEF2A and 2B). PDZ-GEF2 contains, in addition to the domains characteristic for PDZ-GEF1, a second, less conserved RCBD at the N-terminus. PDZ-GEF2 is also specific for both Rap1 and Rap2. We further investigated the possibility that PDZ-GEF2, like PDZ-GEF1, is a cAMP-responsive GEF for Ras. However, in contrast to previous results, we did not find any effect of either PDZ-GEF1 or PDZ-GEF2 on Ras in the absence or presence of cAMP. Moreover, affinity measurements by isothermic calorimetry showed that the RCBD of PDZ-GEF1 does not bind cAMP with a physiologically relevant affinity. We conclude that both PDZ-GEF1 and 2 are specific for Rap1 and Rap2 and unresponsive to cAMP and various other nucleotides.  相似文献   

9.
The Eph family of receptor tyrosine kinases has been implicated in many developmental patterning processes, including cell segregation, cell migration, and axon guidance. The cellular components involved in the signaling pathways of the Eph receptors, however, are incompletely characterized. Using a yeast two-hybrid screen, we have identified a novel signaling intermediate, SHEP1 (SH2 domain-containing Eph receptor-binding protein 1), which is expressed in the embryonic and adult brain. SHEP1 contains an Src homology 2 domain that binds to a conserved tyrosine-phosphorylated motif in the juxtamembrane region of the EphB2 receptor and may itself be a target of EphB2 kinase activity, since it becomes heavily tyrosine-phosphorylated in cells expressing activated EphB2. SHEP1 also contains a domain similar to Ras guanine nucleotide exchange factor domains and binds to the GTPases R-Ras and Rap1A, but not Ha-Ras or RalA. Thus, SHEP1 directly links activated, tyrosine-phosphorylated Eph receptors to small Ras superfamily GTPases.  相似文献   

10.
We previously identified a novel murine protein, AND-34, with a carboxyl-terminal domain homologous to Ras family guanine nucleotide exchange factors (GEFs), which bound to the focal adhesion docking protein p130(Cas). Work by others has implicated both the human homologue of AND-34, BCAR3, and human p130(Cas), BCAR1, in the resistance of breast cancer cells to the anti-estrogen tamoxifen. Here we report that AND-34 displays GEF activity on RalA, Rap1A, and R-Ras but not Ha-Ras GTPases in cells. In contrast to several other Ral-GEFs, the Ral GEF activity of AND-34 is not augmented by constitutively active Ha-Ras(Val-12), consistent with the absence of a detectable Ras-binding domain. Efficient binding to AND-34 required both the Src-binding domain and a flanking carboxyl-terminal region of p130(Cas). The p130(Cas)-binding site mapped to a carboxyl-terminal sequence within the AND-34 GEF domain. Overexpression of p130(Cas), but not an AND-34-binding mutant of p130(Cas), inhibited the Ral GEF activity of co-transfected AND-34. This work identifies a new potential function for p130(Cas) and a new regulatory pathway involved in the control of Ral, Rap, and R-Ras GTPases that may participate in the progression of breast cancer cells to tamoxifen resistance.  相似文献   

11.
Phospholipase Cepsilon (PLCepsilon) is a novel class of phosphoinositide-specific PLC characterized by possession of CDC25 homology and Ras/Rap1-associating domains. We and others have shown that human PLCepsilon is translocated from the cytoplasm to the plasma membrane and activated by direct association with Ras at its Ras/Rap1-associating domain. In addition, translocation to the perinuclear region was induced upon association with Rap1.GTP. However, the function of the CDC25 homology domain remains to be clarified. Here we show that the CDC25 homology domain of PLCepsilon functions as a guanine nucleotide exchange factor for Rap1 but not for any other Ras family GTPases examined including Rap2 and Ha-Ras. Consistent with this, coexpression of full-length PLCepsilon or its N-terminal fragment carrying the CDC25 homology domain causes an increase of the intracellular level of Rap1.GTP. Concurrently, stimulation of the downstream kinases B-Raf and extracellular signal-regulated kinase is observed, whereas the intracellular level of Ras.GTP and Raf-1 kinase activity are unaffected. In wild-type Rap1-overexpressing cells, epidermal growth factor induces translocation of PLCepsilon to the perinuclear compartments such as the Golgi apparatus, which is sustained for at least 20 min. In contrast, PLCepsilon lacking the CDC25 domain translocates to the perinuclear compartments only transiently. Further, the formation of Rap1.GTP upon epidermal growth factor stimulation exhibits a prolonged time course in cells expressing full-length PLCepsilon compared with those expressing PLCepsilon lacking the CDC25 homology domain. These results suggest a pivotal role of the CDC25 homology domain in amplifying Rap1-dependent signal transduction, including the activation of PLCepsilon itself, at specific subcellular locations such as the Golgi apparatus.  相似文献   

