首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interior and surface of monomeric proteins   总被引:47,自引:0,他引:47  
The solvent-accessible surface area (As) of 46 monomeric proteins is calculated using atomic co-ordinates from high-resolution and well-refined crystal structures. The As of these proteins can be determined to within 1 to 2% and that of their individual residues to within 10 to 20%. The As values of proteins are correlated with their molecular weight (Mr) in the range 4000 to 35,000: the power law As = 6.3 M0.73 predicts protein As values to within 4% on average. The average water-accessible surface is found to be 57% non-polar, 24% polar and 19% charged, with 5% root-mean-square variations. The molecular surface buried inside the protein is 58% non-polar, 39% polar and 4% charged. The buried surface contains more uncharged polar groups (mostly peptides) than the surface that remains accessible, but many fewer charged groups. On average, 15% of residues in small proteins and 32% in larger ones may be classed as "buried residues", having less than 5% of their surface accessible to the solvent. The accessibilities of most other residues are evenly distributed in the range 5 to 50%. Although the fraction of buried residues increases with molecular weight, the amino acid compositions of the protein interior and surface show no systematic variation with molecular weight, except for small proteins that are often very rich in buried cysteines. From amino acid compositions of protein surfaces and interiors we calculate an effective coefficient of partition for each type of residue, and derive an implied set of transfer free energy values. This is compared with other sets of partition coefficients derived directly from experimental data. The extent to which groups of residues (charged, polar and non-polar) are buried within proteins correlates well with their hydrophobicity derived from amino acid transfer experiments. Within these three groups, the correlation is low.  相似文献   

2.
1. Three very similar proteins, each of approx. 120 amino acid residues but lacking phenylalanine and histidine, were isolated from wheat (Triticum aestivum) flour in sufficient quantities for further structural studies. 2. Each protein, after reduction and carboxymethylation, was cleaved at the three methionine residues with CNBr to give four major peptides, which were isolated. These peptides are suitable for future sequencing studies, as the sums of their amino acid compositions are in good agreement with those of the whole proteins. 3. The N- and C-terminal peptides were identified. 4. Evidence from amino acid analyses, N-terminal amino acids and electrophoretic mobilities of the peptides suggests a high degree of homology between the proteins. Definite differences in C-terminal amino acids and the number of glycine, alanine and arginine residues were found in the C-terminal peptides.  相似文献   

3.
Rastogi V  Oaks A 《Plant physiology》1986,81(3):901-906
Soluble products, released by the hydrolysis of hordeins into the media of barley (Hordeum vulgare cv. Perth) half-seeds were analyzed. Large polypeptide fragments (methanol-insoluble) were identified using the Western immunoblot technique with the antibodies prepared against B and C polypeptides of hordein. A number of hordein IgG-reacting bands were noted in the samples from dry kernels. In samples incubated in the absence of gibberellic acid, polypeptide fragments in the size range of 25 to 30 kilodaltons appeared within 24 hours, and those in the size range of 40 kilodaltons became more prominent. In samples incubated in the presence of gibberellic acid, polypeptide fragments in the size range of 45 to 67 kilodaltons were less apparent and those in the size range of less than 15 kilodaltons were more pronounced. The hordein-related polypeptide fragments were present in low amounts after 72 hours in the presence of gibberellic acid. Methanol-soluble peptides were fractionated, on the basis of size, into two broad peaks. In the absence of gibberellic acid, there was no significant change in their profile over a 72 hour incubation period. In the presence of this growth substance, however, there was a decrease in the proportion of large size peptides (50-70 amino acid residues in length), and an increase in the levels of small peptides (15-35 amino acid residues in length) and amino acids. Our interpretation of the results is that the release of the initial large polypeptide fragments from hordein proteins is mediated by a protease(s) whose appearance is not dependent on the exogenously added gibberellic acid. Further hydrolysis is, however, mediated by proteases induced in the presence of this growth substance.  相似文献   

4.
A series of eight amphipathic peptides (8, 11, 15, 2 x 18, 22, 26, 29 amino acids in length) were designed to investigate the effects of amino acid composition, peptide length and secondary structure on surface activity assessed as emulsification and foaming activity. The potential for alpha-helix formation at the hydrophobic/hydrophilic interface was maximized through the use of helix-forming amino acids, a relatively large hydrophobic surface of 200 degrees of arc and ion pairs between basic and acidic amino acids on the hydrophilic surface. Emulsification activity increased rapidly between 11 and 22 residues as alpha-helicity in aqueous solution increased. Despite their small size, the peptides produced exceptionally stable emulsions, compared with proteins. Foaming activity was enhanced by the presence of aromatic amino acids and the activity of the best peptide examined was superior to that of bovine serum albumin and beta-lactoglobulin.  相似文献   

