首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Much early work in the psychology of face processing was hampered by a failure to think carefully about task demands. Recently our understanding of the processes involved in the recognition of familiar faces has been both encapsulated in, and guided by, functional models of the processes involved in processing and recognizing faces. The specification and predictive power of such theory has been increased with the development of an implemented model, based upon an 'interactive activation and competition' architecture. However, a major deficiency in most accounts of face processing is their failure to spell out the perceptual primitives that form the basis of our representations for faces. Possible representational schemes are discussed, and the potential role of three-dimensional representations of the face is emphasized.  相似文献   

2.
Many people experience transient difficulties in recognizing faces but only a small number of them cannot recognize their family members when meeting them unexpectedly. Such face blindness is associated with serious problems in everyday life. A better understanding of the neuro-functional basis of impaired face recognition may be achieved by a careful comparison with an equally unique object category and by a adding a more realistic setting involving neutral faces as well facial expressions. We used event-related functional magnetic resonance imaging (fMRI) to investigate the neuro-functional basis of perceiving faces and bodies in three developmental prosopagnosics (DP) and matched healthy controls. Our approach involved materials consisting of neutral faces and bodies as well as faces and bodies expressing fear or happiness. The first main result is that the presence of emotional information has a different effect in the patient vs. the control group in the fusiform face area (FFA). Neutral faces trigger lower activation in the DP group, compared to the control group, while activation for facial expressions is the same in both groups. The second main result is that compared to controls, DPs have increased activation for bodies in the inferior occipital gyrus (IOG) and for neutral faces in the extrastriate body area (EBA), indicating that body and face sensitive processes are less categorically segregated in DP. Taken together our study shows the importance of using naturalistic emotional stimuli for a better understanding of developmental face deficits.  相似文献   

3.
Face recognition impairments are often found in the context of brain injury involving the right cerebral hemisphere. Recognition impairments can be dissociated from impairments affecting the processing of other types of information carried by the face, such as expression. The face recognition impairments themselves take different forms, corresponding to idealized stages or levels of recognition. These types of error can also arise as transitory phenomena in normal everyday life. From these observations, psychologists have proposed functional models that characterize the organization of the face processing system in schematic form. Such models provide useful ways of summarizing what is known. More importantly, they also allow new findings to act as tests of each model's usefulness by the extent to which they can be readily accommodated or force revision. Examples of this are briefly considered, including delusional misidentification, impaired learning of new faces, disordered attention to faces, 'covert' recognition in prosopagnosia, and unawareness of impaired face recognition.  相似文献   

4.
The differential effect of stimulus inversion on face and object recognition suggests that inverted faces are processed by mechanisms for the perception of other objects rather than by face perception mechanisms. We investigated the face inversion using functional magnetic resonance imaging (fMRI). The principal effect of face inversion on was an increased response in ventral extrastriate regions that respond preferentially to another class of objects (houses). In contrast, house inversion did not produce a similar change in face-selective regions. Moreover, stimulus inversion had equivalent, minimal effects for faces in in face-selective regions and for houses in house-selective regions. The results suggest that the failure of face perception systems with inverted faces leads to the recruitment of processing resources in object perception systems, but this failure is not reflected by altered activity in face perception systems.  相似文献   

5.
6.
What are the neural mechanisms of face recognition? It is believed that the network of face-selective areas, which spans the occipital, temporal, and frontal cortices, is important in face recognition. A number of previous studies indeed reported that face identity could be discriminated based on patterns of multivoxel activity in the fusiform face area and the anterior temporal lobe. However, given the difficulty in localizing the face-selective area in the anterior temporal lobe, its role in face recognition is still unknown. Furthermore, previous studies limited their analysis to occipito-temporal regions without testing identity decoding in more anterior face-selective regions, such as the amygdala and prefrontal cortex. In the current high-resolution functional Magnetic Resonance Imaging study, we systematically examined the decoding of the identity of famous faces in the temporo-frontal network of face-selective and adjacent non-face-selective regions. A special focus has been put on the face-area in the anterior temporal lobe, which was reliably localized using an optimized scanning protocol. We found that face-identity could be discriminated above chance level only in the fusiform face area. Our results corroborate the role of the fusiform face area in face recognition. Future studies are needed to further explore the role of the more recently discovered anterior face-selective areas in face recognition.  相似文献   

