首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low-molecular-weight glutenins (LMW-GS) in common wheat (Triticum aestivum L.) are of great importance for processing quality of pan bread and noodles. The objectives of this study are to identify LMW-GS coding genes at GluD3 locus on chromosome 1D and to establish relationships between these genes and GluD3 alleles (a, b, c, d, and e) defined by protein electrophoretic mobility. Specific primer sets were designed to amplify each of the three LMW-GS chromosome 1D gene regions including upstream, coding and downstream regions of eight wheat cultivars containing GluD3 a, b, c, d and e alleles. Three LMW-GS genes, designated as GluD3-1, GluD3-2 and GluD3-3, were amplified from the eight wheat cultivars. The allelic variants of these three genes were analysed at the DNA and protein level. GluD3-1 showed two allelic variants or haplotypes, one common to cultivars containing protein alleles a, d and e (designated GluD3-11) and the other was present in cultivars with alleles b and c (designated GluD3-12). Comparing with GluD3-12, a 3-bp deletion was found in the coding region of the N-terminal repetitive domain of GluD3-11, leading to a glutamine deletion at the 116th position. GluD3-2 had three variants at the DNA level in the eight cultivars, which were designated as GluD3-21, GluD3-22 and GluD3-23. In comparison to GluD3-21, a single nucleotide polymorphism (SNP) was detected for GluD3-22 in the signal peptide region, resulting in an amino acid change from alanine to threonine at the 11th position; and 11 mutations were found at GluD3-23, with five in upstream region, four in coding region and two in downstream region, respectively. GluD3-3 had two haplotypes, designated as GluD3-31 and GluD3-32, both belonging to LMW-s glutenin subunits though their first amino acids in N-terminal region are different. Compared with the GenBank GluD3 genes, nucleotide sequences of GluD3-21 and GluD3-23 were the same as X13306 and AB062875, respectively. GluD3-22 and GluD3-11 had only one-base difference from U86027 and AB062865. GluD3-12 was not found in the GenBank database, indicating a newly identified GluD3 gene variation. GluD3-3 was a new gene different from any other known GluD3 genes. Analyses of the relationship between Glu-D3 alleles defined by protein electrophoretic mobility and different GluD3 gene variations at the DNA or protein level provided molecular basis for DNA based identification of glutenin alleles.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

2.
Low-molecular-weight glutenin subunits (LMW-GS) have great effect on wheat processing quality, but were numerous and difficult to dissect by SDS-PAGE. The development of functional markers may be the most effective way for a clear discrimination of different LMW-GS genes. In the present study, three different approaches were used to identify SNPs of different genes at Glu-D3 and Glu-B3 loci in bread wheat for the development of six STS markers (3 for Glu-D3 and 3 for Glu-B3 genes) that were validated with distinguished wheat cultivars. Firstly, seven LMW-GS gene sequences ( AY585350, AY585354, AY585355, AY585356, AY585349, AY585351 and AY585353 ) from Aegilops tauschii, the diploid donor of the D-genome of bread wheat, were chosen to design seven pairs of AS-PCR primers for Glu-D3 genes. By amplifying the corresponding genes from five bread wheat cultivars with different Glu-D3 alleles (a, b, c, d and e) and Ae. tauschii, a primer set, S13F2/S13R1, specific to the gene AY585356, was found to be positive to cultivars with alleles Glu-D3c and d. Nevertheless, the other five pairs of primers designed from AY585350, AY585349, AY585353, AY585354 and AY585355, respectively, did not produce specific PCR products to the cultivars tested. Secondly, all the PCR products from the five primer sets without specific characteristics were sequenced and an SNP from the gene AY585350 was detected in the cultivar Hartog, which resulted in the second STS marker S1F1/S1R3 specific to the allelic variant of AY585350. Thirdly, three Glu-D3 sequences (AB062851, AB062865 and AB062872) and three Glu-B3 sequences (AB062852, AB062853 and AB062860) defined by Ikeda et al. (2002) were chosen to query wheat EST and NR databases, and DNA markers were developed based on the putative SNPs among the sequences. Using this approach, four STS markers were developed and validated with 16-19 bread wheat cultivars. The primer set T1F4/T1R1 was also a Glu-D3 gene-specific marker for AB062872, while T2F2/T2R2, T5F3/T5R1 and T13F4/T13R3 were all Glu-B3 gene specific markers for AB062852, BF293671 and AY831800, respectively. The chromosomal locations of the six markers were verified by amplifying the genomic DNA of Ae. tauschii (DD), T. monococcum (AA) and T. turgidum (AABB) entries, as well as Chinese Spring and its group 1 chromosome nulli-tetrasomic lines. The results are useful to discriminate the corresponding Glu-D3 and Glu-B3 genes in wheat breeding programs.  相似文献   