5.
Two novel metalloproteases from Arabidopsis thaliana, termed AtPrePI and AtPrePII, were recently identified and shown to degrade targeting peptides in mitochondria and chloroplasts using an ambiguous targeting peptide. AtPrePI and AtPrePII are classified as dually targeted proteins as they are targeted to both mitochondria and chloroplasts. Both proteases harbour an inverted metal binding motif and belong to the pitrilysin subfamily A. Here we have investigated the subsite specificity of AtPrePI and AtPrePII by studying their proteolytic activity against the mitochondrial F(1)beta pre-sequence, peptides derived from the F(1)beta pre-sequence as well as non-mitochondrial peptides and proteins. The degradation products were analysed, identified by MALDI-TOF spectrometry and superimposed on the 3D structure of the F(1)beta pre-sequence. AtPrePI and AtPrePII cleaved peptides that are in the range of 10 to 65 amino acid residues, whereas folded or longer unfolded peptides and small proteins were not degraded. Both proteases showed preference for basic amino acids in the P(1) position and small, uncharged amino acids or serine residues in the P'(1) position. Interestingly, both AtPrePI and AtPrePII cleaved almost exclusively towards the ends of the alpha-helical elements of the F(1)beta pre-sequence. However, AtPrePI showed a preference for the N-terminal amphiphilic alpha-helix and positively charged amino acid residues and degraded the F(1)beta pre-sequence into 10-16 amino acid fragments, whereas AtPrePII did not show any positional preference and degraded the F(1)beta pre-sequence into 10-23 amino acid fragments. In conclusion, despite the high sequence identity between AtPrePI and AtPrePII and similarities in cleavage specificities, cleavage site recognition differs for both proteases and is context and structure dependent.  相似文献   

6.
Leader peptidase   总被引:10,自引:1,他引:9  
The Escherichia coli leader peptidase has been vital for unravelling problems in membrane assembly and protein export. The role of this essential peptidase is to remove amino-terminal leader peptides from exported proteins after they have crossed the plasma membrane. Strikingly, almost all periplasmic proteins, many outer membrane proteins, and a few inner membrane proteins are made with cleavable leader peptides that are removed by this peptidase. This enzyme of 323 amino acid residues spans the membrane twice, with its large carboxyl-terminal domain protruding into the periplasm. Recent discoveries show that its membrane orientation is controlled by positively charged residues that border (on the cytosolic side) the transmembrane segments. Cleavable pre-proteins must have small residues at -1 and a small or aliphatic residue at -3 (with respect to the cleavage site). Leader peptidase does not require a histidine or cysteine amino acid for catalysis. Interestingly, serine 90 and aspartic acid 153 are essential for catalysis and are also conserved in a mitochondrial leader peptidase, which is 30.7% homologous with the bacterial enzyme over a 101-residue stretch.  相似文献   

7.
We observed that beta- and gamma-turns in protein structure may be associated as peptides representing combinations of turns that span between nine and 26 amino acid residues along the polypeptide backbone chain and often correspond to loops in the protein structure. Around 475 peptides resulted from the analysis of a non-redundant data set corresponding to 248 protein crystal structures selected from the Protein Data Bank. Nearly 40% protein chains are associated with two or more peptides and the peptides with nine and 10 amino acid residues are more frequent. A maximum of four distinct peptides varying in number of amino acid residues were observed in at least 10 proteins along the same protein chain. Nearly 80% peptides comprise type IV beta-turns that are associated with irregular dihedral angle values suggesting this may be important for the conformational diversity associated with the loops in proteins. In general, predominant interactions that possibly stabilize these peptides involve main-chain and side-chain interactions with solvent, in addition to hydrogen bond, salt-bridge and non-bonded interactions. Majority of the peptides were observed in hydrolase, oxidoreductase, transferase, serine proteinase/inhibitor complex, electron transport/electron transfer and lyase proteins.  相似文献   