7.
The term “own-race bias” refers to the phenomenon that humans are typically better at recognizing faces from their own than a different race. The perceptual expertise account assumes that our face perception system has adapted to the faces we are typically exposed to, equipping it poorly for the processing of other-race faces. Sociocognitive theories assume that other-race faces are initially categorized as out-group, decreasing motivation to individuate them. Supporting sociocognitive accounts, a recent study has reported improved recognition for other-race faces when these were categorized as belonging to the participants'' in-group on a second social dimension, i.e., their university affiliation. Faces were studied in groups, containing both own-race and other-race faces, half of each labeled as in-group and out-group, respectively. When study faces were spatially grouped by race, participants showed a clear own-race bias. When faces were grouped by university affiliation, recognition of other-race faces from the social in-group was indistinguishable from own-race face recognition. The present study aimed at extending this singular finding to other races of faces and participants. Forty Asian and 40 European Australian participants studied Asian and European faces for a recognition test. Faces were presented in groups, containing an equal number of own-university and other-university Asian and European faces. Between participants, faces were grouped either according to race or university affiliation. Eye tracking was used to study the distribution of spatial attention to individual faces in the display. The race of the study faces significantly affected participants'' memory, with better recognition of own-race than other-race faces. However, memory was unaffected by the university affiliation of the faces and by the criterion for their spatial grouping on the display. Eye tracking revealed strong looking biases towards both own-race and own-university faces. Results are discussed in light of the theoretical accounts of the own-race bias.  相似文献   

8.
The use of computer-generated (CG) stimuli in face processing research is proliferating due to the ease with which faces can be generated, standardised and manipulated. However there has been surprisingly little research into whether CG faces are processed in the same way as photographs of real faces. The present study assessed how well CG faces tap face identity expertise by investigating whether two indicators of face expertise are reduced for CG faces when compared to face photographs. These indicators were accuracy for identification of own-race faces and the other-race effect (ORE)–the well-established finding that own-race faces are recognised more accurately than other-race faces. In Experiment 1 Caucasian and Asian participants completed a recognition memory task for own- and other-race real and CG faces. Overall accuracy for own-race faces was dramatically reduced for CG compared to real faces and the ORE was significantly and substantially attenuated for CG faces. Experiment 2 investigated perceptual discrimination for own- and other-race real and CG faces with Caucasian and Asian participants. Here again, accuracy for own-race faces was significantly reduced for CG compared to real faces. However the ORE was not affected by format. Together these results signal that CG faces of the type tested here do not fully tap face expertise. Technological advancement may, in the future, produce CG faces that are equivalent to real photographs. Until then caution is advised when interpreting results obtained using CG faces.  相似文献   

9.
Numerous functional magnetic resonance imaging (fMRI) studies have identified multiple cortical regions that are involved in face processing in the human brain. However, few studies have characterized the face-processing network as a functioning whole. In this study, we used fMRI to identify face-selective regions in the entire brain and then explore the hierarchical structure of the face-processing network by analyzing functional connectivity among these regions. We identified twenty-five regions mainly in the occipital, temporal and frontal cortex that showed a reliable response selective to faces (versus objects) across participants and across scan sessions. Furthermore, these regions were clustered into three relatively independent sub-networks in a face-recognition task on the basis of the strength of functional connectivity among them. The functionality of the sub-networks likely corresponds to the recognition of individual identity, retrieval of semantic knowledge and representation of emotional information. Interestingly, when the task was switched to object recognition from face recognition, the functional connectivity between the inferior occipital gyrus and the rest of the face-selective regions were significantly reduced, suggesting that this region may serve as an entry node in the face-processing network. In sum, our study provides empirical evidence for cognitive and neural models of face recognition and helps elucidate the neural mechanisms underlying face recognition at the network level.  相似文献   