3.
The composition and quantity of high-molecular-weight glutenin subunits plays an important role in determining the bread-making quality of wheat. Molecular-genetic analysis of allelic composition of high-molecular-weight glutenin genes in 102 bread wheat cultivars and lines from different geographical regions was conducted. Three alleles at the Glu-A1 locus, nine alleles at the Glu-B1 locus, and two alleles at the Glu-D1 locus were identified. Among the investigated cultivars and lines, 21 were characterized by intracultivar polymorphism. High allelic variation of high-molecular-weight glutenin subunit genes was shown for the collection: 21 and 9 combinations were defined in monomorphic and polymorphic cultivars and lines, respectively. However, the major part of the collection (66.7%) contained four allelic combinations: Glu-A1b Glu-B1c Glu-D1d, Glu-A1b Glu-B1c Glu-D1-2a, Glu-A1a Glu-B1c Glu-D1d, and Glu-A1b Glu-B1c Glu-D1d/Glu-D1-2a. Fourteen cultivars of bread wheat were selected, and they were characterized by a favorable allelic composition of Glu-1 loci.  相似文献   

4.
Proline and glutamine-rich wheat seed endosperm proteins are collectively referred to as prolamins. They are comprised of HMW-GSs, LMW-GSs and gliadins. HMW-GSs are major determinants of gluten elasticity and LMW-GSs considerably affect dough extensibility and maximum dough resistance. The inheritance of glutenin subunits follows Mendelian genetics with multiple alleles in each locus. Identification of the banding patterns of glutenin subunits could be used as an estimate for screening high quality wheat germplasm. Here, by means of a two-step 1D-SDS-PAGE procedure, we identified the allelic variations in high and low-molecular-weight glutenin subunits in 65 hexaploid wheat (Triticum aestivum L.) cultivars representing a historical trend in the cultivars introduced or released in Iran from the years 1940 to 1990. Distinct alleles 17 and 19 were detected for Glu-1 and Glu-3 loci, respectively. The allelic frequencies at the Glu-1 loci demonstrated unimodal distributions. At Glu-A1, Glu-B1 and Glu-D1, we found that the most frequent alleles were the null, 7 + 8, 2 + 12 alleles, respectively, in Iranian wheat cultivars. In contrast, Glu-3 loci showed bimodal or trimodal distributions. At Glu-A3, themost frequent alleles were c and e. At Glu-B3 the most frequent alleles were a, b and c. At Glu-D3 locus, the alleles b and a, were the most and the second most frequent alleles in Iranian wheat cultivars. This led to a significantly higher Nei coefficient of genetic variations in Glu-3 loci (0.756) as compared to Glu-1 loci (0.547). At Glu-3 loci, we observed relatively high quality alleles in Glu-A3 and Glu-D3 loci and low quality alleles at Glu-B3 locus.  相似文献   

5.
The allelic diversity of high-moleculat-weght glutenin subunits (HMWGS) in Russian and Ukrainian bread wheat cultivars was analyzed. The diversity of spring wheat cultivars for alleles of the Glu-1 loci is characterized by medium values of the polymorphism polymorphism information content (PIC), and in winter wheats it varies from high at the Glu-A1 locus to low at the Glu-D1 locus. The spring and winter cultivars differ significantly in the frequencies of alleles of the glutenin loci. The combination of the Glu-A1b, Glu-B1c, and Glu-D1a alleles prevails among the spring cultivars, and the combination of the Glu-A1a, Glu-B1c, and Glu-D1d alleles prevails among the winter cultivars. The distribution of the Glu-1 alleles significantly depends on the moisture and heat supply in the region of origin of the cultivars. Drought resistance is associated with the Glu-D1a allele in the spring wheat and with the Glu-B1b allele in the winter wheat. The sources of the Glu-1 alleles were identified in the spring and wheat cultivars. The analysis of independence of the distribution of the spring and winter cultivars by the market classes and by the alleles of the HMWGS loci showed a highly significant association of the alleles of three Glu-1 loci with the market classes in foreign cultivars and independence or a weak association in the Russian and Ukrainian cultivars. This seems to be due to the absence of a statistically substantiated system of classification of the domestic cultivars on the basis of their quality.  相似文献   