12.
Small GTPase proteins such as Ras are key regulators of cellular proliferation and are activated by guanine nucleotide exchange/releasing factors (GEFs/GRFs). Three classes of Ras GRFs have been identified to date, represented by Sos1/2, Ras-GRF1/2 and Ras-GRP. Here, we describe a novel candidate Ras activator, cyclic nucleotide rasGEF (CNrasGEF), which contains CDC25, Ras exchange motif (REM), Ras-association (RA), PDZ and cNMP (cAMP/cGMP) binding (cNMP-BD) domains, two PY motifs and a carboxy-terminal SxV sequence. CNrasGEF can activate Ras in vitro, and it binds cAMP directly via its cNMP-BD. In cells, CNrasGEF activates Ras in response to elevation of intracellular cAMP or cGMP, or treatment with their analogues 8-Br-cAMP or 8-Br-cGMP, independently of protein kinases A and G (PKA and PKG). This activation is prevented in CNrasGEF lacking its CDC25 domain or cNMP-BD. CNrasGEF can also activate the small GTPase Rap1 in cells, but this activation is constitutive and independent of cAMP. CNrasGEF is expressed mainly in the brain and is localized at the plasma membrane, a localization dependent on the presence of intact PDZ domain but not the SxV sequence. These results suggest that CNrasGEF may directly connect cAMP-generating pathways or cGMP-generating pathways to Ras.  相似文献   

13.
Ras proteins operate as molecular switches in signal transduction pathways downstream of tyrosine kinases and G-protein-coupled receptors. Ras is switched from the inactive GDP-bound state to the active GTP-bound state by guanine nucleotide exchange factors (GEFs). We report here the cloning and characterization of RasGRP2, a longer alternatively spliced form of the recently cloned RapGEF, CalDAG-GEFI. A unique feature of RasGRP2 is that it is targeted to the plasma membrane by a combination of N-terminal myristoylation and palmitoylation. In vivo, RasGRP2 selectively catalyzes nucleotide exchange on N- and Ki-Ras, but not Ha-Ras. RasGRP2 also catalyzes nucleotide exchange on Rap1, but this RapGEF activity is less potent than that associated with CalDAG-GEFI. The nucleotide exchange activity of RasGRP2 toward N-Ras is stimulated by diacylglycerol and inhibited by calcium. The effects of diacylglycerol and calcium are additive but are not accompanied by any detectable change in the subcellular localization of RasGRP2. In contrast, CalDAG-GEFI is localized predominantly to the cytosol and lacks Ras exchange activity in vivo. However, prolonged exposure to phorbol esters, or growth in serum, results in localization of CalDAG-GEFI to the cell membrane and restoration of Ras exchange activity. Expression of RasGRP2 or CalDAG-GEFI in NIH3T3 cells transfected with wild type N-Ras results in an accelerated growth rate but not morphologic transformation. Thus, under appropriate growth conditions, CalDAG-GEFI and RasGRP2 are dual specificity Ras and Rap exchange factors.  相似文献   

14.
A multitude of guanine nucleotide exchange factors (GEFs) regulate Rap1 small GTPases, however, their individual functions remain obscure. Here, we investigate the in vivo function of the Rap1 GEF RA-GEF-1. The expression of RA-GEF-1 in wild-type mice starts at embryonic day (E) 8.5, and continues thereafter. RA-GEF-1(-/-) mice appear normal until E7.5, but become grossly abnormal and dead by E9.5. This mid-gestation death appears to be closely associated with severe defects in yolk sac blood vessel formation. RA-GEF-1(-/-) yolk sacs form apparently normal blood islands by E8.5, but the blood islands fail to coalesce into a primary vascular plexus, indicating that vasculogenesis is impaired. Furthermore, RA-GEF-1(-/-) embryos proper show severe defects in the formation of major blood vessels. These results suggest that deficient Rap1 signaling may lead to defective vascular morphogenesis in the yolk sac and embryos proper.  相似文献   