10.
Facial self-resemblance has been proposed to serve as a kinship cue that facilitates cooperation between kin. In the present study, facial resemblance was manipulated by morphing stimulus faces with the participants'' own faces or control faces (resulting in self-resemblant or other-resemblant composite faces). A norming study showed that the perceived degree of kinship was higher for the participants and the self-resemblant composite faces than for actual first-degree relatives. Effects of facial self-resemblance on trust and cooperation were tested in a paradigm that has proven to be sensitive to facial trustworthiness, facial likability, and facial expression. First, participants played a cooperation game in which the composite faces were shown. Then, likability ratings were assessed. In a source memory test, participants were required to identify old and new faces, and were asked to remember whether the faces belonged to cooperators or cheaters in the cooperation game. Old-new recognition was enhanced for self-resemblant faces in comparison to other-resemblant faces. However, facial self-resemblance had no effects on the degree of cooperation in the cooperation game, on the emotional evaluation of the faces as reflected in the likability judgments, and on the expectation that a face belonged to a cooperator rather than to a cheater. Therefore, the present results are clearly inconsistent with the assumption of an evolved kin recognition module built into the human face recognition system.  相似文献   

11.
Faces are highly emotive stimuli and we find smiling or familiar faces both attractive and comforting, even as young babies. Do other species with sophisticated face recognition skills, such as sheep, also respond to the emotional significance of familiar faces? We report that when sheep experience social isolation, the sight of familiar sheep face pictures compared with those of goats or inverted triangles significantly reduces behavioural (activity and protest vocalizations), autonomic (heart rate) and endocrine (cortisol and adrenaline) indices of stress. They also increase mRNA expression of activity-dependent genes (c-fos and zif/268) in brain regions specialized for processing faces (temporal and medial frontal cortices and basolateral amygdala) and for emotional control (orbitofrontal and cingulate cortex), and reduce their expression in regions associated with stress responses (hypothalamic paraventricular nucleus) and fear (central and lateral amygdala). Effects on face recognition, emotional control and fear centres are restricted to the right brain hemisphere. Results provide evidence that face pictures may be useful for relieving stress caused by unavoidable social isolation in sheep, and possibly other animal species, including humans. The finding that sheep, like humans, appear to have a right brain hemisphere involvement in the control of negative emotional experiences also suggests that functional lateralization of brain emotion systems may be a general feature in mammals.  相似文献   

12.
Humans are remarkably adept at recognizing objects across a wide range of views. A notable exception to this general rule is that turning a face upside down makes it particularly difficult to recognize. This striking effect has prompted speculation that inversion qualitatively changes the way faces are processed. Researchers commonly assume that configural cues strongly influence the recognition of upright, but not inverted, faces. Indeed, the assumption is so well accepted that the inversion effect itself has been taken as a hallmark of qualitative processing differences. Here, we took a novel approach to understand the inversion effect. We used response classification to obtain a direct view of the perceptual strategies underlying face discrimination and to determine whether orientation effects can be explained by differential contributions of nonlinear processes. Inversion significantly impaired performance in our face discrimination task. However, surprisingly, observers utilized similar, local regions of faces for discrimination in both upright and inverted face conditions, and the relative contributions of nonlinear mechanisms to performance were similar across orientations. Our results suggest that upright and inverted face processing differ quantitatively, not qualitatively; information is extracted more efficiently from upright faces, perhaps as a by-product of orientation-dependent expertise.  相似文献   