6.
New DNA markers for high molecular weight glutenin subunits in wheat   总被引:2,自引:0,他引:2  
End-use quality is one of the priorities of modern wheat (Triticum aestivum L.) breeding. Even though quality is a complex trait, high molecular weight (HMW) glutenins play a major role in determining the bread making quality of wheat. DNA markers developed from the sequences of HMW glutenin genes were reported in several previous studies to facilitate marker-assisted selection (MAS). However, most of the previously available markers are dominant and amplify large DNA fragments, and thus are not ideal for high throughput genotyping using modern equipment. The objective of this study was to develop and validate co-dominant markers suitable for high throughput MAS for HMW glutenin subunits encoded at the Glu-A1 and Glu-D1 loci. Indels were identified by sequence alignment of allelic HMW glutenin genes, and were targeted to develop locus-specific co-dominant markers. Marker UMN19 was developed by targeting an 18-bp deletion in the coding sequence of subunit Ax2* of Glu-A1. A single DNA fragment was amplified by marker UMN19, and was placed onto chromosome 1AL. Sixteen wheat cultivars with known HMW glutenin subunits were used to validate marker UMN19. The cultivars with subunit Ax2* amplified the 362-bp fragment as expected, and a 344-bp fragment was observed for cultivars with subunit Ax1 or the Ax-null allele. Two co-dominant markers, UMN25 and UMN26, were developed for Glu-D1 by targeting the fragment size polymorphic sites between subunits Dx2 and Dx5, and between Dy10 and Dy12, respectively. The 16 wheat cultivars with known HMW glutenin subunit composition were genotyped with markers UMN25 and UMN26, and the genotypes perfectly matched their subunit types. Using an Applied Biosystems 3130xl Genetic Analyzer, four F2 populations segregating for the Glu-A1 or Glu-D1 locus were successfully genotyped with primers UMN19, UMN25 and UMN26 labeled with fluorescent dyes.  相似文献   

7.
Five crosses were made, using a set of New Zealand wheat cultivars, to measure the effect of glutenin allele differences on baking quality parameters. The alleles involved were: Glu-A1 (2*, 1 and n), Glu-D1 (5+10, 2+12), Glu-A3 (c, d and e), Glu-B3 (Sec-12, Sec-13, b and g), Glu-D3 (a and b). The allelic variation of F3 individual plants was identified by SDS-PAGE, and plants with the same HMW-GS and LMW-GS patterns were grouped. Quality parameters were then measured on the grouped F4 bulks. Quality parameters measured for this study were wholemeal flour protein content (WFP), grain hardness (HAR), SDS sedimentation volume (SED), Pelshenke time (PEL), mid-line peak value (MPV) and the mid-line peak time (MPT) of a mixograph. The results showed there were significant quality differences within most populations associated with the possession of a particular allele, reaching magnitudes of up to 42% for the range between populations. Most glutenin allelic comparisons showed significant differences for at least one of the resultant measured quality parameters. Allelic differences of Glu-A1 significantly influenced all characters except MPT, with the null allele apparently inferior; possession of 5+10 at Glu-D1 significantly increased Pelshenke time and SED volumes relative to allele 2+12; WFP, SED and MPV were significantly affected by the Glu-A3 alleles tested. Glu-B3 alleles significantly affected all characters except hardness and the Glu-D3 alleles tested significantly affected all characters other than hardness and SDS sedimentation volume. Received: 8 June 1999 / Accepted: 25 July 2000  相似文献   