15.
ExoS is a bifunctional type III cytotoxin that is secreted by Pseudomonas aeruginosa. The N-terminal domain comprises a RhoGAP activity, while the C-terminal domain comprises a ADP-ribosyltransferase activity. Previous studies showed that ExoS ADP ribosylated Ras at Arg41 which interfered with the ability of Ras to interact with its guanine nucleotide exchange factor. Rap and Ras share considerable primary amino acid homology, including Arg41. In this study, we report that ExoS ADP ribosylates Rap1b at Arg41 and that ADP ribosylation of Arg41 inhibits the ability of C3G to stimulate guanine nucleotide exchange. The mechanism responsible for this inhibition is one in which ADP-ribosylated Rap binds inefficiently to C3G, relative to wild type Rap. This identifies a second member of the Ras GTPase subfamily that can be ADP ribosylated by ExoS and indicates that ExoS can inhibit both Ras and Rap signaling pathways in eukaryotic cells.  相似文献   

16.
Rab GTPases are regulators of membrane trafficking that cycle between active (GTP-bound) and inactive (GDP-bound) states. In this study, we report the identification of a new human Rab5 guanine nucleotide exchange factor (GEF), which we have named RAP6 (Rab5-activating protein 6). RAP6 contains a Rab5 GEF and a Ras GAP domain. We show that the Vps9 domain is sufficient for the interaction of RAP6 with GDP-bound Rab5 and that RAP6 stimulates Rab5 guanine nucleotide exchange. We also find that the Ras GAP domain of RAP6 shows GAP activity for Ras. Immunofluorescence experiments reveal that RAP6 is associated with plasma membrane and small intracellular vesicles that also contain Rab5. Additionally, the overexpression of RAP6 affects both fluid phase and receptor-mediated endocytosis. This study is the first to show that RAP6 is a novel regulator of endocytosis that exhibits GEF activity specific for Rab5 and GAP activity specific for Ras.  相似文献   

17.
Like other small G proteins of the Ras superfamily, Rap1 is activated by distinct guanine nucleotide exchange factors (GEFs) in response to different signals to elicit cellular responses. Activation of Rap1 by cyclic AMP (cAMP) can occur via cAMP-dependent protein kinase A (PKA)-independent and PKA-dependent mechanisms. PKA-independent activation of Rap1 by cAMP is mediated by direct binding of cAMP to Rap1-guanine nucleotide exchange factors (Rap1-GEFs) Epac1 (exchange protein directly activated by cAMP 1) and Epac2 (Epac1 and Epac2 are also called cAMP-GEFI and -GEFII). The availability of cAMP analogues that selectively activate Epacs, but not PKA, provides a specific tool to activate Rap1. It has been argued that the inability of these analogues to regulate extracellular signal-regulated kinases (ERKs) signaling despite activating Rap1 provides evidence that Rap1 is incapable of regulating ERKs. We confirm that the PKA-independent activation of Rap1 by Epac1 activates a perinuclear pool of Rap1 and that this does not result in ERK activation. However, we demonstrate that this inability to regulate ERKs is not a property of Rap1 but is rather a property of Epacs themselves. The addition of a membrane-targeting motif to Epac1 (Epac-CAAX) relocalizes Epac1 from its normal perinuclear locale to the plasma membrane. In this new locale it is capable of activating ERKs in a Rap1- and cAMP-dependent manner. Rap1 activation by Epac-CAAX, but not wild-type Epac, triggers its association with B-Raf. Therefore, we propose that its intracellular localization prevents Epac1 from activating ERKs. C3G (Crk SH3 domain Guanine nucleotide exchanger) is a Rap1 exchanger that is targeted to the plasma membrane upon activation. We show that C3G can be localized to the plasma membrane by cAMP/PKA, as can Rap1 when activated by cAMP/PKA. Using a small interfering RNA approach, we demonstrate that C3G is required for the activation of ERKs and Rap1 by cAMP/PKA. This activation requires the GTP-dependent association of Rap1 with B-Raf. These data demonstrate that B-Raf is a physiological target of Rap1, but its utilization as a Rap1 effector is GEF specific. We propose a model that specific GEFs activate distinct pools of Rap1 that are differentially coupled to downstream effectors.  相似文献   