13.
Oruç I  Guo XM  Barton JJ 《PloS one》2011,6(1):e16251
Face aftereffects are proving to be an effective means of examining the properties of face-specific processes in the human visual system. We examined the role of gender in the neural representation of faces using a contrast-based adaptation method. If faces of different genders share the same representational face space, then adaptation to a face of one gender should affect both same- and different-gender faces. Further, if these aftereffects differ in magnitude, this may indicate distinct gender-related factors in the organization of this face space. To control for a potential confound between physical similarity and gender, we used a Bayesian ideal observer and human discrimination data to construct a stimulus set in which pairs of different-gender faces were equally dissimilar as same-gender pairs. We found that the recognition of both same-gender and different-gender faces was suppressed following a brief exposure of 100 ms. Moreover, recognition was more suppressed for test faces of a different-gender than those of the same-gender as the adaptor, despite the equivalence in physical and psychophysical similarity. Our results suggest that male and female faces likely occupy the same face space, allowing transfer of aftereffects between the genders, but that there are special properties that emerge along gender-defining dimensions of this space.  相似文献   

14.
Previous research has been concerned with the relationship between social anxiety and the recognition of face expression but the question of whether there is a relationship between social anxiety and the recognition of face identity has been neglected. Here, we report the first evidence that social anxiety is associated with recognition of face identity, across the population range of individual differences in recognition abilities. Results showed poorer face identity recognition (on the Cambridge Face Memory Test) was correlated with a small but significant increase in social anxiety (Social Interaction Anxiety Scale) but not general anxiety (State-Trait Anxiety Inventory). The correlation was also independent of general visual memory (Cambridge Car Memory Test) and IQ. Theoretically, the correlation could arise because correct identification of people, typically achieved via faces, is important for successful social interactions, extending evidence that individuals with clinical-level deficits in face identity recognition (prosopagnosia) often report social stress due to their inability to recognise others. Equally, the relationship could arise if social anxiety causes reduced exposure or attention to people's faces, and thus to poor development of face recognition mechanisms.  相似文献   

15.
A central question in cognitive neuroscience is whether mechanisms exist that are specialized for particular domains. One of the most commonly cited examples of a domain-specific competence is the human ability to recognize upright faces. However, according to a widely discussed alternative hypothesis, face recognition is instead performed by mechanisms specialized for processing any object class for which an individual has expertise. Faces, according to this domain-general hypothesis, are just one example of an expert class. Nonface object expertise has been intensively investigated using a training procedure involving an artificial stimulus class known as greebles. A key prediction of this hypothesis is that individuals with face recognition impairments will also have impairments with other categories that control subjects have expertise with. Our results show that a man with severe prosopagnosia performed normally throughout the standard greeble training procedure. These findings indicate that face recognition and greeble recognition rely on separate mechanisms.  相似文献   

16.
Our recognition of familiar faces is excellent, and generalises across viewing conditions. However, unfamiliar face recognition is much poorer. For this reason, automatic face recognition systems might benefit from incorporating the advantages of familiarity. Here we put this to the test using the face verification system available on a popular smartphone (the Samsung Galaxy). In two experiments we tested the recognition performance of the smartphone when it was encoded with an individual’s ‘face-average’ – a representation derived from theories of human face perception. This technique significantly improved performance for both unconstrained celebrity images (Experiment 1) and for real faces (Experiment 2): users could unlock their phones more reliably when the device stored an average of the user’s face than when they stored a single image. This advantage was consistent across a wide variety of everyday viewing conditions. Furthermore, the benefit did not reduce the rejection of imposter faces. This benefit is brought about solely by consideration of suitable representations for automatic face recognition, and we argue that this is just as important as development of matching algorithms themselves. We propose that this representation could significantly improve recognition rates in everyday settings.  相似文献   