8.
The resistance gene Sr13 is one of the most important genes in durum wheat for controlling stem rust caused by Puccinia graminis f. sp. tritici (Pgt). The Sr13 functional gene CNL13 has haplotypes R1, R2 and R3. The R1/R3 and R2 haplotypes were originally designated as alleles Sr13a and Sr13b, respectively. To detect additional Sr13 alleles, we developed Kompetitive allele specific PCR (KASP™) marker KASPSr13 and four semi-thermal asymmetric reverse PCR markers, rwgsnp37–rwgsnp40, based on the CNL13 sequence. These markers were shown to detect R1, R2 and R3 haplotypes in a panel of diverse tetraploid wheat accessions. We also observed the presence of Sr13 in durum line CAT-A1, although it lacked any of the known haplotypes. Sequence analysis revealed that CNL13 of CAT-A1 differed from the susceptible haplotype S1 by a single nucleotide (C2200T) in the leucine-rich repeat region and differed from the other three R haplotypes by one or two additional nucleotides, confirming that CAT-A1 carries a new (R4) haplotype. Stem rust tests on the monogenic, transgenic and mutant lines showed that R1 differed from R3 in its susceptibility to races TCMJC and THTSC, whereas R4 differed from all other haplotypes for susceptibility to TTKSK, TPPKC and TCCJC. Based on these differences, we designate the R1, R3 and R4 haplotypes as alleles Sr13a, Sr13c and Sr13d, respectively. This study indicates that Sr13d may be the primitive functional allele originating from the S1 haplotype via a point mutation, with the other three R alleles probably being derived from Sr13d through one or two additional point mutations.  相似文献   

9.
To investigate the evolution and geographical origins of hexaploid wheat, we examined a 284 bp sequence from the promoter region of the GluDy locus, coding for the y subunit of high-molecular-weight glutenin. Fourteen different alleles were found in 100 accessions of Aegilops tauschii and 169 of Triticum aestivum. Two alleles were present in both species; the other 7 alleles from Ae. tauschii and 5 from T. aestivum were unique to their respective species. The two shared alleles differed at only one nucleotide position within the region sequenced, but their apparent association with the common haplotypes GluD1a and GluD1d, which have substantial differences within their GluDy coding regions, makes it unlikely that the alleles evolved independently in Ae. tauschii and T. aestivum. The results therefore support previous studies which suggest that there were at least two Ae. tauschii sources that contributed germplasm to the D genome of T. aestivum. The number of alleles present in T. aestivum, and the nucleotide diversity of these alleles, indicates that this region of the D genome has undergone relatively rapid change since polyploidisation. Ae. tauschii from Syria and Turkey had relatively high nucleotide diversity and possessed all the major GluDy alleles, indicating that these populations are probably ancient and not the result of adventive spread. The presence in the Turkish population of both of the shared alleles suggests that hexaploid wheat is likely to have originated in southeast Turkey or northern Syria, within the Fertile Crescent and near to the farming villages at which archaeological remains of hexaploid wheats are first found. A second, more recent, hexaploidisation probably occurred in Iran.  相似文献   

10.
The storage proteins of 64 F2-derived F6 recombinant inbred lines (RILs) from the bread wheat cross Prinqual/Marengo were analyzed. Parents differed at four loci: Gli-B1 (coding for gliadins), Glu-B1 (coding for HMW glutenin subunits), Glu-A3/Gli-A1 (coding for LMW glutenin subunits/gliadins) and Glu-D3 (coding for LMW glutenin subunits). The effect of allelic variation at these loci on tenacity, extensibility and dough strength as measured by the Chopin alveograph was determined. Allelic differences at the Glu-B1 locus had a significant effect on only tenacity. None of the allelic differences at either the Glu-A3/Gli-A1 or Glu-D3 loci had a significant effect on quality criteria. Allelic variation at the Gli-B1 locus significantly affected all of the dough properties. Epistatic effects between some of the loci considered contributed significantly to the variation in dough quality. Additive and epistatic effects each accounted for 15% of the variation in tenacity. Epistasis accounted for 15% of the variation in extensibility, whereas additive effects accounted for 4%. Epistasis accounted for 14% of the variation in dough strength, and additivity for 9%. The relative importance of epistatic effects suggest that they should be included in predictive models when breeding for breadmaking quality.  相似文献   