18.
Ras proteins from Saccharomyces cerevisiae differ from mammalian Ha-Ras in their extended C-terminal hypervariable region. We have analyzed the function of this region and the effect of its farnesylation with respect to the action of the GDP/GTP exchange factors (GEFs) Cdc25p and Sdc25p and the target adenylyl cyclase. Whereas Ras2p farnesylation had no effect on the interaction with purified GEFs from the Cdc25 family, this modification became a strict requirement for stimulation of the nucleotide exchange on Ras using reconstituted cell-free systems with GEFs bound to the cell membrane. Determination of GEF effects showed that in cell membrane the Cdc25p dependent activity on Ras2p was predominant over that of Sdc25p. In contrast to full-length GEFs, a membrane-bound C-terminal region containing the catalytic domain of Cdc25p was still able to react productively with unfarnesylated Ras2p. These results indicate that in membrane-bound full-length GEF the N-terminal moiety regulates the interaction between catalytic domain and farnesylated Ras2p.GDP. Differently from GEF, full activation of adenylyl cyclase did not require farnesylation of Ras2p.GTP, even if this step of maturation was found to facilitate the interaction. The use of Ha-Ras/Ras2p chimaeras of different length emphasized the key role of the hypervariable region of Ras2p in inducing maximum activation of adenylyl cyclase and for a productive interaction with membrane-bound GEF.  相似文献   

19.
Ras-GRF1 is a brain-specific guanine nucleotide exchange factor (GEF) for Ras, whose activity is regulated in response to Ca(2+) influx and G protein-coupled receptor signals. In addition, Ras-GRF1 acts as a GEF for Rac when tyrosine-phosphorylated following G protein-coupled receptor stimulation. However, the mechanisms underlying the regulation of Ras-GRF1 functions remain incompletely understood. We show here that activated ACK1, a nonreceptor tyrosine kinase that belongs to the focal adhesion kinase family, causes tyrosine phosphorylation of Ras-GRF1. On the other hand, kinase-deficient ACK1 exerted no effect. GEF activity of Ras-GRF1 toward Ha-Ras, as defined by in vitro GDP binding and release assays, was augmented after tyrosine phosphorylation by ACK1. In contrast, GEF activity toward Rac1 remained latent, implying that ACK1 does not represent a tyrosine kinase that acts downstream of G protein-coupled receptors. Consistent with enhanced Ras-GEF activity, accumulation of the GTP-bound form of Ras within the cell was shown through the use of Ras-binding domain pull-down assays. Furthermore, Ras-dependent activation of ERK2 by Ras-GRF1 was enhanced following co-expression of activated ACK1. These results implicate ACK1 as an upstream modulator of Ras-GRF1 and suggest a signaling cascade consisting of Cdc42, ACK1, Ras-GRF1, and Ras in neuronal cells.  相似文献   

20.
In this study we examine signaling pathways linking the M(1) subtype of muscarinic acetylcholine receptor (M(1) mAChR) to activation of extracellular signal-regulated kinases (ERK) 1 and 2 in neuronal PC12D cells. We first show that activation of ERK1/2 by the M(1) mAChR agonist carbachol takes place primarily via a Ras-independent pathway that depends largely upon Rap1, another small GTP-binding protein in the Ras family. Rap1 in turn activates B-Raf, an upstream activator of ERK1/2. Consistent with these results, carbachol was found to activate Rap1 more potently than Ras. Similar to other small GTP-binding proteins, activation of Rap1 requires a guanine nucleotide exchange factor (GEF) to promote its conversion from the GDP- to GTP-bound form. Using specific antibodies, we show that a recently identified Rap1 GEF, calcium- and diacylglycerol-regulated guanine nucleotide exchange factor I (CalDAG-GEFI), is expressed in PC12D cells and that carbachol stimulates the formation of a complex containing CalDAG-GEFI, Rap1, and activated B-Raf. Finally, we show that expression of CalDAG-GEFI antisense RNA largely blocks carbachol-stimulated activation of hemagglutinin (HA)1-tagged B-Raf and formation of the CalDAG-GEFI/Rap1/HA1-tagged B-Raf complex. Together, these data define a novel signaling pathway for M(1) mAChR, where increases in Ca(2+) and diacylglycerol stimulate the sequential activation of CalDAG-GEFI, Rap1, and B-Raf, resulting in the activation of MEK and ERK1/2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号