8.
A gonococcal inhibitor produced by Staphylococcus haemolyticus was separated into three components by reverse-phase h.p.l.c. The amino acid composition analysis of each of the three components indicated extensive similarities. N-Terminal sequence analysis of all three components allowed the identification of the first 27-30 residues of each. The complete primary structure of each component was determined from the sequence analysis of trypic peptides and peptides generated by mild acid hydrolysis. Each component is composed of 44 amino acid residues, with evidence suggesting the presence of an N-terminal formylmethionine residue in each. The components I, II and III have respectively 33, 29 and 33 identical amino acid residues in their sequences, which represents 75%, 65.9% and 75% homology. These components contain a high proportion of hydrophobic amino acids, and their hydrophobicity profiles are closely related. Also, each of the three components contains a positively charged residue (lysine) as the third residue, followed by a core of hydrophobic residues. These results suggest that the three components are possible signal sequences of one or more secreted or membrane-associated proteins.  相似文献   

9.
PRPs (proline-rich proteins) are a group of cell wall proteins characterized by their proline and hy- droproline-rich repetitive peptides. The expression of PRPs in plants is stimulated by wounding and environmental stress. GASA (gibberellic acid stimulated in Arabidopsis) proteins are small peptides sharing a 60 amino acid conserved C-terminal domain containing twelve invariant cysteine residues. Most of GASAs reported are localized to apoplasm or cell wall and their expression was regulated by gibberellins (GAs). It has been reported that, in French bean, these two proteins encoding by two distinct genes formed a two-component chitin-receptor involved in plant-pathogen interactions when plant was infected. We cloned a full-length cDNA of PRGL (proline-rich GASA-like) gene which encodes a protein containing both PRP and GASA-like domains. It is demonstrated that PRGL is a new protein with characteristics of PRP and GASA by analyzing its protein structure and gene expression.  相似文献   

10.
Four basic stages of evolution of protein structure are described, basing on recent work of the authors aimed specifically to reconstruct the earliest events in the protein evolution. According to this reconstruction, the initial stage of short peptides comprising, probably, only a few amino acid residues had been followed by formation of closed loops of 25–30 residues, which corresponds to the polymer-statistically optimal ring closure size for mixed polypeptide chains. The next stage involved fusion of relatively small linear genes and formation of protein structures consisting of several closed loops of a nearly standard size, with 4–6 loops (100–200 amino acid residues) in a typical protein fold. The last, modern stage began with combinatorial fusion of the presumably circular 300–600 bp DNA units and, accordingly, formation of multidomain proteins.  相似文献   

11.
The FXYD family proteins are auxiliary subunits of the Na,K-ATPase, expressed primarily in tissues that specialize in fluid or solute transport, or that are electrically excitable. These proteins range in size from about 60 to 160 amino acid residues, and share a core homology of 35 amino acid residues in and around a single transmembrane segment. Despite their relatively small sizes, they are all encoded by genes with six to nine small exons. We show that the helical secondary structures of three FXYD family members, FXYD1, FXYD3, and FXYD4, determined in micelles by NMR spectroscopy, reflect the structures of their corresponding genes. The coincidence of helical regions, and connecting segments, with the positions of intron-exon junctions in the genes, support the hypothesis that the FXYD proteins may have been assembled from discrete structural modules through exon shuffling.  相似文献   

12.
Troponin T isolated from chicken fast skeletal muscle has been shown to be present in three different molecular forms, one in breast and two in leg muscle. The three forms differ in both size and charge. Troponin T from breast muscle has a molecular mass of 33.5 kDa and a pI of about 7. Of the two leg muscle forms the larger has a molecular mass of 30.5 kDa and a pI of about 8.5 and the smaller a molecular mass of 29.8 kDa and a pI of about 10. Considerably more heterogeneity has been found in the leg than in the breast muscle proteins although this is not reflected in their N-terminal sequences. The reason for this is not clear. Troponin T from breast or leg muscle can be phosphorylated with troponin T kinase at the single serine residue at the N-terminus. No difference in the rate or extent of phosphorylation could be found between proteins from breast or leg muscle. The three proteins have been shown to differ only in the amino acid sequence of their N-terminal tryptic peptides. These peptides are of different length, that from breast troponin T being 58 residues and those from leg troponin T being 36 and 42 residues, these differences account for the difference in molecular mass of the parent proteins. Despite this difference the sequence of the first 12 and last 14 residues is identical in all three N-terminal peptides. The remainder of the sequence of the smallest peptide is also repeated in the other two but they each contain an extra piece of unique sequence. On the basis of these sequences it is proposed that chicken troponin T is coded for by a single gene containing, at the 5' end, a number of small exons and that three different mRNA molecules may be produced by alternative pathways of RNA splicing. The possible significance of these N-terminal sequence variations is discussed.  相似文献   