11.
The visco-elastic properties of bread flour are firmly associated with the presence or absence of certain HMW subunits coded by the Glu-1 genes. Identifying allelic specific molecular markers (AS-PCR) associated with the presence of Glu-1 genes can serve as a valuable tool for the selection of useful genotypes. This paper reports the use of primers designed from nucleotide sequences of the Glu-D1 gene of wheat (AS-PCR for Glu-D1y10) that recognise and amplify homologous sequences of the Glu-R1 gene subunits of rye. The primers amplify the complete coding regions and provided two products of different size in rye, in wheats carrying the substitution 1R(1D) and in rye-wheat aneuploid lines carrying the long arm of chromosome 1R. The location, the molecular characterisation of these sequences and their expression during grain ripening seem to demonstrate that the amplification products correspond to structural genes encoding the high-molecular-weight (HMW) glutenins of rye. The homology of the rye gene to subunits encoding HMW glutenins in wheat was confirmed by Southern blots and sequencing. The amplification-products were cloned, sequenced and characterised, and the sequences compared with the main glutenin subunits of wheat and related species. Further, an RT-PCR experiment was performed using primers designed from the sequence of both amplified products. This assay demonstrated that both sequences are expressed in endosperm during grain ripening. The results of these analyses suggest that both gene subunits correspond to x- and y-type genes of the Glu-R1 locus of rye. Received: 11 December 2000 / Accepted: 17 April 2001  相似文献   

12.
Although it is well known that low-molecular-weight glutenin subunits (LMW-GS) from wheat affect bread and noodle processing quality, the function of specific LMW-GS proteins remains unclear. It is important to find the genes that correspond to individual LMW-GS proteins in order to understand the functions of specific proteins. The objective of this study was to link LMW-GS genes and haplotypes characterized using well known Glu-A3, Glu-B3, and Glu-D3 gene-specific primers to their protein products in a single wheat variety. A total of 36 LMW-GS genes and pseudogenes were amplified from the Korean cultivar Keumkang. These include 11 Glu-3 gene haplotypes, two from the Glu-A3 locus, two from the Glu-B3 locus, and seven from the Glu-D3 locus. To establish relationships between gene haplotypes and their protein products, a glutenin protein fraction was separated by two-dimensional gel electrophoresis (2-DGE) and 17 protein spots were analyzed by N-terminal amino acid sequencing and tandem mass spectrometry (MS/MS). LMW-GS proteins were identified that corresponded to all Glu-3 gene haplotypes except the pseudogenes. This is the first report of the comprehensive characterization of LMW-GS genes and their corresponding proteins in a single wheat cultivar. Our approach will be useful to understand the contributions of individual LMW-GS to the end-use quality of flour.  相似文献   

13.
Good or poor wheat bread-making quality is associated with two allelic pairs at theGlu-D1 complex locus, designated 1Dx5-1Dy10 and 1Dx2-1Dy12, respectively. The polymerase chain reaction (PCR) verified the presence of the HMW-glutenin 1Dx5 gene from genomic DNA extracted from part of the endosperm of a single dry seed, or a small amount of leaf or root tissue, of several bread-wheat cultivars. This easy, quick, and non-destructive PCR-based approach is proposed as a very efficient and safe alternative to standard procedures for selecting bread-wheat genotypes with good bread-making properties.  相似文献   

14.
The effects of intercropping of wheat cultivars and oilseed rape on the densities of wheat aphid, Sitobion avenae, and their arthropod natural enemies were evaluated. Three winter wheat cultivars with different resistant levels to S. avenae were used: ‘KOK’ (high resistance), ‘Xiaobaidongmai’ (low resistance) and ‘Hongmanghong’ (susceptible). The results showed that the densities of S. avenae were significantly higher on the monoculture pattern than on either the 8-2 intercropping pattern (eight rows of wheat with two rows of oilseed rape) or the 8-4 intercropping pattern (eight rows of wheat with four rows of oilseed rape). The mean number of predators and the mummy rates of S. avenae were significantly higher in two intercropping patterns than those in the monoculture pattern. The densities of S. avenae, ladybeetles, and mummy rate of S. avenae were significantly different among different wheat cultivars. The highest densities of S. avenae and ladybeetles were found on wheat cultivar Hongmanghong. The lowest densities of S. avenae associated with high mummy rate of S. avenae were found on wheat cultivar Xiaobaidongmai. The results showed that wheat-oilseed rape intercropping conserved more predators and parasitoids than in wheat monoculture fields, and partial resistance of wheat cultivar Xiaobaidongmai had complementary or even synergistic effects on parasitoid of S. avenae.  相似文献   