17.
Understanding how individual identity is processed from faces remains a complex problem. Contrast reversal, showing faces in photographic negative, impairs face recognition in humans and demonstrates the importance of surface-based information (shading and pigmentation) in face recognition. We tested the importance of contrast information for face encoding in chimpanzees and rhesus monkeys using a computerized face-matching task. Results showed that contrast reversal (positive to negative) selectively impaired face processing in these two species, although the impairment was greater for chimpanzees. Unlike chimpanzees, however, monkeys performed just as well matching negative to positive faces, suggesting that they retained some ability to extract identity information from negative faces. A control task showed that chimpanzees, but not rhesus monkeys, performed significantly better matching face parts compared with whole faces after a contrast reversal, suggesting that contrast reversal acts selectively on face processing, rather than general visual-processing mechanisms. These results confirm the importance of surface-based cues for face processing in chimpanzees and humans, while the results were less salient for rhesus monkeys. These findings make a significant contribution to understanding the evolution of cognitive specializations for face processing among primates, and suggest potential differences between monkeys and apes.  相似文献   

18.
Human beings automatically discriminate human faces at the individual level. Infants aged 3 months implicitly recognise monkey faces, but this capacity disappears as recognition skills mature. Expertise is known to affect recognition capacities for different categories of stimuli that are not even face-like in their configuration. We have explored the capacity of adult experts and non-experts in primatology to recognise monkey faces in both explicit and implicit recognition tasks. In the explicit task, where subjects received the instruction to recognise a face seen previously, experts proved to be more accurate than non-experts. Experts were more affected by inversion than non-experts, suggesting that the processing of those faces is based on their configuration, as is generally observed for human faces. This replicates findings from Diamond and Carey (J Exp Psychol Gen 115:107–117, 1986) in dog experts. In the implicit recognition task, assessed by a visual paired comparison task where no instruction of recognition was given, automatic discrimination was observed for human faces but not for monkey faces. These results suggest that experience acquired by the time of adulthood did not lead the experts to develop recognition skills to the point of matching those exhibited for human faces.  相似文献   

19.
The study investigates long-term recognition memory in congenital prosopagnosia (CP), a lifelong impairment in face identification that is present from birth. Previous investigations of processing deficits in CP have mostly relied on short-term recognition tests to estimate the scope and severity of individual deficits. We firstly report on a controlled test of long-term (one year) recognition memory for faces and objects conducted with a large group of participants with CP. Long-term recognition memory is significantly impaired in eight CP participants (CPs). In all but one case, this deficit was selective to faces and didn't extend to intra-class recognition of object stimuli. In a test of famous face recognition, long-term recognition deficits were less pronounced, even after accounting for differences in media consumption between controls and CPs. Secondly, we combined test results on long-term and short-term recognition of faces and objects, and found a large heterogeneity in severity and scope of individual deficits. Analysis of the observed heterogeneity revealed a dissociation of CP into subtypes with a homogeneous phenotypical profile. Thirdly, we found that among CPs self-assessment of real-life difficulties, based on a standardized questionnaire, and experimentally assessed face recognition deficits are strongly correlated. Our results demonstrate that controlled tests of long-term recognition memory are needed to fully assess face recognition deficits in CP. Based on controlled and comprehensive experimental testing, CP can be dissociated into subtypes with a homogeneous phenotypical profile. The CP subtypes identified align with those found in prosopagnosia caused by cortical lesions; they can be interpreted with respect to a hierarchical neural system for face perception.  相似文献   

20.
Face recognition in sheep is qualitatively similar to that in humans in terms of its left visual field bias, and the effects of expertise and configural coding. The current study was designed to determine whether such effects are species specific by investigating the case of sheep recognising humans. It was found that the sheep could identify human faces and while they showed a small inversion-induced decline in discriminatory performance, this was significantly less than seen with sheep faces. In other aspects, there were qualitative differences with human face recognition compared with conspecific recognition. In contrast with sheep faces there was no left visual field advantage in the recognition of human faces and the internal features were not used at all as visual cues. The data suggest that these sheep, whilst being extensively exposed to interactions with humans, were unable to identify them with all the same 'expert' methods as were used to discriminate other sheep. This suggests that different neural systems may, to some extent, be used for recognition of sheep as opposed to human faces. The relative contribution to differential neural processing of the faces of the different species and the role of expertise are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号