13.
The total amino acid sequence of a lambda Bence-Jones protein has been established. The protein contains 211 residues, which include two methionine residues. Splitting with cyanogen bromide gave three fragments, the largest of which included the C-terminal half, which is common to other Bence-Jones proteins of the same type. The peptides obtained by tryptic, chymotryptic and peptic digestion were isolated and purified by paper-electrophoretic and chromatographic techniques. Reduction followed by carboxymethylation of the cysteine residues with radioactive iodoacetate was found to be a powerful tool in the isolation of some insoluble peptides. Unusual features of the molecule are the fact that it contains six cysteine residues and not five as observed in both kappa and lambda Bence-Jones proteins studied previously, and its size, which seems two residues smaller than the smallest Bence-Jones protein studied hitherto. The similarities and differences between this and other Bence-Jones proteins are discussed.  相似文献   

14.
The complete amino acid sequence of mitochondrial serine hydroxymethyltransferase from rabbit liver was determined. The sequence was obtained from analysis of peptides isolated from chymotryptic, cyanogen bromide, and limited acid cleavages of the protein. The enzyme consists of four identical subunits, each of 475 residues, i.e. 8 residues shorter than the subunit of the corresponding cytosolic isoenzyme. The sequences of the two rabbit proteins are easily aligned, provided a gap of 5 residues near the amino terminus and a gap of 3 residues near the carboxyl terminus are included in the mitochondrial sequence. The overall degree of identity between the two isoenzymes is 61.9%, whereas the structural identity of each eukaryotic isoenzyme with the corresponding Escherichia coli enzyme is about 40%. The rabbit isoenzymes are about 70 residues longer than the E. coli enzyme, with one-half of these residues accounted for by insertions in both isoenzymes near their carboxyl terminus. Predictions of secondary structure and calculations of hydropathy profiles are also presented, suggesting an even more extensive degree of identity in the three-dimensional folding of the three proteins, in accord with the known similarity of their catalytic properties. Evidence was obtained for the existence of additional molecular forms of the mitochondrial protein, differing in the absence of some amino acid residues at the amino terminus of the polypeptide chain.  相似文献   

15.
A fundamental characteristic of MHC class I and class II proteins is their unusual capacity to form stable complexes with a wide spectrum of peptide ligands. In this study, sets of peptide analogues containing long chain-biotinylated lysine individually substituted for each amino acid in the sequence have been used to explore the structural requirements for the formation of peptide-MHC class II protein complexes. Based on the ability of the analogs to bind both the MHC protein and fluorescent streptavidin, receptor contact residues were identified and from their spacing the conformation of the bound peptides could be inferred. Six separate peptides were studied; three defined by HLA-DR1Dw1-restricted T cells, and three identified by T cells restricted through alleles other than HLA-DR1Dw1. The similar patterns of fluorescent signals observed when the former three peptides were studied indicated that they shared conformational features when bound to HLA-DR1Dw1. In contrast when the latter three peptides were examined, the data indicated that they shared some but not all of the conformational features characteristic of the peptides known to elicit HLA-DR1Dw1-restricted T cells. When the peptide sequences were aligned based on the critical contact residues, two positions of structural homology were apparent. In each sequence, an amino acid with a bulky hydrophobic side chain could be identified separated by four residues from a small amino acid. These minimal structural requirements were consistent with recent experiments demonstrating that only a small number of side chains in the peptide were necessary for binding to the MHC protein.  相似文献   