15.
While quality in hexaploid wheat (Triticum aestivum L. em Thell.) is a very complex trait, it is known that the water-insoluble gluten proteins are responsible for the elasticity and chohesiveness (strength) of dough and are therefore important determinants of breadmaking quality. High-molecular-weight (HMW) glutenin subunits encoded by genes on the long arm of group 1 chromosomes have been associated with gluten strength, and a portion of the variability between cultivars can be attributed to glutenin subunit composition. Good or poor wheat breadmaking quality is associated with two allelic pairs at the Glu-D1 complex locus, designated 1Dx5–1Dy10 and 1Dx2–1Dy12, respectively. Among the HMW glutenin subunits encoded at Glu-B1, Bx7 is quite common, being associated with either of two subunits, By8 or By9. Both allelic pairs contribute moderately well to good breadmaking quality by increasing dough elasticity. Glutenin subunit screening is accomplished using electrophoresis (SDS-PAGE). In this paper, I report the development of an alternative screening method based on glutenin genes themselves using the polymerase chain reaction (PCR). This easy, quick and non-destructive PCR-based approach is an efficient alternative to standard procedures for selecting bread-wheat genotypes with good breadmaking characteristics. Received: 14 August 1999 / Accepted: 21 March 2000  相似文献   

16.
The human IL-4 receptor alpha chain gene (IL4R) is highly polymorphic and controversial reports have been published with respect to the association of different single nucleotide polymorphisms (SNPs) with atopy markers. Here we analyzed the functional and associational relevance of common IL4R coding SNPs. Transfection of B cell lines expressing the IL-4R variant V75+R576 did not result in enhanced IL-4 induced CD23 expression compared to cell lines expressing the wild type IL-4R alpha chain. Transfection of the IL-4R variant P503 into a murine T cell line did not influence IL-4 induced T-cell proliferation compared to wild type constructs. Analysis of six IL4R coding SNPs (I75V, E400A, C431R, S436L, S503P, Q576R) and common haplotypes (frequency 0.05%) in blood donors (n=300) did not indicate a significant association with elevated serum IgE level. Moreover, the most informative IL4R coding SNPs (I75V, C431R, Q576R) and related two- and three-point haplotypes (frequency 0.05%) were analyzed in a second, extended group of blood donors (n=689). Again, no significant association with elevated serum IgE was detectable. We conclude that common coding SNPs in the IL4R gene are unlikely to contribute significantly to increased IgE levels and variations outside the coding region may influence atopy susceptibility.  相似文献   

17.
王林海  周敏  李慧玲  何中虎  夏先春 《遗传》2010,32(6):613-624
发掘小麦近缘种低分子量麦谷蛋白基因, 可为小麦品质改良提供更多的基因资源。文章利用Glu-B3位点特异性标记LB1F/LB1R、LB2F/LB2R、LB3F/LB3R和 LB4F/LB4R, 对普通小麦B染色体组的7个可能供体近缘种, 即硬粒小麦(T. durum)、栽培二粒小麦(T. dicoccum)、野生二粒小麦(T. dicoccoides)、拟斯卑尔脱山羊草(Ae. speltoides)、高大山羊草(Ae. longissima)、西尔斯山羊草(Ae. searsii)和双角山羊草(Ae. bicornis)共20份材料进行PCR扩增, 克隆小麦近缘种中GluB3-1、GluB3-2、GluB3-3和GluB3-4基因的等位变异, 并对Glu-B3位点基因进行系统发育分析。共获得16个新等位变异, 其中GluB3-1基因的新等位变异1个, 命名为GluB3-16, 其推导氨基酸分子量为39.2 kDa; GluB3-3的新等位变异有3个, 分别命名为GluB3-35、GluB3-36和GluB3-37, 其推导氨基酸分子量为44.5 kDa(GluB3-36)或44.6 kDa(GluB3-35和GluB3-37); GluB3-4的新等位变异12个, 分别命名为GluB3-46、GluB3-47、GluB3-48、GluB3-49、GluB3-410、GluB3-411、GluB3-412、GluB3-413、GluB3-414、GluB3-415、GluB3-416和GluB3-417, 其推导氨基酸分子量变化在38.6(GluB3-414)~ 42.5 kDa(GluB3-413)之间; 16个新等位变异都包含单一的完整开放阅读框, 具有低分子量麦谷蛋白亚基的典型结构。文章进一步拓展了低分子量麦谷蛋白基因资源, 揭示不同Glu-B3基因的进化过程不完全相同, 为有效地利用小麦近缘种材料和转基因育种提供了新的基因资源。  相似文献   

18.
Allelic diversity at five gliadin-coding gene loci has been studied in the most important spring durum wheat cultivars released in Russia and former Soviet republics in the 20th century (66 cultivars). Seven, 5, 8, 13, and 2 allelic variants of blocks of gliadin components controlled by the loci Gli-A1 d , Gli-B1 d , Gli-A2 d , Gli-B2 d , and Gli-B5 d , respectively, have been identified. The allelic diversity did not exhibit a consistent trend during the period studied. Nei’s diversity index (H) was 0.68 in the period from 1929 to 1950, increased to 0.70 in 1951–1980, and decreased to 0.58 after the year 1981. It has been found that the most frequent alleles in this collection are relatively rare in other regions of the world, which suggests unique ways of the formation of the diversity of durum wheat cultivars in the former Soviet Union. The efficiency of electrophoresis of storage proteins as a method for identification of durum wheat cultivars by the gliadin electrophoretic pattern has been estimated.  相似文献   

19.
Low-molecular-weight glutenin subunits (LMW-GSs) are one of the major components of gluten, and their allelic variation has been widely associated with different wheat end-use quality parameters. These proteins are encoded by multigene families located at the orthologous Glu-3 loci (Glu-A3, Glu-B3, and Glu-D3); the genes at each locus are divided by large intergenic and highly recombinogenic regions. Among the methods used for the LMW-GS allele identification, polymerase chain reaction (PCR)-based molecular markers have the advantages of being simple, accurate, and independent from the plant stage of development. However, the available LMW-GS molecular markers are either incapable of capturing the complexity of the LMW-GS gene family or difficult to interpret. In the present study, we report the development of a set of PCR-based molecular markers specific for the LMW-GS haplotypes present at each Glu-3 locus. Based on the LMW-GS gene sequences available in GenBank, single nucleotide polymorphisms (SNPs) specific for each Glu-3 haplotype were identified and the relevant PCR primers were designed. In total, we developed three molecular markers for the Glu-A3 and Glu-B3 loci, respectively, and five molecular markers for the Glu-D3 locus. The markers were tested on 44 bread wheat varieties previously characterized for their LMW-GS genic profile and found to be equally or more efficient than previously developed LMW-GS PCR-based markers. This set of markers allows an easier and less ambiguous identification of specific LMW-GS haplotypes associated with gluten strength and can facilitate marker-assisted breeding for wheat quality.  相似文献   

20.
Genetic diversity of French common wheat germplasm based on gliadin alleles   总被引:24,自引:0,他引:24  
 Analysis of gliadin electrophoretic (APAGE) patterns made it possible to identify 79 alleles at six Gli-1 and Gli-2 loci (from 9 to 18 per locus) and 173 gliadin genotypes in the 187 French common wheat cultivars considered. Six new alleles were registered in the catalogue of gliadin alleles. The genetic diversity of French common wheats was found to be high (H=0.714) and had not changed much during the last 25–50 years. Analysis of genetic distances showed some gradual changes in French wheat germplasm over the course of time. Genetic distances between French and several European wheat germplasm were analysed; genotypes of European wheats were found to relate very distantly to Canadian genotypes. The considerable differentiation of wheat genotypes from different countries and cereal companies might be caused by breeders’ personal preferences and by hidden natural selection specific to each local environment. In French cultivars, genetic variation in earliness, and in the North/South habit of the cultivars studied, correlated significantly with allelic variation at Gli-B1, Gli-A2 and Gli-D2 for earliness, and at Gli-D2 for the North/ South habit. Early and late cultivars are grown mainly in Southern and Northern France, respectively (r 2=0.30). Cultivars having either the 1B/1R translocation or allele Gli-D2g are, on average, later and more resistant to cold; they hence are grown in the North of France. Alternatively, cultivars with the allele Gli-D2m are earlier and cold-sensitive, and are grown in the South of France. Received: 5 February 1997 / Accepted: 19 September 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号