16.
Highly antimicrobial active arginine- and tryptophan-rich peptides were synthesized ranging in size from 11 to five amino acid residues in order to elucidate the main structural requirement for such short antimicrobial peptides. The amino acid sequences of the peptides were based on previous studies of longer bovine and murine lactoferricin derivatives. Most of the peptides showed strong inhibitory action against the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, and the Gram-positive bacterium Staphylococcus aureus. For the most active derivatives, the minimal inhibitory concentration values observed for the Gram-negative bacteria were 5 microg/ml (3.5 microM), whereas it was 2.5 microg/ml (1.5 microM) for the Gram-positive bacterium. It was essential for the antimicrobial activity that the peptides contained a minimum of three tryptophan and three arginine residues, and carried a free N-terminal amino group and an amidated C-terminal end. Furthermore, a minimum sequence size of seven amino acid residues was required for a high antimicrobial activity against Pseudomonas aeruginosa. The insertion of additional arginine and tryptophan residues into the peptides resulted only in small variations in the antimicrobial activity, whereas replacement of a tryptophan residue with tyrosine in the hepta- and hexapeptides resulted in reduced antimicrobial activity, especially against the Gram-negative bacteria. The peptides were non-haemolytic, making them highly potent as prospective antibiotic agents.  相似文献   

17.
A database was designed to include 392 pairs of homologous proteins from thermophilic and mesophilic organisms. Proteins from thermophilic organisms proved to contain more atom-atom contacts per residue as compared with their mesophilic homologs. Solvent-accessible exterior amino acid residues contribute to the increase in the number of contacts. The amino acid composition was analyzed for internal (solvent-inaccessible) and exterior amino acid residues of thermophilic and mesophilic proteins. The exterior residues of thermophils have higher contents of Lys, Arg, and Glu and lower contents of Ala, Asp, Asn, Gln, Ser, and Thr as compared with mesophilic proteins. Interior protein regions did not differ in amino acid composition.  相似文献   

18.
Four basic stages of evolution of protein structure are described based on recent work of the authors targeted specifically on reconstruction of the earliest events in the protein evolution. According to this reconstruction, the initial stage of short peptides of, probably, only few amino-acid residues had been followed by formation of closed loops of the size 25-30 residues, which corresponds to the polymer-statistically optimal ring closure size for mixed polypeptide chains. The next stage involved fusion of the respective small linear genes and formation of protein structures consisting of several closed loops of the nearly standard size, up to 4-6 loops (100-200 amino acid residues) in a typical protein fold. The last, modern stage began with combinatorial fusion of the presumably circular 300-600 bp DNA units and, accordingly, formation of multidomain proteins.  相似文献   

19.
A thermolytic hydrolysis of maleinated fragment F1 has been performed, resulted in isolation of 44 peptides; their complete amino acid sequence has been determined. Non-overlapping thermolytic peptides of fragment F1 involve 178 amino acid residues, which comprises about 71% of its amino acid sequence. Also, the cleavage and structural investigation of some tryptophan-containing peptides obtained from the limited trypsinolysis of fragment F1 were carried out; reconstitution of the polypeptide chain of the fragment is completed. The cyanogen bromide cleavage of carboxymethylated cytochrome P-450 was achieved and 17 peptides, comprising almost the whole polypeptide chain of the protein molecule (91%), was isolated. To investigate structure of the cyanogen bromide peptides, we hydrolysed them at tryptophan residues with trypsin, chymotrypsin, proteinase from Staphylococcus aureus, and BNPS-skatole. The data obtained and those published earlier led to the complete primary structure of the cholesterol-hydroxylating cytochrome P-450. The proteins polypeptide chain consists of 481 amino acid residues and has the precise molecular mass 56 407.7.  相似文献   

20.
The essential properties of the primary structure of regulatory peptides, i.e. amino acid residues and their combinations, which are characteristic of the whole population of regulatory peptides, have been revealed using statistical methodology. These properties are as follows: increased content of certain residues (Gly, Pro, Phe, Arg, Tyr, Met and Trp) as well as an increased rate of occurrence of certain pairs of residue as compared with proteins, a random sequence of residues and "nonregulatory" peptides. By representing regulatory peptides as a sequence of hydrophobic (2 types) and hydrophilic (3 types) segments, the pattern for alternation of these segments in regulatory peptides has been determined. The segments were classified into 5 types according to the peculiarities of mutual localization of hydrophobic and hydrophilic residues within the primary structure of regulatory peptides. As compared with proteins, "nonregulatory" peptides and a random sequence of segments, regulatory peptides were characterized by an increased frequency of 4 particular pairs of segments among 12 theoretically possible pairs. These 4 pairs are fragments of the periodic segment sequence with periods of 4 segments. The revealed pattern indicates that there exists a general principle of the regulatory peptide primary structure organization and possibly a common type of the regulatory peptides flexible peptide chain folding at the ligand-receptor complex formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号